JPH04171046A - Regeneration of carbon dioxide adsorbent - Google Patents

Regeneration of carbon dioxide adsorbent

Info

Publication number
JPH04171046A
JPH04171046A JP2299570A JP29957090A JPH04171046A JP H04171046 A JPH04171046 A JP H04171046A JP 2299570 A JP2299570 A JP 2299570A JP 29957090 A JP29957090 A JP 29957090A JP H04171046 A JPH04171046 A JP H04171046A
Authority
JP
Japan
Prior art keywords
absorbent
regeneration
carbon dioxide
weight
absorbing capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2299570A
Other languages
Japanese (ja)
Inventor
Katsuhiro Naya
納谷 勝裕
Morihisa Yokota
守久 横田
Masami Hayashi
正己 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOUYUU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Original Assignee
YOUYUU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOUYUU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI filed Critical YOUYUU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Priority to JP2299570A priority Critical patent/JPH04171046A/en
Publication of JPH04171046A publication Critical patent/JPH04171046A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

PURPOSE:To recover CO2 absorbing capacity by bringing a carbon dioxide absorbent mainly consisting of magnesium oxide and/or magnesium hydroxide and lowered in its activity into contact with steam under pressure. CONSTITUTION:A CO2 absorbent containing magnesium oxide and/or magnesium hydroxide as a main lowered in its CO2 absorbing capacity is brought into contact with steam under pressure. Whereupon, the crystal size of the CO2 absorbent again becomes small and the average pore size becomes small and the pore volume and specific surface area thereof increase. By this method, CO2 absorbing capacity can be easily and efficiently recovered and regenerated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は炭酸ガス(Co、)吸収剤の再生方法に係り、
特に、Co黛ガス吸収性能が低下した、酸化マグネシウ
ム(M g O)及び/又は水酸化マグネシウム(Mg
 (OH)* )を主成分とするC08ガス吸収剤を容
易かつ効率的に再生し、CO,ガス吸収性能を効果的に
回復させるCO2ガス吸収剤の再生方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for regenerating carbon dioxide (Co) absorbent,
In particular, magnesium oxide (M g O) and/or magnesium hydroxide (Mg
The present invention relates to a method for regenerating a CO2 gas absorbent that easily and efficiently regenerates a CO8 gas absorbent whose main component is (OH)*) and effectively restores CO and gas absorption performance.

[従来の技術] 再生可能な固体Cow吸収剤としては、MgOが最適で
あり、そのCo2吸収容量を更に向上させるための研究
がなされている。例えば、MgOにアルカリ金属の水酸
化物を配合してなるC02吸収剤が提案されている(U
SP3.557,011)。
[Prior Art] MgO is most suitable as a renewable solid Cow absorbent, and research is being conducted to further improve its Co2 absorption capacity. For example, a C02 absorbent made by blending an alkali metal hydroxide with MgO has been proposed (U
SP3.557,011).

この−うなCO□吸収剤を用いてCO2の吸収を行なう
と、経時的にCo2吸収効率が低下し、最終的には破過
に達し、CO□をまったく吸収しなくなる。従って、破
過に到る前の、Co2吸収効率の低下がみられた時点で
、CO2吸収剤の再生が必要となる。
When this CO□ absorbent is used to absorb CO2, the Co2 absorption efficiency decreases over time, and eventually reaches a breakthrough and no longer absorbs CO□. Therefore, it is necessary to regenerate the CO2 absorbent at the time when the CO2 absorption efficiency decreases before reaching breakthrough.

従来、CO□吸収剤の再生は、高温にてN8ガス等のガ
スとCO3吸収剤とを接触させることにより行なわれて
いる。
Conventionally, regeneration of the CO□ absorbent has been carried out by bringing a gas such as N8 gas into contact with the CO3 absorbent at high temperature.

[発明が解決しようとする課題] しかしながら、上記従来の再生方法では、十分なCO8
吸収性能の回復はなされず、その改良が望まれている。
[Problem to be solved by the invention] However, in the above conventional regeneration method, sufficient CO8
Absorption performance has not been recovered, and improvements are desired.

なお、USP3,557,011には、CO1吸収剤の
使用前にスチームと接触させることが開い。従って、ス
チームの温度は120〜250’Cとするのが好ましい
Note that USP 3,557,011 requires that the CO1 absorbent be brought into contact with steam before use. Therefore, the temperature of the steam is preferably 120 to 250'C.

なお、用いるスチームは、純H20である必要はなく、
HaOとN2.空気等のガスとの混合ガスで良い。この
場合、混合ガス中のH,Oの割合は115以上、好まし
くは1/3以上とするのが好適である。
Note that the steam used does not need to be pure H20,
HaO and N2. A mixed gas with a gas such as air may be used. In this case, the ratio of H and O in the mixed gas is preferably 115 or more, preferably 1/3 or more.

また、加圧は2ata未満では再生が効果的に行えず、
15ataを超えると吸収剤の細孔が変化しやすい、従
って、加圧条件は2〜15ataとし、H,0分圧が0
.7〜15ataとなるようにするのが好ましい。
In addition, if the pressure is less than 2 ata, regeneration cannot be performed effectively,
If the pressure exceeds 15 ata, the pores of the absorbent tend to change.
.. It is preferable to set it to 7 to 15 ata.

また、再生に用いるスチーム量は、CO2吸収剤に対す
るHaO重量で、10〜60重量%とするのが好ましい
Further, the amount of steam used for regeneration is preferably 10 to 60% by weight of HaO relative to the CO2 absorbent.

本発明の実施にあたっては、例えば、COa吸収性能が
低下したCO2吸収剤が充填されたカラムに、所定の圧
力及び温度のスチームを送給すれば良い。
In carrying out the present invention, for example, steam at a predetermined pressure and temperature may be fed to a column filled with a CO2 absorbent with reduced COa absorption performance.

なお、本発明において、CO□吸収剤は、い。従って、
スチームの温度は120〜250℃とするのが好ましい
In addition, in the present invention, the CO□ absorbent is Therefore,
The temperature of the steam is preferably 120 to 250°C.

なお、用いるスチームは、純H20である必要はな(、
H2OとN2.空気等のガスとの混合ガスで良い。この
場合、混合ガス中のHaOの割合は115以上、好まし
くは1/3以上程度とするのが好適である。
Note that the steam used does not need to be pure H20 (
H2O and N2. A mixed gas with a gas such as air may be used. In this case, the proportion of HaO in the mixed gas is preferably about 115 or more, preferably about ⅓ or more.

また、加圧は2ata未満では再生が効果的に行えず、
15ataを超えると吸収剤の細孔が変化しやすい。従
って、加圧条件は2〜15ataとし、H,0分圧が0
.7〜15ataとなルヨうにするのが好ましい。
In addition, if the pressure is less than 2 ata, regeneration cannot be performed effectively,
When it exceeds 15 ata, the pores of the absorbent tend to change. Therefore, the pressurization conditions are 2 to 15 ata, and the H,0 partial pressure is 0.
.. It is preferable to set the thickness to 7 to 15 ata.

また、再生に用いるスチーム量は、COz吸収剤に対す
るH、0重量で、10〜60重量%とするのが好ましい
Further, the amount of steam used for regeneration is preferably 10 to 60% by weight based on H and 0 weight of the COz absorbent.

本発明の実施にあたっては、例えば、CO□吸収性能が
低下したC Oを吸収剤が充填されたカラムに、所定の
圧力及び温度のスチームを送給すれば良い。
In carrying out the present invention, for example, steam at a predetermined pressure and temperature may be fed to a column filled with an absorbent for CO□ whose absorption performance has decreased.

なお、本発明において、CO2吸収剤は、MgO及び/
又は水酸化マグネシウム(Mg(OH)1 )50〜9
0重量%と、 カリウム化合物5〜30重量%と、 ケイ酸ソーダ及び/又はジルコニア5〜20重量%と を含むことが好ましい。
In addition, in the present invention, the CO2 absorbent is MgO and/or
or magnesium hydroxide (Mg(OH)1) 50-9
0% by weight, 5 to 30% by weight of a potassium compound, and 5 to 20% by weight of sodium silicate and/or zirconia.

ここで、MgO及び/又はMg (OH)、は、CO≧
吸収剤の主成分として作用するものである。
Here, MgO and/or Mg (OH) is CO≧
It acts as the main component of the absorbent.

また、カリウム化合物としては、水酸化カリウム(KO
H) 、炭酸カリウA (Km CO3) 、リン酸カ
リウム(Km PO,)等が挙げられ、これらは1種を
単独で、或いは2種以上を併用して用いることができる
。これらのカリウム化合物の含有量が5重量%未満では
CO2吸収容量が低(,30重量%を超えると吸収剤の
成形性が悪くなる。従って、カリウム化合物含有量は5
〜30重量%とする。
In addition, as a potassium compound, potassium hydroxide (KO
H), potassium carbonate A (KmCO3), potassium phosphate (KmPO,), etc., and these can be used alone or in combination of two or more. If the content of these potassium compounds is less than 5% by weight, the CO2 absorption capacity will be low (and if it exceeds 30% by weight, the absorbent will have poor formability. Therefore, the content of potassium compounds should be 5% by weight).
~30% by weight.

ケイ酸ソーダ及び/又はジルコニアは、その含有量が5
重量%未滴では吸収剤の成形が困難であり、20重量%
を超えるとCO2吸収容量が低下する。従って、ケイ酸
ソーダ及び/又はジルコニア含有量は5〜20重量%と
する。
Sodium silicate and/or zirconia has a content of 5
It is difficult to form an absorbent with no droplets by weight, and 20% by weight
If it exceeds this, the CO2 absorption capacity will decrease. Therefore, the sodium silicate and/or zirconia content is 5 to 20% by weight.

このようなCOa吸収剤は、例えば、ケイ酸ソーダの水
溶液(水ガラス)及び/又はジルコニアゾルに所定量の
カリウム化合物を溶解し、次いでこれに所定量のMgO
及び/又はMg (OH)、を加えて混練し、混練物を
加熱乾燥して水を除去した後、粉砕、整粒することによ
り容易に製造することができる。
Such a COa absorbent is produced by, for example, dissolving a predetermined amount of a potassium compound in an aqueous solution of sodium silicate (water glass) and/or zirconia sol, and then adding a predetermined amount of MgO to this.
It can be easily produced by adding and/or Mg (OH), kneading, heating and drying the kneaded product to remove water, and then pulverizing and sizing.

更に350〜500℃で加熱してMg (OHI2をM
gOに転化しても良い。
Further heat at 350-500℃ to convert Mg (OHI2 to M
It may be converted to gO.

なお、本発明において、水ガラスとしては、ケイ酸ソー
ダ含有率が10〜50重量%程度のものを用いるのが好
ましい。また、ジルコニア原料としては上記ジルコニア
ゾルの他、ジルコニア微粒子の懸濁液あるいは加熱によ
ってジルコニアに転化し得るジルコニウム化合物を用い
ることもできる。
In the present invention, it is preferable to use water glass having a sodium silicate content of about 10 to 50% by weight. In addition to the zirconia sol described above, a suspension of zirconia fine particles or a zirconium compound that can be converted into zirconia by heating can also be used as the zirconia raw material.

[作用] CO2吸収性能の低下したC O2吸収剤を、加圧下に
スチームと接触させることにより、CO2吸収性能が大
幅に回復する理由の詳細は明らかではないが、本発明者
らの研究によれば、次のようなことが言える。
[Effect] The details of why the CO2 absorption performance of a CO2 absorbent with reduced CO2 absorption performance is significantly restored by contacting it with steam under pressure are not clear, but according to research conducted by the present inventors. For example, the following can be said.

即ち、長期使用によりCO2吸収性能が低下したC O
z吸収剤について、その細孔分布等を調べると、一般に
、便用前のCO2吸収剤に比べて、細孔径分布が大きい
方に移動し、細孔容積は小さくなり、比表面積も小さ(
なる。即ち、CO□吸収剤の比表面積に寄与する微細孔
が顕著に減少し、CO2吸収剤の比表面積が小さ(なる
。この比表面積の減少がCO2吸収性能の低下をひき起
こす。一方、CO2吸収性能の低下したCO2吸収剤に
ついて、ミクロ的形状を調べると、このCO2吸収剤は
、使用前のCo2吸収剤に比べて、結晶が明らかに大き
く、結晶成長を起こしている。即ち、この結晶成長が細
孔容積、比表面積の減少の原因と考えられる。
In other words, CO2 absorption performance has decreased due to long-term use.
When examining the pore distribution etc. of the z-absorbent, it is found that, compared to the CO2 absorbent before use, the pore size distribution is generally larger, the pore volume is smaller, and the specific surface area is also smaller (
Become. In other words, the micropores that contribute to the specific surface area of the CO□ absorbent are significantly reduced, and the specific surface area of the CO2 absorbent becomes small.This decrease in specific surface area causes a decrease in CO2 absorption performance. When examining the microscopic shape of the CO2 absorbent whose performance has deteriorated, the crystals of this CO2 absorbent are clearly larger than those of the CO2 absorbent before use, and crystal growth has occurred. This is considered to be the cause of the decrease in pore volume and specific surface area.

これに対して、このようなCO2吸収剤を加圧下にスチ
ームと接触させることにより、再度結晶を小さくする効
果が認められ、細孔径の分布が小さい方に戻り、細孔容
積及び比表面積が増大する。これにより、CO□吸収性
能が回復する。この効果は、常圧下でスチームと接触さ
せた場合にもある程度得られるが、加圧下でスチームと
接触させることにより、より一層高い効果が得られる。
On the other hand, by bringing such a CO2 absorbent into contact with steam under pressure, the effect of reducing the size of the crystals was observed, the pore size distribution returned to the smaller side, and the pore volume and specific surface area increased. do. This restores the CO□ absorption performance. Although this effect can be obtained to some extent even when brought into contact with steam under normal pressure, an even higher effect can be obtained by contacting with steam under pressure.

[実施例] 以下に実施例を挙げて、本発明をより具体的に説明する
[Example] The present invention will be described in more detail with reference to Examples below.

なお、以下において、Cow吸収条件及び通常の再生の
条件は、特記しない限り、以下の条件で行なった・ 立皇ユ」し捌ゑ豆 吸収圧カニ 8ata (CO1分圧=2.7ata) 吸収温度=300℃ 吸収剤充填量:450cc ガス流量: Cot =N* =H* 0=25ONc
c/win合計75ONcc/min ガス組成: Co、=N、=H,0=33.3%五」蓼
E作 温度=550℃〜750℃ 圧カニ1.5ata ガス: N x  (500N c c / m i 
n ) 。
In addition, in the following, Cow absorption conditions and normal regeneration conditions are as follows unless otherwise specified. =300℃ Absorbent filling amount: 450cc Gas flow rate: Cot =N* =H* 0=25ONc
c/win total 75ONcc/min Gas composition: Co, = N, = H, 0 = 33.3% m i
n).

また、CO2吸収剤は以下に示す方法により製造した。Moreover, the CO2 absorbent was manufactured by the method shown below.

CO,の1゛ 水ガラス(ケイ酸ソーダ含有率30重量%)に水酸化カ
リウムを溶解し、次いでこれにMg(OH)*粉末を加
えて混線する。混線物を100℃で乾燥した後に揉みほ
ぐし、続いて140〜150℃に加熱して水を実質的に
除去する。乾燥物を粉砕し、篩分けによって0.50〜
1mmの大きさの粒子を得る。この粒子を吸収管に充填
し、450℃に加熱してMg (OH)、をMgOに転
化する。
Potassium hydroxide is dissolved in 1゛ water glass (sodium silicate content: 30% by weight) of CO, and then Mg(OH)* powder is added thereto for crosstalk. The mixed material is dried at 100°C, then massaged, and then heated to 140-150°C to substantially remove water. 0.50~ by crushing the dry matter and sieving it
Particles with a size of 1 mm are obtained. The particles are filled into an absorption tube and heated to 450° C. to convert Mg (OH) to MgO.

実施例I KOH15重量%及びケイ酸ソーダ13重量%を含むC
O2吸収剤を製造し、co、吸収後、再生を行ない、吸
収、再生のサイクルテストを行なった。ただし、8サイ
クルと9サイクルとの間で下記第1表のNo、 1の条
件にて再生処理を、また、サイクル数と破過時間との関
係を第1図に示す。
Example I C containing 15% by weight of KOH and 13% by weight of sodium silicate
An O2 absorbent was manufactured, and after absorbing CO, it was regenerated, and a cycle test of absorption and regeneration was conducted. However, the regeneration process was performed under the conditions of No. 1 in Table 1 below between the 8th cycle and the 9th cycle, and the relationship between the number of cycles and breakthrough time is shown in FIG.

第1図より、本発明による再生処理(No、2)により
、Co2吸収剤の063吸収性能は著しく回復すること
が明らかである。
From FIG. 1, it is clear that the regeneration treatment (No. 2) according to the present invention significantly recovers the 063 absorption performance of the Co2 absorbent.

15サイクルと16サイクルとの間で下記第1表のNO
12の条件にて再生処理を行なった。
Between the 15th cycle and the 16th cycle, NO in Table 1 below
Regeneration processing was performed under 12 conditions.

第1表 [発明の効果] 以上詳述した通り、本発明のCo諺吸収剤の再生方法に
よれば、COz吸収性能の低下したCO8吸収剤を容易
かつ効率的に再生し、CO2吸収性能を大幅に向上させ
ることが可能とされる。
Table 1 [Effects of the Invention] As detailed above, according to the method for regenerating a Co absorbent of the present invention, a CO8 absorbent whose COz absorption performance has decreased can be easily and efficiently regenerated, and the CO2 absorption performance can be improved. It is believed that significant improvements can be made.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は 実施例1の結果を示すグラフである。 代理人  弁理士  重 野  剛 FIG. 1 is a graph showing the results of Example 1. Agent: Patent attorney Tsuyoshi Shigeno

Claims (1)

【特許請求の範囲】[Claims] (1)炭酸ガス吸収性能が低下した、酸化マグネシウム
及び/又は水酸化マグネシウムを主成分とする炭酸ガス
吸収剤を、加圧下にスチームと接触させることを特徴と
する炭酸ガス吸収剤の再生方法。
(1) A method for regenerating a carbon dioxide absorbent, which comprises bringing a carbon dioxide absorbent whose main component is magnesium oxide and/or magnesium hydroxide, which has decreased carbon dioxide absorption performance, into contact with steam under pressure.
JP2299570A 1990-11-05 1990-11-05 Regeneration of carbon dioxide adsorbent Pending JPH04171046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2299570A JPH04171046A (en) 1990-11-05 1990-11-05 Regeneration of carbon dioxide adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2299570A JPH04171046A (en) 1990-11-05 1990-11-05 Regeneration of carbon dioxide adsorbent

Publications (1)

Publication Number Publication Date
JPH04171046A true JPH04171046A (en) 1992-06-18

Family

ID=17874341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2299570A Pending JPH04171046A (en) 1990-11-05 1990-11-05 Regeneration of carbon dioxide adsorbent

Country Status (1)

Country Link
JP (1) JPH04171046A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525180A (en) * 2006-01-30 2009-07-09 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Carbon materials useful for fluid storage / distribution, desulfurization, and infrared radiation, and apparatus and methods using the same
US9468901B2 (en) 2011-01-19 2016-10-18 Entegris, Inc. PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525180A (en) * 2006-01-30 2009-07-09 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Carbon materials useful for fluid storage / distribution, desulfurization, and infrared radiation, and apparatus and methods using the same
US8221532B2 (en) 2006-01-30 2012-07-17 Carruthers J Donald Nanoporous articles and methods of making same
US9468901B2 (en) 2011-01-19 2016-10-18 Entegris, Inc. PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same

Similar Documents

Publication Publication Date Title
TW306884B (en)
EP2054151B1 (en) Nano-structure supported solid regenerative polyamine polyol absorbents for the separation of carbon dioxide from gas mixtures including the air
CN103818939A (en) Aluminum oxide specially used for hydrogen peroxide fluidized bed and production technology for aluminum oxide
KR101115206B1 (en) Processing method of exhaust gas and processing apparatus of exhaust gas
CN109553118B (en) Method for industrially producing anhydrous lithium hydroxide balls
JPH11104439A (en) Removing agent for acidic ingredient in gas and removal of acidic ingredient
TW201829049A (en) Agent for removing halogen gas, method for producing same, method for removing halogen gas with use of same, and system for removing halogen gas
TW200906473A (en) Agent for rendering halogen-containing gas harmless, and method of rendering halogen-containing gas harmless using same
JP3203025B2 (en) Sheet CO2 absorbent
JPS602086B2 (en) How to remove carbon dioxide
KR101502238B1 (en) Carbon dioxide absorbent and carbon dioxide capture process thereof
JPH04171046A (en) Regeneration of carbon dioxide adsorbent
JP2006272329A (en) Dehumidifying agent and dehumidifying rotor
CN103212366A (en) Modified montmorillonite filter additive containing alumina or/and hydroxy aluminium iron and application
JP2961871B2 (en) Carbon dioxide absorbent
JP2005013952A (en) Carbon dioxide absorber
EP0018183A1 (en) Process for the purification of natural gas
JP3770608B2 (en) Halogen gas absorber, halogen gas removal method and halogen gas processing apparatus
KR100803325B1 (en) Titanium dioxide added alkali-carbonate regenerable sorbent for carbon dioxide removal
CN104998600B (en) Medium-temperature carbon dioxide absorbent, and preparation method and application thereof
CN103285807A (en) Modified montmorillonite filter tip additive containing nanometer ferrous ion and application thereof
US4826805A (en) Gas absorber
CN104324691B (en) Preparation method of carbon adsorbent with high CO2 adsorption property
RU2244586C1 (en) Carbon dioxide absorber and a method for removing carbon dioxide for gas mixtures
CN102531839B (en) Method for adsorbing glycol from mixed aqueous solution