JPH04163905A - Rare earth resin bonded magnet - Google Patents

Rare earth resin bonded magnet

Info

Publication number
JPH04163905A
JPH04163905A JP2290413A JP29041390A JPH04163905A JP H04163905 A JPH04163905 A JP H04163905A JP 2290413 A JP2290413 A JP 2290413A JP 29041390 A JP29041390 A JP 29041390A JP H04163905 A JPH04163905 A JP H04163905A
Authority
JP
Japan
Prior art keywords
magnet
rare earth
molding
powder
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2290413A
Other languages
Japanese (ja)
Inventor
Yukihiko Shiobara
幸彦 塩原
Mitsuru Takei
武居 充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2290413A priority Critical patent/JPH04163905A/en
Publication of JPH04163905A publication Critical patent/JPH04163905A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a high performance magnet with an excellent dimension precision and high shape freedom by adding an organic resin to a permanent magnet powder which has a basic composition consisting of rare earth metal and transition metal and conducting multistep compression formation. CONSTITUTION:An epoxy resin is added to a powder with an atomic breakdown of Nd14Fe70Co10B6 and formed by an ultraquenching method and after compression forming, a magnet is obtained through thermal hardening. When the compression formation is conducted in two steps, measurement variation is reduced, high densities are achieved, and the internal density difference is minimized. In particular, this difference becomes more noticeable as the mold thickness increases. Therefore, by using a multi-step formation process, it is possible to obtain a high performance magnet with excellent measurement precision and high shape freedom.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基本組成が希土類金属(R)、遷移金属から
なる磁石粉末に有機樹脂を加えた原料を成形金型に充填
し圧縮成形後、片側パンチを抜きさらに原料を充填して
圧縮成形を行うように多段階行ったため、寸法精度の優
れた高密度高性能の磁石でさらに大きな成形寸法が得ら
れるため形状自由度が高い希土類樹脂結合型磁石に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention involves filling a mold with a raw material obtained by adding an organic resin to magnet powder whose basic composition is a rare earth metal (R) and a transition metal, and after compression molding. By performing multi-step compression molding by removing a punch from one side and then filling it with raw materials, a larger molded size can be obtained with a high-density, high-performance magnet with excellent dimensional accuracy, resulting in a rare earth resin bond with a high degree of freedom in shape. Regarding type magnets.

〔従来の技術〕[Conventional technology]

希土類樹脂結合型磁石は大別して、サマリウム、コバル
ト系とネオジウム、鉄系がありそれぞれ高性能磁石又、
形状自由度の高い磁石として、種々の応用製品の小型精
密化、高性能化に貢献して来た。中でも、ネオジウム、
鉄系は、原料の安定性と安価、高性能を生かし、急速に
生産量が増加している。
Rare earth resin bonded magnets can be roughly divided into samarium/cobalt based and neodymium/iron based, each of which is a high performance magnet.
As a magnet with a high degree of freedom in shape, it has contributed to the miniaturization and high performance of various applied products. Among them, neodymium,
Production of iron-based materials is rapidly increasing, taking advantage of the stability, low cost, and high performance of the raw materials.

上記に示す様な粉末を使用して有機樹脂を加えた磁石を
成形することにより所望の形状の磁石が得ちれていた。
A magnet with a desired shape was obtained by molding a magnet to which an organic resin was added using the powder as shown above.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

磁石成形において、磁石の性能を高めるために高密度を
行うが、粉末は圧力を吸収してしまい、磁石の中側の密
度はあまり高(ならない。また、第1図のように、圧力
の伝わる圧縮方向の端部と中心部との密度差が大きいた
め、成形時のスプリングバックの差による寸法差が生じ
てしま゛う。そして、−回の充填にて得られる成形厚み
には限界が有り、あまり高(すると上記のような問題が
顕著となるため形状自由度がないという問題を有してい
た。
In magnet molding, high density is used to improve the performance of the magnet, but the powder absorbs pressure, so the density on the inside of the magnet is not very high.Also, as shown in Figure 1, Since there is a large density difference between the ends and the center in the compression direction, dimensional differences occur due to differences in springback during molding.There is also a limit to the molding thickness that can be obtained by filling twice. If the height is too high (then the above-mentioned problem becomes noticeable), there is a problem that there is no degree of freedom in shape.

また、限界成形厚み以上の品物は、2つ以上の磁石を接
着等により得ることができるが、工程が付加するため高
コストとなってしまうという問題も有している。
In addition, products with a molding thickness exceeding the limit molding thickness can be obtained by bonding two or more magnets together, but there is also the problem of high costs due to additional steps.

・そこで本発明は、従来のこのような問題を解決するた
め、成形を充填と成形を(り返し行う多段階成形する事
により、均一な高密度、高性能を有し、成形厚みをより
大きくすることの可能な寸法精度の高い磁石を得ること
を目的とする。
・In order to solve these conventional problems, the present invention achieves uniform high density, high performance, and even greater molding thickness by performing multi-step molding that repeats molding, filling, and molding. The purpose is to obtain a magnet with high dimensional accuracy that can be

〔課題を解決するための手段〕[Means to solve the problem]

上記問題を解決するために、本発明の希土類樹。 In order to solve the above problems, the rare earth tree of the present invention.

脂結合型磁石は、基本組成が希土類金属(R)。The basic composition of fat bonded magnets is rare earth metal (R).

遷移金属からなる永久磁石粉末に有機樹脂を加え圧縮成
形する磁石において、多段階成形を施した事を特徴とす
る。
A magnet made by adding an organic resin to a permanent magnet powder made of a transition metal and compression molding, and is characterized by multi-stage molding.

多段成形を行う事により第2図に示す様に、密度差が小
さ(、スプリングバックが小さくなる事による寸法精度
が向上する。また、1回の成形では、学に充填した粉末
の圧縮草分の成形厚しか得られないが、多段成形により
、成形時に厚みを増加させる事ができ、後加工無しで高
い成形厚みが得られる。
As shown in Figure 2, multi-stage molding improves dimensional accuracy by reducing the density difference (and reducing springback). However, by multistage molding, the thickness can be increased during molding, and a high molded thickness can be obtained without post-processing.

なお、基本組成が希土類金属(R)、If移金金属らな
る永久磁石粉末としては、サマリウム、コバルト系、ネ
オジウム、鉄系及びこれらを他の希土類金属やM移金属
で置換した物とするが、本発明は、他の組成においても
同様の効果が得られるものであり特定の組成に限定され
るものではない〔実施例〕 (実施例1) 原子比がNd、、Fθ、。COl。B6 であり超急冷
法により得られた粉末にエポキシ樹脂を混合して、圧縮
成形後熱硬化させ磁石を得た。
In addition, the permanent magnet powder whose basic composition is rare earth metal (R) and If transfer metal includes samarium, cobalt-based, neodymium, iron-based powder, and those in which these are replaced with other rare earth metals or M transfer metals. The present invention is not limited to a specific composition as similar effects can be obtained with other compositions [Example] (Example 1) The atomic ratio is Nd, Fθ,. COl. B6 powder obtained by an ultra-quenching method was mixed with an epoxy resin, and after compression molding, the mixture was heat-cured to obtain a magnet.

第1表に形状と成形条件を示し1段成形と2段成形した
品物の寸法、内部密度差、密度、の違いを比較した。外
内径の同じ形状のものは同圧成形とした。
Table 1 shows the shapes and molding conditions, and the dimensions, internal density difference, and density of the one-stage and two-stage molded products were compared. Those with the same outer and inner diameters were molded under the same pressure.

外内径寸法は、成形体のNAX値とMiN値を示してあ
り、内部密度差は、成形体を軸方向に6等分した場合の
3分割品の密度差を割合で示したものである。
The outer and inner diameter dimensions indicate the NAX value and MiN value of the compact, and the internal density difference indicates the density difference between the three divided products when the compact is divided into six equal parts in the axial direction, expressed as a percentage.

一第1・表のどの形状においても、2段成形を行った方
が、寸法バラツキが小さく、同圧力で高密度化ができ、
内部密度差が小さ(なっている。
For any of the shapes in Table 1, two-stage molding results in smaller dimensional variations and higher density with the same pressure.
The internal density difference is small.

特に成形厚みが太き(なると差が大きく表われる。この
ように2段成形により高性能化が可能である。
In particular, when the molding thickness becomes thicker (the difference becomes larger), high performance can be achieved by two-stage molding.

(実施例2) 組成がSm1(Oo、?e、Ou、Zr)Iyである磁
石粉末にエポキシ樹脂を加え多段成形を行った結果を第
2表に示す。比較例として1段成形品を示す第  2 
 表 上記の様に多段成形により、密度をあまり低下させずに
成形厚みを増加させることが可能で、5段成形を行えば
、1段の2倍の厚みの品物を成形できている。
(Example 2) Table 2 shows the results of multi-stage molding by adding an epoxy resin to magnet powder having a composition of Sm1(Oo, ?e, Ou, Zr)Iy. Part 2 shows a one-stage molded product as a comparative example.
As shown in the table above, multi-stage molding makes it possible to increase the molding thickness without significantly reducing the density, and by performing five-stage molding, it is possible to mold an article twice as thick as one stage.

(実施例3) 実施例1で示したサンプル5,4及び7.8をモータの
ロータ、ヨークに組み込んだ場合の寸法精度の比較を行
った。ヨーク寸法は同一とした。
(Example 3) Comparison of dimensional accuracy was made when Samples 5, 4, and 7.8 shown in Example 1 were assembled into the rotor and yoke of a motor. The yoke dimensions were the same.

第3*4tsts図に上記サンプルとヨークと接着した
形状を示す。
Figure 3*4tsts shows the shape of the sample bonded to the yoke.

第3表にサンプル3,4の比較、第4表にサンプル7.
8の比較を示す。
Table 3 shows a comparison of samples 3 and 4, and Table 4 shows a comparison of samples 7.
A comparison of 8 is shown.

第  4  表 以上のように2段成形品は、実際に使用される場合にも
寸先精度が高い。
As shown in Table 4, two-stage molded products have high edge accuracy even when actually used.

また、半分の成形厚みの1段成形品の2個接着した品物
は、接着後に段差が、同軸度やビシにより必ず発生する
ため加工コスト高となるためコスト面においても多段成
形は有利である。
In addition, multi-stage molding is also advantageous in terms of cost, since when two single-stage molded products with half the molding thickness are glued together, a step will inevitably occur after adhesion due to coaxiality or ridges, resulting in high processing costs.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に本発明は、基本組成が希土類金属(R)
、l!!移金属からなる永久磁石粉末に有機樹脂を加え
たものを多段成形したため、高形状自由度で高い寸法精
度の高性能磁石を得るという効果を有する。
As described above, the present invention has a basic composition of rare earth metal (R).
,l! ! Since permanent magnet powder made of a transferable metal is mixed with an organic resin and molded in multiple stages, it has the effect of obtaining a high-performance magnet with a high degree of freedom in shape and high dimensional accuracy.

これらの磁石を使用する事により、ステッピングモータ
、DCモータ、スピーカ、センサー等の磁束の安定化は
もちろんのこと、高性能化、低コスト化を計ることがで
きるという効果も有する。
The use of these magnets not only stabilizes the magnetic flux of stepping motors, DC motors, speakers, sensors, etc., but also has the effect of improving performance and reducing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は円柱状磁石を矢印の方向に圧縮成形したときの
形状と内部密度分布(中心にい(程密度が低(なり、(
びれた部分が最も低い)を示した図。 第2図は、円柱状磁石を矢印の方向に2段成形したとき
の形状と内部密度分布を示した図。 第5図は、実施例1のサンプル3のマグネットをロー多
に組み込んだ状態を示した図。 第4図は、サンプル4のマグネットをロータに組み込ん
だ状態を示す図。 第5図は、サンプル7の°マグネットをロータに組み込
んだ状態を示す図。 第6図は、サンプル8のマグネットをロータに組み込ん
だ状態を示す図。 1・・・・・・・・・シャフト 2・・・・・・・・・ロータ 6・・・・・・・・・マグネット 4・・・・・・・・・ヨーク 5・・・・・・・・・マグネット 以上 出願人 セイコーエプソン株式会社
Figure 1 shows the shape and internal density distribution of a cylindrical magnet when it is compressed in the direction of the arrow.
The fin is the lowest point). FIG. 2 is a diagram showing the shape and internal density distribution of a cylindrical magnet formed in two stages in the direction of the arrow. FIG. 5 is a diagram showing a state in which the magnet of Sample 3 of Example 1 is assembled in a rotor. FIG. 4 is a diagram showing a state in which the magnet of Sample 4 is assembled into a rotor. FIG. 5 is a diagram showing the state in which the ° magnet of Sample 7 is assembled into the rotor. FIG. 6 is a diagram showing a state in which the magnet of Sample 8 is assembled into a rotor. 1...Shaft 2...Rotor 6...Magnet 4...Yoke 5... ...Magnet and above Applicant Seiko Epson Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)基本組成が希土類金属(R)、遷移金属からなる
永久磁石粉末に有機樹脂を加え圧縮成形する磁石におい
て、多段階成形を施した事を特徴とする希土類樹脂結合
型磁石。
(1) A rare earth resin-bonded magnet, which is a magnet made by adding an organic resin to permanent magnet powder whose basic composition is a rare earth metal (R) and a transition metal and compression molding the same, and which is characterized by being subjected to multi-step molding.
JP2290413A 1990-10-26 1990-10-26 Rare earth resin bonded magnet Pending JPH04163905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2290413A JPH04163905A (en) 1990-10-26 1990-10-26 Rare earth resin bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2290413A JPH04163905A (en) 1990-10-26 1990-10-26 Rare earth resin bonded magnet

Publications (1)

Publication Number Publication Date
JPH04163905A true JPH04163905A (en) 1992-06-09

Family

ID=17755705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2290413A Pending JPH04163905A (en) 1990-10-26 1990-10-26 Rare earth resin bonded magnet

Country Status (1)

Country Link
JP (1) JPH04163905A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913255A (en) * 1996-08-09 1999-06-15 Hitachi Metals Ltd. Radially anisotropic sintered R-Fe-B-based magnet and production method thereof
JP2001035714A (en) * 1999-05-19 2001-02-09 Toshiba Corp Bonded magnet, manufacture thereof, and actuator using the magnet
US20210375514A1 (en) * 2020-05-29 2021-12-02 Grirem Hi-Tech Co., Ltd. Anisotropic bonded magnet and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913255A (en) * 1996-08-09 1999-06-15 Hitachi Metals Ltd. Radially anisotropic sintered R-Fe-B-based magnet and production method thereof
JP2001035714A (en) * 1999-05-19 2001-02-09 Toshiba Corp Bonded magnet, manufacture thereof, and actuator using the magnet
US20210375514A1 (en) * 2020-05-29 2021-12-02 Grirem Hi-Tech Co., Ltd. Anisotropic bonded magnet and preparation method thereof
CN113744946A (en) * 2020-05-29 2021-12-03 有研稀土高技术有限公司 Anisotropic bonded magnet and preparation method thereof
JP2021190707A (en) * 2020-05-29 2021-12-13 有研稀土高技術有限公司Grirem Hi−Tech Co., Ltd. Anisotropic coupling magnet and manufacturing method thereof
US11802326B2 (en) * 2020-05-29 2023-10-31 Grirem Hi-Tech Co., Ltd. Anisotropic bonded magnet and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1752994A1 (en) Process for producing self-assembled rare earth-iron bonded magnet and motor utilizing the same
JPWO2007069454A1 (en) Manufacturing method of radial anisotropic magnet
JPH1055929A (en) R-fe-b radially anisotropic sintered magnet and manufacture thereof
CN102742131A (en) Manufacturing method of rare earth-iron ring magnet with continuous orientation controlled anisotropy
KR100981218B1 (en) Permanent magnet rotor and motor using the same
CN1062970C (en) Radial anisotropic cylinder type ferrite magnets and their manufacturing methods and motors
JP2007215342A (en) Magnet and its manufacturing method
Ahmed et al. A review of soft magnetic composite materials and applications
JPH04163905A (en) Rare earth resin bonded magnet
JP3714662B2 (en) Manufacturing method of powder magnetic core for rotor
CN113764148A (en) Anisotropic bonded magnet and preparation method thereof
JP2006278919A (en) Hog-backed rare earth sintered magnet, manufacturing method therefor, and molding die for rare earth sintered magnet
JP2004296873A (en) Anisotropic rare earth bonded magnet, compression molding equipment in magnetic field, and motor
JP5707831B2 (en) Powder core and method for producing the same
JPH09102407A (en) Plastic magnetic molding and rotor using it
JP6647628B2 (en) Shaping method and manufacturing method of shaft-integrated bonded magnet
JPH0686484A (en) Motor
US20130002053A1 (en) Slotless motors with grooved core
JP7518990B1 (en) Manufacturing method of powder compact, manufacturing method of stator core, and manufacturing method of axial gap motor
JPS59162239A (en) Manufacture of resin-bonded rare earth element-cobalt magnet
JP3651098B2 (en) Manufacturing method of long radial anisotropic ring magnet
JPH04309207A (en) Manufacture of bonded magnet
WO2024181326A1 (en) Production method for field element
JPS589566A (en) Forming member for magnetic path for stepping motor
JP3051906B2 (en) Rare earth magnet