JPH0417702B2 - - Google Patents

Info

Publication number
JPH0417702B2
JPH0417702B2 JP57128411A JP12841182A JPH0417702B2 JP H0417702 B2 JPH0417702 B2 JP H0417702B2 JP 57128411 A JP57128411 A JP 57128411A JP 12841182 A JP12841182 A JP 12841182A JP H0417702 B2 JPH0417702 B2 JP H0417702B2
Authority
JP
Japan
Prior art keywords
ion exchange
group
resin
exchange resin
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57128411A
Other languages
Japanese (ja)
Other versions
JPS5919547A (en
Inventor
Masafumi Morya
Kazuo Hosoda
Tomio Imachi
Akira Nishimura
Makoto Takai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Myoshi Oil and Fat Co Ltd
Original Assignee
Myoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Myoshi Oil and Fat Co Ltd filed Critical Myoshi Oil and Fat Co Ltd
Priority to JP12841182A priority Critical patent/JPS5919547A/en
Publication of JPS5919547A publication Critical patent/JPS5919547A/en
Publication of JPH0417702B2 publication Critical patent/JPH0417702B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は両性イオン交換樹脂にかかわり、さら
に詳しくは新規なイオン交換基を有する両性イオ
ン交換樹脂に関するものである。 一般に市販のイオン交換樹脂は、高分子基体に
イオン交換基を結合させた構造のもので、イオン
交換基の種類により、陽イオンおよび陰イオン交
換樹脂の2種類に分類される。 陽イオン交換樹脂には、交換基としてスルホン
酸基(−SO3H)を有する弱酸性陽イオン交換樹
脂、およびカルボン酸基(−COOH)を有する
弱酸性陽イオン交換樹脂がある。陰イオン交換樹
脂にはイオン交換基として、4級アミノ基(−
NR3 +)を有する強塩基性陰イオン交換樹脂およ
び1級アミノ基(−NH2)、2級アミノ基(−
NHR)、3級アミノ基(−NR2)のいずれかを
有する弱塩基性陰イオン交換樹脂がある。陽イオ
ン交換樹脂は水中の陽イオン、例えば、Ca2+
Mg2+Cu2+、Zn2+等をイオン交換する。また陰イ
オン交換樹脂は水中の陰イオン、例えば、Cl-
Br-、F-、SO2- 4等をイオン交換する。従来、上
に述べた陰イオンが存在する廃水中には、大抵上
に述べた陽イオンが同時に存在することが多く、
これらの両イオンが存在する場合には、従来、陰
陽両イオンは、各々のイオンのみを吸着するイオ
ン交換樹脂を用いて、別々に吸着除去している。
従つて、これらの陰陽イオンを同時に吸着除去す
ることが出来るとすれば、工程上、装置上極めて
大きなメリツトがある。このような問題点に着目
して本発明者らは検討を進めた結果、水中の陽イ
オンならびに陰イオンを、同時にイオン交換する
ことの出来ると云う特性を持つた従来のイオン交
換樹脂では全く考えられなかつた両性イオン交換
樹脂を発明するに至つた。 本発明の両性イオン交換樹脂は、イオン交換基
として陰イオンを交換するアミノ基と陽イオンを
交換するカルボン酸基又はカルボン酸塩基を有す
るものである。その両性イオン交換樹脂の製造法
は、イオン交換基が少くとも1個の3級アミノ基
を有するポリアルキレンポリアミン基である弱塩
基性陰イオン交換樹脂に、溶媒の存在下で、モノ
ハロゲンアルキルカルボン酸(またはエステル類
またはアルカリ金属塩)で4級化することによ
り、容易にかつ経済的に両性イオン交換樹脂を合
成することが可能である。さらにその製造法を詳
細に説明すると、イオン交換基が少なくとも1個
は、3級アミノ基である弱塩基性イオン交換樹脂
に、少なくとも樹脂が撹拌できる程度、好ましく
は樹脂量の1〜10倍量の溶媒を添加し、30〜60℃
に加熱し、X−(CH2)n−COOR(XはF、Cl、
Br、Iのいずれか、nは1〜5の整数、RはH
または炭素数1〜5のアルキル基またはアルカリ
金属)なる構造式を有するモノハロゲンアルキル
カルボン酸類を添加し、添加量はイオン交換基の
3級アミノ基1ケに対して0.1〜5倍当量、好ま
しくは0.5〜2倍当量添加し、4級化し、60〜90
℃、1〜10時間熟成反応を行つた。モノハロゲン
アルキルカルボン酸エステルで4級化した樹脂
は、さらに酸もしくはアルカリでケン化した。 本発明で使用する弱塩基性陰イオン交換樹脂に
は、高分子基体としてはスチレン−ジビニルベン
ゼン樹脂、塩化ビニル樹脂、エポキシ樹脂、メタ
クリル樹脂、MMA樹脂などがあり、イオン交換
基としては少くとも1個の3級アミノ基を有する
ポリアルキレンポリアミノ基が上げられる。3級
アミノ基は>N−及びもしくは>N−R′で示さ
れ、R′は炭素数1〜5のアルキル基、または−
(CH22OHを示す。例えばこれらのポリアルキレ
ンポリアミノ基としては、下記一般式(1)又は(2) ((1)式及び(2)式中、R′はCH3、C2H5又は
C2H4OH、pは2又は3、qは0又は1、rは2
又は3)で示される基が挙げられる。 本発明で使用するX−(CH2)n−COORで示
されるモノハロゲンアルキルカルボン酸類はXは
F、Cl、Br、Iのいずれか、nは1〜5の整数、
RはHまたは炭素数1〜5のアルキル基またはア
ルカリ金属塩を示す。例えばモノクロル酢酸、モ
ノクロルプロピオン酸、モノクロルバレリアン酸
およびこれらのアルカリ金属塩およびアルキルエ
ステル(C1〜C5)などがあり、これらに限定さ
れない。 さらに本発明で使用する溶剤としては、水、メ
タノール、エタノール、プロパノール、ブタノー
ル、メチルセロソルブ、エチルセロソルブ、ブチ
ルセロソルブ、ベンゼン、トルエン、キシレン、
n−ヘキサン、四塩化炭素、クロロホルム、
THF、ジオキサン、ブチルエーテルなどがあり、
これらに限定されるものではない。 以下、実施例によつて本発明をさらに詳細に説
明するが、本発明はその要旨を越えない限り下記
実施例により限定されるものではない。 実施例 1 14〜48メツシユ、球状のスチレン−ジビニルベ
ンゼン樹脂にイオン交換基として、−N(CH3)−
CH2CH2−N(CH3)−CH2CH2−N(CH32なる
構造を有するマクロポーラス型弱塩基性イオン交
換樹脂(OH型、2.6meq/ml、含水率42%)500
mlとイオン交換水1500mlを、撹拌機、温度計、還
流冷却器を付したフラスコに仕込み、25℃で撹拌
しながら、1N塩酸でPHを7.0に調整し、調整後、
60℃に昇温し、10%モノクロル酢酸ナトリウム水
溶液3500gを添加し、50〜60℃で2時間、ついで
90〜100℃で4時間撹拌を行つた。反応後、冷却
し、樹脂を濾別し、イオン交換水で良く洗浄し、
淡黄色の両性イオン交換樹脂(含水率44%、A−
1)503mlを得た。 実施例 2 28〜60メツシユ、球状のスチレン−ジビニルベ
ンゼン樹脂にイオン交換基として、−NH−CH2
−CH2−N(CH32なる構造を有するマクロポー
ラス型の弱塩基性陰イオン交換樹脂(含水率45
%、2.3meq/ml)500mlとイオン交換水−エチル
アルコール(7:3)混合液1500mlを、実施例1
と同様の反応器に仕込み、25℃で撹拌下、5N硫
酸にてPHを6.8に調整し、調整後60℃に昇温し、
50%モノクロルプロピオン酸ナトリウム水溶液を
261g添加し、50〜60℃で2時間、ついで80〜90
℃で2時間撹拌を行つた。冷却後、樹脂分を濾別
し、イオン交換水で洗浄し、淡褐色の両性イオン
交換樹脂(含水率51%、A−2)501mlを得た。 実施例 3 14〜60メツシユ、球状の塩化ビニル樹脂にイオ
ン交換基として、−N(CH32と−NH−CH2
CH2−N(CH32なる構造を有するマクロポーラ
ス型の弱塩基性陰イオン交換樹脂(含水率38%、
1.9meq/ml)500mlとイソプロピルアルコール:
ブチルセロセルブ(7:3)混合液2000mlを、実
施例1と同様の反応器に仕込み、30℃で撹拌下、
2N塩酸にてPHを6.8に調整した。調整後60℃に昇
温し、40%モノクロルバレリアン酸ナトリウム
1880gを徐々に加え、添加終了後80〜85℃で6時
間撹拌した。冷却後、樹脂分を濾別し、イオン交
換水で良く洗浄し、淡褐色の両性イオン交換樹脂
(含水率35%、A−3)496mlを得た。 実施例 4 20〜60メツシユ、球状のエポキシ樹脂にイオン
交換基として >N−CH2CH2CH2−N(CH3)−CH2CH2CH2
N(CH32なる構造を有するマクロポーラス型の
弱塩基性イオン交換樹脂(含水率51%、
2.3meq/ml)500mlとエチルアルコール1500ml
を、実施例1と同様の反応器に仕込み、25℃で撹
拌下、1N硫酸にてPH6.8に調整した。PH調整後55
℃に昇温し、15%モノクロル酢酸ナトリウム2300
gを添加し、2時間撹拌後さらに昇温し、還流下
5時間撹拌を行つた。反応終了後、冷却し、樹脂
分を濾別し、イオン交換水で良く洗浄し、淡黄色
の両性イオン交換樹脂(含水率48%、A−4)
504mlを得た。 実施例 5 30〜50メツシユ、球状のエポキシ樹脂に >N−CH2CH2N(CH32なる構造を有するマク
ロポーラス型の弱塩基性陰イオン交換樹脂(含水
率47%、1.6meq/ml)500mlとブチルセロソルブ
−ブチルアルコール(7:3)1000mlを実施例1
と同様の反応器に仕込み、25℃で撹拌下、3N塩
酸にてPHを6.8に調整した。調整後50℃に昇温し、
モノクロルプロピオン酸ブチル197.4gを徐々に
加え、添加終了後さらに80〜90℃で7時間撹拌を
続けた。冷却後、樹脂分を濾別し、得られた樹脂
を2000mlの2N水酸化ナトリウム水溶液中に添加
し、85〜90℃で3時間撹拌した。冷却後、再度樹
脂分を濾別し、イオン交換水で良く洗浄し、淡黄
色の両性イオン交換樹脂(含水率45%、A−5)
504mlを得た。 実施例 6 実施例1〜5で得られた樹脂を硫酸で処理し、
さらにイオン交換水で水洗し、カルシウムイオン
および銅イオンの吸着量を測定した。 原水としてカルシウムイオン40ppmと銅イオン
50ppmを含有する水溶液を調整した後、原水1
に樹脂1mlを添加し、1ビーカー中にて室温で
3時間撹拌した。固液分離後水溶液中の残存金属
イオン濃度を原子吸光光度法で測定し、原水との
差より吸着量を算出した。結果を表−1に示す。
The present invention relates to an amphoteric ion exchange resin, and more particularly to an amphoteric ion exchange resin having a novel ion exchange group. Commercially available ion exchange resins generally have a structure in which an ion exchange group is bonded to a polymer base, and are classified into two types, cation and anion exchange resins, depending on the type of ion exchange group. Cation exchange resins include weakly acidic cation exchange resins having a sulfonic acid group (-SO 3 H) as an exchange group and weakly acidic cation exchange resins having a carboxylic acid group (-COOH). The anion exchange resin contains a quaternary amino group (-
Strongly basic anion exchange resin with NR 3 + ) and primary amino group (-NH 2 ), secondary amino group (-
There are weakly basic anion exchange resins having either NHR) or tertiary amino groups ( -NR2 ). Cation exchange resins absorb cations in water, such as Ca 2+ ,
Ion exchanges Mg 2+ Cu 2+ , Zn 2+ , etc. Anion exchange resins also absorb anions in water, such as Cl - ,
Ion exchanges Br - , F - , SO 2-4 , etc. Conventionally, in wastewater where the above-mentioned anions exist, the above-mentioned cations often exist at the same time.
Conventionally, when both of these ions exist, they are adsorbed and removed separately using an ion exchange resin that adsorbs only each ion.
Therefore, if these anions and cations could be adsorbed and removed at the same time, it would be extremely advantageous in terms of process and equipment. The inventors of the present invention focused on these problems and proceeded with their studies. As a result, they found that conventional ion exchange resins, which have the property of being able to ion exchange both cations and anions in water at the same time, were completely unthinkable. This led to the invention of an amphoteric ion exchange resin that could not be used. The amphoteric ion exchange resin of the present invention has an amino group that exchanges anions and a carboxylic acid group or carboxylic acid base that exchanges cations as ion exchange groups. The method for producing the amphoteric ion exchange resin is to add a monohalogen alkyl carbon dioxide to a weakly basic anion exchange resin whose ion exchange group is a polyalkylene polyamine group having at least one tertiary amino group in the presence of a solvent. By quaternizing with an acid (or an ester or an alkali metal salt), it is possible to easily and economically synthesize an amphoteric ion exchange resin. Further, to explain the manufacturing method in detail, at least one ion exchange group is added to a weakly basic ion exchange resin which is a tertiary amino group, at least in an amount that allows the resin to be stirred, preferably in an amount of 1 to 10 times the amount of resin. Add solvent and heat to 30-60℃
Heating to
Either Br or I, n is an integer of 1 to 5, R is H
or an alkyl group having 1 to 5 carbon atoms or an alkali metal), and the amount added is preferably 0.1 to 5 times equivalent per tertiary amino group of the ion exchange group. is added in 0.5 to 2 times equivalent amount, quaternized, and 60 to 90
The aging reaction was carried out at 1 to 10 hours. The resin quaternized with monohalogen alkyl carboxylic acid ester was further saponified with acid or alkali. The weakly basic anion exchange resin used in the present invention includes styrene-divinylbenzene resin, vinyl chloride resin, epoxy resin, methacrylic resin, MMA resin, etc. as a polymer base, and has at least one ion exchange group. Examples include polyalkylene polyamino groups having 3 tertiary amino groups. A tertiary amino group is represented by >N- and or >N-R', where R' is an alkyl group having 1 to 5 carbon atoms, or -
(CH 2 ) 2 OH. For example, as these polyalkylene polyamino groups, the following general formula (1) or (2) (In formulas (1) and (2), R′ is CH 3 , C 2 H 5 or
C 2 H 4 OH, p is 2 or 3, q is 0 or 1, r is 2
Or a group shown in 3) can be mentioned. In the monohalogen alkylcarboxylic acids represented by X-( CH2 )n-COOR used in the present invention,
R represents H, an alkyl group having 1 to 5 carbon atoms, or an alkali metal salt. Examples include, but are not limited to, monochloroacetic acid, monochloropropionic acid, monochlorovaleric acid, and alkali metal salts and alkyl esters ( C1 to C5 ) thereof. Furthermore, the solvents used in the present invention include water, methanol, ethanol, propanol, butanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, benzene, toluene, xylene,
n-hexane, carbon tetrachloride, chloroform,
Includes THF, dioxane, butyl ether, etc.
It is not limited to these. Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. Example 1 -N( CH3 )- was added as an ion exchange group to a 14-48 mesh, spherical styrene-divinylbenzene resin.
Macroporous weakly basic ion exchange resin with the structure CH2CH2 - N( CH3 ) -CH2CH2 -N( CH3 ) 2 (OH type , 2.6meq/ml, water content 42%) 500
ml and 1,500 ml of ion-exchanged water were placed in a flask equipped with a stirrer, a thermometer, and a reflux condenser, and while stirring at 25°C, the pH was adjusted to 7.0 with 1N hydrochloric acid. After adjustment,
The temperature was raised to 60℃, 3500g of 10% sodium monochloroacetate aqueous solution was added, and the mixture was heated at 50 to 60℃ for 2 hours.
Stirring was carried out at 90-100°C for 4 hours. After the reaction, cool, filter the resin, and wash well with ion-exchanged water.
Pale yellow amphoteric ion exchange resin (water content 44%, A-
1) 503ml was obtained. Example 2 -NH- CH2 was added as an ion exchange group to a 28-60 mesh, spherical styrene-divinylbenzene resin.
-CH 2 -N(CH 3 ) 2 macroporous weakly basic anion exchange resin (water content 45
Example 1
Pour into the same reactor as above, adjust the pH to 6.8 with 5N sulfuric acid under stirring at 25℃, and raise the temperature to 60℃ after adjustment.
50% sodium monochloropropionate aqueous solution
Add 261g and heat at 50-60℃ for 2 hours, then at 80-90℃
Stirring was carried out at ℃ for 2 hours. After cooling, the resin content was filtered off and washed with ion exchange water to obtain 501 ml of a light brown amphoteric ion exchange resin (water content 51%, A-2). Example 3 -N( CH3 ) 2 and -NH- CH2- were added as ion exchange groups to 14 to 60 mesh, spherical vinyl chloride resin.
A macroporous weakly basic anion exchange resin with a structure of CH 2 -N(CH 3 ) 2 (water content 38%,
1.9meq/ml) 500ml and isopropyl alcohol:
2000 ml of butylcelloselb (7:3) mixture was charged into the same reactor as in Example 1, and stirred at 30°C.
The pH was adjusted to 6.8 with 2N hydrochloric acid. After adjustment, raise the temperature to 60℃ and add 40% sodium monochlorovalerate.
1880g was gradually added, and after the addition was completed, the mixture was stirred at 80-85°C for 6 hours. After cooling, the resin was filtered off and thoroughly washed with ion exchange water to obtain 496 ml of a pale brown amphoteric ion exchange resin (water content 35%, A-3). Example 4 20 to 60 meshes, ion exchange group in spherical epoxy resin>N-CH 2 CH 2 CH 2 -N(CH 3 )-CH 2 CH 2 CH 2 -
Macroporous weakly basic ion exchange resin with a structure of N(CH 3 ) 2 (water content 51%,
2.3meq/ml) 500ml and ethyl alcohol 1500ml
was charged into the same reactor as in Example 1, and the pH was adjusted to 6.8 with 1N sulfuric acid while stirring at 25°C. 55 after pH adjustment
Heat 15% sodium monochloroacetate to 2300 °C.
After stirring for 2 hours, the mixture was further heated and stirred under reflux for 5 hours. After the reaction is completed, cool, filter the resin, and wash thoroughly with ion-exchanged water to obtain a pale yellow amphoteric ion-exchange resin (water content 48%, A-4).
Obtained 504ml. Example 5 A macroporous weakly basic anion exchange resin having a structure of >N-CH 2 CH 2 N (CH 3 ) 2 (water content 47%, 1.6 meq/ ml) and 1000 ml of butyl cellosolve-butyl alcohol (7:3) in Example 1.
The mixture was charged into a reactor similar to the above, and the pH was adjusted to 6.8 with 3N hydrochloric acid while stirring at 25°C. After adjustment, raise the temperature to 50℃,
197.4 g of butyl monochloropropionate was gradually added, and after the addition was complete, stirring was continued for an additional 7 hours at 80-90°C. After cooling, the resin was filtered off, and the resulting resin was added to 2000 ml of 2N aqueous sodium hydroxide solution, followed by stirring at 85 to 90°C for 3 hours. After cooling, filter the resin again and wash thoroughly with ion exchange water to obtain a pale yellow amphoteric ion exchange resin (water content 45%, A-5).
Obtained 504ml. Example 6 The resins obtained in Examples 1 to 5 were treated with sulfuric acid,
Furthermore, it was washed with ion-exchanged water, and the adsorption amount of calcium ions and copper ions was measured. Calcium ion 40ppm and copper ion as raw water
After preparing an aqueous solution containing 50 ppm, raw water 1
1 ml of resin was added to the mixture, and the mixture was stirred at room temperature for 3 hours in a beaker. After solid-liquid separation, the remaining metal ion concentration in the aqueous solution was measured by atomic absorption spectrophotometry, and the adsorption amount was calculated from the difference from the raw water. The results are shown in Table-1.

【表】 実施例 7 クロム酸(CrO2- 4)として400ppmを含む原水
(PH4)1に対して、実施例1〜5で得られた
樹脂を、希塩酸でCl型にしたものを1ml添加し、
1ビーカー中にて室温で3時間撹拌した。固液
分離後、水溶液中の残存CrO2- 4濃度をジフエニル
カルバジドによる吸光光度法により測定し、原水
濃度との差から吸着量を算出した。結果を表−2
に示す。 実施例 8 ジチオン酸として400ppmを含む原水(PH2)
1に対して、実施例1〜5で得られた樹脂を希
硫酸でSO4型にしたものを1ml添加し、1ビー
カー中にて室温で3時間撹拌した。固液分離後、
水溶液中の残存ジオチン酸濃度を、セチルトリメ
チルアンモニウムブロマイド法で測定し、原水濃
度との差から吸着量を算出した。結果を表−2に
示す。
[Table] Example 7 To 1 ml of raw water (PH4) containing 400 ppm of chromic acid (CrO 2- 4 ), 1 ml of the resin obtained in Examples 1 to 5, converted into Cl form with dilute hydrochloric acid, was added. ,
The mixture was stirred in a beaker at room temperature for 3 hours. After solid-liquid separation, the residual CrO 2-4 concentration in the aqueous solution was measured by spectrophotometry using diphenylcarbazide, and the adsorption amount was calculated from the difference from the raw water concentration. Table 2 of the results
Shown below. Example 8 Raw water containing 400 ppm as dithionic acid (PH2)
1 ml of the resin obtained in Examples 1 to 5 converted into SO 4 form with dilute sulfuric acid was added to 1 beaker and stirred at room temperature for 3 hours. After solid-liquid separation,
The residual diotinic acid concentration in the aqueous solution was measured by the cetyltrimethylammonium bromide method, and the adsorption amount was calculated from the difference from the raw water concentration. The results are shown in Table-2.

【表】【table】

Claims (1)

【特許請求の範囲】 1 イオン交換基が少くとも1個は3級アミノ基
を有するポリアルキレンポリアミン基である弱塩
基性陰イオン交換樹脂をX−(CH2)nCOOR(X
はF、Cl、Br、Iのいずれか一種、nは1〜5
の整数、RはH、炭素数1〜5のアルキル基又は
アルカリ金属)なる構造式を有する化合物により
4級化し、Rがアルキル基の場合さらに酸または
アルカリでケン化して得られ、イオン交換基とし
て、 及び又は (式中R′はCH3、C2H5又はC2H4OH、pは2又
は3、qは0又は1、rは2又は3、Yは
(CH2)nCOOM、nは1〜5の整数、Mはアル
カリ金属)で表される基を有することを特徴とす
る両性イオン交換樹脂。
[Scope of Claims] 1. A weakly basic anion exchange resin whose ion exchange group is a polyalkylene polyamine group having at least one tertiary amino group is
is any one of F, Cl, Br, I, n is 1 to 5
, R is H, an alkyl group having 1 to 5 carbon atoms or an alkali metal), and when R is an alkyl group, it is further saponified with an acid or an alkali to form an ion exchange group. As, and or (In the formula, R' is CH 3 , C 2 H 5 or C 2 H 4 OH, p is 2 or 3, q is 0 or 1, r is 2 or 3, Y is (CH 2 )nCOOM, n is 1 to An amphoteric ion exchange resin characterized by having a group represented by an integer of 5 and M is an alkali metal.
JP12841182A 1982-07-23 1982-07-23 Preparation of amphoteric ion-exchange resin Granted JPS5919547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12841182A JPS5919547A (en) 1982-07-23 1982-07-23 Preparation of amphoteric ion-exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12841182A JPS5919547A (en) 1982-07-23 1982-07-23 Preparation of amphoteric ion-exchange resin

Publications (2)

Publication Number Publication Date
JPS5919547A JPS5919547A (en) 1984-02-01
JPH0417702B2 true JPH0417702B2 (en) 1992-03-26

Family

ID=14984104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12841182A Granted JPS5919547A (en) 1982-07-23 1982-07-23 Preparation of amphoteric ion-exchange resin

Country Status (1)

Country Link
JP (1) JPS5919547A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2606021B1 (en) * 1986-10-30 1989-08-25 Provence Universite BINDERS FOR MARINE RESISTANT PAINTS AND THEIR PREPARATION PROCESS
JP4766719B1 (en) * 2010-06-21 2011-09-07 太平洋セメント株式会社 Disposal method of leachate at final disposal site
JP5762783B2 (en) * 2011-03-25 2015-08-12 太平洋セメント株式会社 Salt recovery method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142794A (en) * 1976-05-25 1977-11-28 Mitsubishi Chem Ind Ltd Aromatic crosslinked copolymer and its preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142794A (en) * 1976-05-25 1977-11-28 Mitsubishi Chem Ind Ltd Aromatic crosslinked copolymer and its preparation

Also Published As

Publication number Publication date
JPS5919547A (en) 1984-02-01

Similar Documents

Publication Publication Date Title
JP2786235B2 (en) Method for producing polyglycerin
JP2009249379A (en) Ionic liquid miscible with various polar/nonpolar solvent and method for producing the same
JP2732921B2 (en) Method for producing polyglycerin
DE2803528A1 (en) HEAVY METAL ION ADSORBENTS
JP5443726B2 (en) Amphoteric ion exchanger
JPH0417702B2 (en)
EP0639588B1 (en) Process for the manufacture of weak basic anion exchange resins and reagents therefor
CN101638353B (en) Method for removing residual metal in organic compounds by using EDTA calcium disodium salts as chelons in liquid phase
CN107188804B (en) Method for catalytically synthesizing methyl oleate by using composite phosphotungstate
EP0032671A2 (en) Anion exchangers, process for their manufacture and their use
JPH10350A (en) Heat resistant cobalt ion adsorbent and its production
JPH0249299B2 (en)
DE1518271A1 (en) Process for the preparation of substituted benzamides
CN111729639B (en) Coating circulating water treatment agent and preparation method thereof
JPS6088008A (en) Production of chelating resin
JP3147942B2 (en) Crosslinked anion exchanger for water production for pharmaceuticals and cosmetics
SU379586A1 (en) METHOD OF OBTAINING IONITE
JPH0557200A (en) Cross-linked anion exchanger for hot water treatment in power equipment
SU1212954A1 (en) Method of producing trinitrotriamminrhodium
SU1282887A1 (en) Method of producing sorbents based on cobalt hydroxide
JP3147941B2 (en) Crosslinked anion exchanger for ultrapure water production
JPH0140677B2 (en)
SU304262A1 (en) METHOD OF OBTAINING CARBOXYLINE-CONTAINING CATIONITES
SU575870A1 (en) Method of preparing ion exchange resin
SU1155581A1 (en) Method of removing enamel from acetone