JPH04178995A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPH04178995A
JPH04178995A JP2310211A JP31021190A JPH04178995A JP H04178995 A JPH04178995 A JP H04178995A JP 2310211 A JP2310211 A JP 2310211A JP 31021190 A JP31021190 A JP 31021190A JP H04178995 A JPH04178995 A JP H04178995A
Authority
JP
Japan
Prior art keywords
differential amplifier
amplifier
signal
differential
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2310211A
Other languages
Japanese (ja)
Inventor
Makoto Ihara
伊原 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2310211A priority Critical patent/JPH04178995A/en
Publication of JPH04178995A publication Critical patent/JPH04178995A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a differential amplifier to perform differential amplification at a high speed in its ordinary operating status and at high sensitivity in a standby status by supplying the amplifier with large current in the ordinary operating status and a small current in the standby status. CONSTITUTION:This semiconductor storage device is provided with a differential amplifier 1 which differentially amplifies very low potential between bit lines 4 and 4 and a differential amplifier drive circuit 2 which supplies an electric current to the amplifier 1 through a differential amplifier driving signal line 3 to operate the amplifier 1. The circuit 2 inputs a differential amplifier activating signal 5 and a signal 6 indicating the operating status of the amplifier 1 and is provided with a switching circuit which switches the electric current flowing to the amplifier 1 to a large current in the ordinary operating status and small current in the standby status in accordance with the signal 6. Therefore, the refreshing time interval of the amplifier can be prolonged and the amplifier can make differential amplification at a sufficiently high speed in the ordinary operating status.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、リフレッシュ動作を必要とする半導体記憶装
置に関するもので、主に、ダイナミック型半導体記憶装
置(以下rDRAMJという)、ψ似ヌタティノク型半
導体記憶装置(以下「疑似SRAMJという)に関する
ものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a semiconductor memory device that requires a refresh operation, and mainly relates to a dynamic type semiconductor memory device (hereinafter referred to as rDRAMJ), a ψ-like Nutatinok type semiconductor This relates to a storage device (hereinafter referred to as "pseudo SRAMJ").

〈従来の技術〉 第3図に、従来のDRAMまたは疑似SRAMのうち、
ビット線、差動増幅器、差動増幅器駆動回路の構成図を
示す。第3図に於いて、1は差動増幅器、2は差動増幅
器駆動回路、3は差動増幅器駆動信号線、4はビット線
、11はNチャネルトランジスタ、12はPチャネルト
ランジスタ、13は遅延回路を示す。
<Prior art> Figure 3 shows the conventional DRAM or pseudo SRAM.
A configuration diagram of a bit line, a differential amplifier, and a differential amplifier drive circuit is shown. In Figure 3, 1 is a differential amplifier, 2 is a differential amplifier drive circuit, 3 is a differential amplifier drive signal line, 4 is a bit line, 11 is an N-channel transistor, 12 is a P-channel transistor, and 13 is a delay Shows the circuit.

次に、第3図に示す回路構成における動作順序を述べる
。まず、差動増幅器活性化信号5が、差動増幅器駆動回
路2に入力されると、前記差動増幅器駆動回路2の中の
NチャネルトランジヌタIIは、差動増幅器駆動信号線
3にプルダウン信号を出力する。また、Pチャネルトラ
ンジスタ12は、遅延回路13による遅延時間後、差動
増幅器駆動信号線3にプルアップ信号を出力するっ〈発
明が解決しようとする課題〉 近年、携帯用のコンピュータの需要が太きくなつている
、これら(は電源として、蓄電池を使用しているものが
多い。携帯性という用途から蓄電池によって長時間使用
できることが望まれるが、そのためには、消費電流の低
減が必要であり、また蓄電池の内部抵抗が太きいため、
ピーク電流の低減も必要である。特に、コンピュータが
RAM上にデータを保持して待機している状態では、コ
ンピュータの消費電流の大部分をRAMが占めるため、
RAMの待機時の消費電流及びピーク電流が小さいこと
がより一層望まれる。DRAMまたは疑似S RA、 
Mの待機状態での消費電流は、リフレッシュ時間間隔に
反比例する。したがって、DRAMまたは疑似SRAM
では、外部とデータの入出力を行う通常動作状態でのり
フレッシュ時間間隔に対して、外部とデータ入出力をし
ないデータの保持のみを行う待機状態でのりフレッシュ
時間間隔を長くして、待機状態での消費電流を下げてい
た。これは、メモリ七ルのリーク電流が十分小さくなる
ことにより、可能であった。
Next, the order of operation in the circuit configuration shown in FIG. 3 will be described. First, when the differential amplifier activation signal 5 is input to the differential amplifier drive circuit 2, the N-channel transistor II in the differential amplifier drive circuit 2 sends a pull-down signal to the differential amplifier drive signal line 3. Output. Furthermore, the P-channel transistor 12 outputs a pull-up signal to the differential amplifier drive signal line 3 after a delay time caused by the delay circuit 13. Many of these devices (which are becoming more and more popular) use storage batteries as their power source.For portability reasons, it is desirable that storage batteries can be used for long periods of time, but in order to do so, it is necessary to reduce the current consumption. Also, because the internal resistance of the storage battery is high,
Reduction of peak current is also required. In particular, when the computer is waiting with data stored in RAM, the RAM accounts for most of the computer's current consumption.
It is even more desirable that the standby current consumption and peak current of the RAM be small. DRAM or pseudo SRA,
The current consumption of M in the standby state is inversely proportional to the refresh time interval. Therefore, DRAM or pseudo SRAM
Now, we will increase the refresh time interval in the normal operating state where data is input/output to the outside, while in the standby state where data is only held without data input/output to the outside. The current consumption was reduced. This was possible because the leakage current of the memory cell became sufficiently small.

ところで、リフレッシュ時間間隔を延ばす手段としでは
、メモリ七ルのリーク電流を減らすことの他に、差動増
幅の感度を上げることも有効である。差動増幅感度ば、
差動増幅器を駆動する電流が大きいほど低下し、小さい
ほど同上する。したがって、リフレッシュ時間間隔をよ
り長くするために、差動増幅器を駆動させる電流を小さ
くし、差動増幅器の感度を向上させるという手段が考え
られる。また、差動増幅器を駆動する電流を小さくする
ことによって、ピーク電流も低減できるという利点もあ
る。しかしながら、差動増幅器を駆動する電流を単純に
小さくした場合、通常の動作状態において、差動増幅に
要する時間が長くなるという不都合が生じる。
By the way, as a means to extend the refresh time interval, in addition to reducing the leakage current of the memory 7, it is also effective to increase the sensitivity of the differential amplification. If the differential amplification sensitivity is
The larger the current driving the differential amplifier is, the lower the difference is, and the smaller the current is, the same as above. Therefore, in order to make the refresh time interval longer, it is possible to reduce the current that drives the differential amplifier and improve the sensitivity of the differential amplifier. Another advantage is that by reducing the current that drives the differential amplifier, the peak current can also be reduced. However, if the current that drives the differential amplifier is simply reduced, the time required for differential amplification becomes longer under normal operating conditions.

そこで、本発明は、待機状態における差動増幅における
差動増幅感度を向上させることによって、リフレッシュ
時間間隔を長くでき、かつ、通常の動作状態では、十分
高速に差動増幅を行なえる半導体記憶装置を提供するも
のである。
Therefore, the present invention provides a semiconductor memory device that can extend the refresh time interval by improving the differential amplification sensitivity in differential amplification in a standby state, and can perform differential amplification at a sufficiently high speed in a normal operating state. It provides:

〈課頌を解決するための手段〉 第1図は本発明の構成の概念図を示す。本発明の半導体
記憶装置は、ビン)線4,4間の微小電位を差動増幅す
る差動増@器1と、上記差動増幅器1を動作させるため
に、差動増・幅器駆動信号線3を介して、差動増幅器1
に電流を供給する差動増幅器駆動回路2とを有している
。差動増幅器駆動回路2に(は、差動増幅器活性化信号
5と動作状態を表わす信号6が入力されており、信号6
により差動増幅器に流れる電流を、通常の動作状態では
大きく、待機状態では小さくする切り換え回路を有する
ことを特徴とする。
<Means for solving the problem> FIG. 1 shows a conceptual diagram of the configuration of the present invention. The semiconductor memory device of the present invention includes a differential amplifier 1 that differentially amplifies the minute potential between the bin lines 4 and 4, and a differential amplifier drive signal for operating the differential amplifier 1. Differential amplifier 1 via line 3
and a differential amplifier drive circuit 2 that supplies current to the differential amplifier. A differential amplifier activation signal 5 and a signal 6 representing the operating state are input to the differential amplifier drive circuit 2.
The present invention is characterized by having a switching circuit that increases the current flowing through the differential amplifier in a normal operating state and decreases it in a standby state.

〈作用〉 上記本発明を用いることにより、差動増幅器駆動回路2
が、通常の動作状態においては、差動増幅器lに比較的
大きな電流を供給し、待機状態においては、差動増幅器
]に比較的小さな電流を供給する。したがって、通常の
動作状態では差動増幅が高速に行われ、待機状態では、
差動増幅を高感度で行うことが可能となる。
<Operation> By using the above-described present invention, the differential amplifier drive circuit 2
However, in a normal operating state, a relatively large current is supplied to the differential amplifier l, and in a standby state, a relatively small current is supplied to the differential amplifier l. Therefore, differential amplification is performed quickly in normal operating conditions, and in standby conditions,
It becomes possible to perform differential amplification with high sensitivity.

く実施例〉 以下、実施例に基づいて、本発明の詳細な説明する。Example Hereinafter, the present invention will be described in detail based on Examples.

第2図は、疑似SRAMにおける実施例の回路構成図を
示す。第2図に於いて、lは、ビット線4.4間の微小
電位を差動増幅する差動増幅器、2は、前記差動増幅器
lを動作させるために、差動増幅器に電流を供給する差
動増幅器駆動回路、3は差動増幅器駆動信号線、5は差
動増幅器活性化信号、6は待機状健か否かを表わす信号
、10、IIはNチャネルトランジスタ、12はPチャ
ネルトランジスタ、13.14は遅延回路を示す。
FIG. 2 shows a circuit configuration diagram of an embodiment in a pseudo SRAM. In FIG. 2, l is a differential amplifier that differentially amplifies the minute potential between bit lines 4 and 4, and 2 supplies current to the differential amplifier in order to operate the differential amplifier l. A differential amplifier drive circuit, 3 is a differential amplifier drive signal line, 5 is a differential amplifier activation signal, 6 is a signal indicating whether or not the standby state is healthy, 10 and II are N-channel transistors, 12 is a P-channel transistor, 13.14 shows a delay circuit.

第6図は、疑似SRAMにおける前記信号6の発生回路
を示し、第7図は、第6図の回路の各部の信号波形図を
示す。前記信号6は、CEがH状軽のときにRFSHが
゛H#状態に遷移すると、タイマー7が始動し、一定時
間経過すると”H″レベルなる。また、RFSHが゛L
″レベルになると信号6は″′L″レベルとなる。捷だ
、Nチャネルトランジスタ10.11は差動増幅器駆動
信号線3にプルダウン信号を出力するが、Nチャネルト
ランジスタ11よりも、駆動能力は、小さくなっている
FIG. 6 shows a circuit for generating the signal 6 in the pseudo SRAM, and FIG. 7 shows a signal waveform diagram of each part of the circuit in FIG. When the RFSH transitions to the "H#" state when the CE is in the H-state, the timer 7 is started, and the signal 6 becomes "H" level after a certain period of time has elapsed. Also, RFSH is
'' level, the signal 6 becomes ''L'' level. However, the N-channel transistors 10 and 11 output a pull-down signal to the differential amplifier drive signal line 3, but their driving ability is lower than that of the N-channel transistor 11. , is getting smaller.

次に、通常の動作状態における回路動作について述べる
。通常の動作状態においては、信号6がII L # 
レベルになる。このとき、差動増幅駆動回路3、第3図
における前記従来のDRAM内の差動増幅駆動回路2と
同じタイミングで動作する。第2図のNチャネルトラン
ジスタ11と第3図のNチャネルトランジスタ11の駆
動能力は同じとする。動作波形の概念図を第4図に示す
。差動増幅器活性化信号5がH# レベルとなると、N
チャネルトランジスタ11が差動増幅器駆動信号を出力
し、遅延回路13による遅延時間後、Pチャネルトラン
ジスタ12が、差動増幅器駆動信号を発生する。
Next, the circuit operation under normal operating conditions will be described. Under normal operating conditions, signal 6 is II L #
become the level. At this time, the differential amplifier drive circuit 3 operates at the same timing as the differential amplifier drive circuit 2 in the conventional DRAM shown in FIG. It is assumed that the N-channel transistor 11 in FIG. 2 and the N-channel transistor 11 in FIG. 3 have the same driving capability. A conceptual diagram of the operating waveforms is shown in FIG. When differential amplifier activation signal 5 reaches H# level, N
Channel transistor 11 outputs a differential amplifier drive signal, and after a delay time by delay circuit 13, P-channel transistor 12 generates a differential amplifier drive signal.

次に、待機状態における回路動作について述べる。待機
状態においては、信号6が゛H″レベルになる。差動増
幅器活性化信号5が゛H″レベルになると、Nチャネル
トランジスタ10が差動増幅器駆動信号を出力する。こ
のとき、Nチャネルトランシヌタ]OI″i、Nチャネ
ルトランジスタ11よりも駆動能力が小さいので、差動
増幅器駆動信号電流i4、通常の動作状をよりも小さい
。第5図に待機状態における動作波形の概念図を示す。
Next, the circuit operation in the standby state will be described. In the standby state, the signal 6 goes to the "H" level. When the differential amplifier activation signal 5 goes to the "H" level, the N-channel transistor 10 outputs a differential amplifier drive signal. At this time, since the driving capability of the N-channel transinutor OI''i is smaller than that of the N-channel transistor 11, the differential amplifier drive signal current i4 is smaller than the normal operating state.The operating waveform in the standby state is shown in FIG. A conceptual diagram is shown.

遅延回路14による遅延時間後、Nチャネルトランジス
タ11が活性化する。遅延回路13による遅延時間後、
Pチャネルトランジスタ12が差動増幅器駆動信号を発
生する。
After a delay time by delay circuit 14, N-channel transistor 11 is activated. After the delay time by the delay circuit 13,
P-channel transistor 12 generates the differential amplifier drive signal.

以上の様に、待機状■の差動増幅器駆動電流(は通常の
動作状態の差動増幅器駆動電流よりも小さくなる。した
がって、通常の動作状■では、差動増幅を高速に行うこ
とができ、待機状態では、差動増幅を高感度に行うこと
ができる。
As mentioned above, the differential amplifier drive current (in the standby state (■) is smaller than the differential amplifier drive current in the normal operating state. Therefore, in the normal operating state (■), differential amplification cannot be performed at high speed. , in the standby state, differential amplification can be performed with high sensitivity.

第8図に、DRAMの場合の前記信号60発生回路を示
す。また、第9図に、第8図の回路の各部の信号波形図
を示す。
FIG. 8 shows the signal 60 generating circuit in the case of a DRAM. Further, FIG. 9 shows a signal waveform diagram of each part of the circuit of FIG. 8.

RASビフォアCASリフレッシュモードに於いて、C
AS信号の立ち下がり後、所定の時間(タイマー7に設
定されている時間)内にRAS信号が立ち下がらなけれ
ば、待機状態に入り、信号6がV″H“レベルとなる。
In RAS before CAS refresh mode, C
If the RAS signal does not fall within a predetermined time (time set in the timer 7) after the AS signal falls, a standby state is entered and the signal 6 becomes V″H″ level.

また、CA、 S信号の立ち土かりによって、待機状軸
ハ終了し、信+j6ば゛L#レベルに戻る。
Further, due to the presence of the CA and S signals, the standby state of the axis ends and the signal returns to the +j6 level.

また、これまでの説明では、プルダウン動作に対する差
動増幅器駆動電流の大きさを変えることについて述べた
が、プルアップ動作に対しても適用可能である。
Furthermore, although the explanation so far has been about changing the magnitude of the differential amplifier drive current for pull-down operation, it is also applicable to pull-up operation.

〈発明の効果〉 以上、詳細に説明した様に、本発明により、待機状態に
おける差動増幅感度を向上させることによって、リフレ
ッシュ時間間隔を長くでき、且つ、通常の動作状態では
十分高速に差動増幅を行うことができる。従来の半導体
記憶装置と同じ消費電流で比較すると、通常の動作状態
では、差動増幅はより高速に、待機状態では、差動増幅
感度がより良好になる最適状態を得ることができる。
<Effects of the Invention> As described above in detail, the present invention allows the refresh time interval to be lengthened by improving the differential amplification sensitivity in the standby state, and also enables sufficiently high-speed differential amplification in the normal operating state. Amplification can be performed. When compared with a conventional semiconductor memory device at the same current consumption, an optimal state can be obtained in which differential amplification is faster in normal operating conditions and differential amplification sensitivity is better in standby conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の構成の概念図である。 第2図は、本発明の一実施例の回路構成図である。 第3図は、従来例の回路構成図である。 第4図は、通常の動作状■(でおける動作波形の概念図
である。 第5図は、待機状態1・でおける動作波形の概念図であ
る。 第6図は、疑似SRAMの場合の信号6の発生回路を示
す図である。 第7図は、第6図の回路各部の信号波形図である。 第8図は、DRAMの場合の信号6の発生回路を示す図
である。 第9図は、第8図の回路各部の信号波形図であるっ 符号の説明 l:差動増幅器、 2:差動増幅器駆動回路、3:差動
増幅器駆動信号線、 4:ビット線、5:差動増幅器活
性化信号、 6:待機状態であることを表わす信号、 
7:タイマー、  ]0゜+ 1 :Nチャネルトラン
ジスタ、  +2:Pチャネルトランジスタ、 13.
14:遅延回路。 代理人 弁理士 梅 1) 勝(他2名)第3図 石4図 第5図 第6図 第7図
FIG. 1 is a conceptual diagram of the configuration of the present invention. FIG. 2 is a circuit configuration diagram of an embodiment of the present invention. FIG. 3 is a circuit diagram of a conventional example. FIG. 4 is a conceptual diagram of operating waveforms in normal operating state 1. FIG. 5 is a conceptual diagram of operating waveforms in standby state 1. FIG. 7 is a diagram showing a circuit for generating signal 6. FIG. 7 is a signal waveform diagram of each part of the circuit in FIG. 6. FIG. 8 is a diagram showing a circuit for generating signal 6 in the case of a DRAM. 9 is a signal waveform diagram of each part of the circuit in FIG. 8. Explanation of symbols 1: Differential amplifier, 2: Differential amplifier drive circuit, 3: Differential amplifier drive signal line, 4: Bit line, 5: Differential amplifier activation signal, 6: Signal indicating standby state,
7: Timer, ]0°+1: N-channel transistor, +2: P-channel transistor, 13.
14: Delay circuit. Agent Patent Attorney Ume 1) Katsu (2 others) Figure 3 Stone 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1、ビット線間の微小電位を差動増幅する差動増幅器と
、上記差動増幅器を動作させるために上記差動増幅器に
電流を供給する差動増幅器駆動回路とを有し、少なくと
も、外部とデータの入出力を行う通常の動作状態とデー
タの保持のみを行う待機状態との、2つの状態を有する
半導体記憶装置において、動作状態を表わす信号により
、前記差動増幅器を駆動させる電流を、上記通常の動作
状態では大きく、上記待機状態では小さくする切り換え
回路を有することを特徴とする半導体記憶装置。
1. It has a differential amplifier that differentially amplifies the minute potential between the bit lines, and a differential amplifier drive circuit that supplies current to the differential amplifier in order to operate the differential amplifier, and has at least an external connection. In a semiconductor memory device that has two states, a normal operating state in which data is input/output and a standby state in which only data is held, the current for driving the differential amplifier is controlled by a signal representing the operating state. 1. A semiconductor memory device comprising a switching circuit that is large in a normal operating state and small in a standby state.
JP2310211A 1990-11-14 1990-11-14 Semiconductor storage device Pending JPH04178995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2310211A JPH04178995A (en) 1990-11-14 1990-11-14 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2310211A JPH04178995A (en) 1990-11-14 1990-11-14 Semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH04178995A true JPH04178995A (en) 1992-06-25

Family

ID=18002535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2310211A Pending JPH04178995A (en) 1990-11-14 1990-11-14 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH04178995A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942918A (en) * 1997-06-25 1999-08-24 Sun Microsystems, Inc. Method for resolving differential signals
US5942919A (en) * 1997-06-25 1999-08-24 Sun Microsystems, Inc. Differential receiver including an enable circuit
US5955894A (en) * 1997-06-25 1999-09-21 Sun Microsystems, Inc. Method for controlling the impedance of a driver circuit
US5982191A (en) * 1997-06-25 1999-11-09 Sun Microsystems, Inc. Broadly distributed termination for buses using switched terminator logic
US5990701A (en) * 1997-06-25 1999-11-23 Sun Microsystems, Inc. Method of broadly distributing termination for buses using switched terminators
US6060907A (en) * 1997-06-25 2000-05-09 Sun Microsystems, Inc. Impedance control circuit
US6085033A (en) * 1997-06-25 2000-07-04 Sun Microsystems, Inc. Method for determining bit element values for driver impedance control

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942918A (en) * 1997-06-25 1999-08-24 Sun Microsystems, Inc. Method for resolving differential signals
US5942919A (en) * 1997-06-25 1999-08-24 Sun Microsystems, Inc. Differential receiver including an enable circuit
US5955894A (en) * 1997-06-25 1999-09-21 Sun Microsystems, Inc. Method for controlling the impedance of a driver circuit
US5982191A (en) * 1997-06-25 1999-11-09 Sun Microsystems, Inc. Broadly distributed termination for buses using switched terminator logic
US5990701A (en) * 1997-06-25 1999-11-23 Sun Microsystems, Inc. Method of broadly distributing termination for buses using switched terminators
US6060907A (en) * 1997-06-25 2000-05-09 Sun Microsystems, Inc. Impedance control circuit
US6085033A (en) * 1997-06-25 2000-07-04 Sun Microsystems, Inc. Method for determining bit element values for driver impedance control

Similar Documents

Publication Publication Date Title
US6922371B2 (en) Semiconductor storage device
KR100300079B1 (en) Sense amplifier driving circuit
JPH0536277A (en) Semiconductor memory device
JPH0223957B2 (en)
KR950009725A (en) Semiconductor memory device
JP2005085454A (en) Integrated circuit device including memory array, and method for power gating in integrated circuit device in which memory with sense amplifier is incorporated
JPH04178995A (en) Semiconductor storage device
KR960025732A (en) Semiconductor Memory Devices Reduce Operating Current Consumption
KR20010048993A (en) Method of prefetch and restore in semiconductor memory device and circuit thereof
JPS6171494A (en) Semiconductor memory device
US5751648A (en) Two stage sensing for large static memory arrays
JP4005279B2 (en) DRAM device and sensing method thereof
JP4804609B2 (en) Memory circuit that prevents cell array power supply from rising
KR20030060640A (en) Circuit for generating column enable signal in DRAM
JP3319427B2 (en) Semiconductor memory device
KR100403320B1 (en) Over driving control device during self refresh
JPH0147940B2 (en)
US5563840A (en) Integrated semiconductor device
JPH0474383A (en) Semiconductor memory
JP3237180B2 (en) Semiconductor storage device
JPH04106785A (en) Static memory circuit
KR100234369B1 (en) Output driving circuit of sram
KR100429559B1 (en) Low power bitline precharge device in semiconductor memory device
JPS63161590A (en) Latch signal generating circuit for dynamic sense amplifier
JPH0268794A (en) Static random access memory