JPH04161702A - Waste heat recovery heat exchanger - Google Patents

Waste heat recovery heat exchanger

Info

Publication number
JPH04161702A
JPH04161702A JP21590590A JP21590590A JPH04161702A JP H04161702 A JPH04161702 A JP H04161702A JP 21590590 A JP21590590 A JP 21590590A JP 21590590 A JP21590590 A JP 21590590A JP H04161702 A JPH04161702 A JP H04161702A
Authority
JP
Japan
Prior art keywords
heat exchanger
pressure
exhaust gas
gas turbine
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21590590A
Other languages
Japanese (ja)
Inventor
Minoru Yamada
実 山田
Toshiaki Ozeki
尾関 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21590590A priority Critical patent/JPH04161702A/en
Publication of JPH04161702A publication Critical patent/JPH04161702A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/48Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers

Abstract

PURPOSE:To prevent obstruction to heat transfer performance and an output drop of a gas turbine by providing a water injection grid for removing ammonium sulfate which is attached to a group of heat exchanger tubes, in a region where an exhaust gas temperature is in a specific range. CONSTITUTION:Exhaust gas 5 from a gas turbine for which fuel containing sulfur is used passes in order through a high-pressure superheater 9, a high- pressure evaporator 7, a high-pressure economizer 6, a low-pressure evaporator 4, and a low-pressure economizer 2 arranged in a waster heat recovery heat exchanger 1 and is discharged from a smoke stack 10. In this case, the low- pressure economizer 2 is divided into two sections, and a water injection grid 16 is provided in a space opened by division i.e., in a region where an exhaust gas temperature is 150-300 deg.C. When water is regularly injected, ammonium sulfate attached to a group of heat exchanger tubes can be easily removed. Accordingly, it becomes possible to avoid corrosion of the heat transfer tubes, obstruction to heat transfer performance, and an output drop of the gas turbine caused by an increase in a draft loss.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はコンバインドサイクル発電プラントにおいて、
ガスタービンに代表される各種の熱発生手段より排出さ
れる排ガスの熱を利用して蒸気を発生させる排熱回収熱
交換器に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a combined cycle power generation plant that includes:
The present invention relates to an exhaust heat recovery heat exchanger that generates steam using the heat of exhaust gas discharged from various heat generating means such as gas turbines.

(従来の技術) 従来の発電設備では、蒸気タービン単体またはガスター
ビン単体を原動機とするものが一般的であったが、最近
では両者の利点を巧みに組み合わせたコンバインドサイ
クル発電が活用されるようになってきている。
(Conventional technology) Conventional power generation equipment generally used a single steam turbine or a single gas turbine as the prime mover, but recently, combined cycle power generation, which skillfully combines the advantages of both, has been used. It has become to.

このコンバインドサイクル発電プラントは、ガスタービ
ンからでた排ガスを排熱回収熱交換器に送って蒸気を発
生せしめ、この発生蒸気を蒸気タービンに送って電力を
取り出すものであって、ガスタービンの排熱を有効に活
用でき、また起動・負荷変化・停止時間を大幅に短縮で
きる等の便利性がある。
This combined cycle power generation plant sends the exhaust gas from the gas turbine to an exhaust heat recovery heat exchanger to generate steam, and sends the generated steam to the steam turbine to extract electricity. It is convenient in that it can be used effectively, and startup, load change, and stop times can be significantly shortened.

コンバインドサイクル発電プラントの構成機器の一つで
あるガスタービンの燃料としては、従来よりクリーン燃
料と言われている液化天然ガス(LNG)等が使用され
てきたが、近年ガスタービン燃料の多様化に伴い硫黄分
を含んだ燃料(例えば、ナフサ・灯油)を使用する場合
が生じてきている。この硫黄分を含んだ燃料を用いる場
合。
Liquefied natural gas (LNG), which is said to be a clean fuel, has traditionally been used as fuel for gas turbines, which are one of the components of combined cycle power generation plants, but in recent years gas turbine fuels have diversified. As a result, fuels containing sulfur (for example, naphtha and kerosene) are increasingly being used. When using fuel containing this sulfur content.

ガスタービンの排ガス中に硫黄酸化物いわゆるSOxが
生成されることになる。
Sulfur oxides, so-called SOx, are produced in the exhaust gas of the gas turbine.

一方、排熱回収熱交換器内には、ガスタービン排ガス中
の窒素酸化物いわゆるNOxを低減するために、ガスタ
ービン排ガス中にアンモニアを噴震するアンモニアイン
ジェクショングリッド(以下AIaと記す)及びAIG
の下流側に脱硝触媒装置(以下D e N Oxと記す
)を組み込んでいる。
On the other hand, in the exhaust heat recovery heat exchanger, there is an ammonia injection grid (hereinafter referred to as AIa) and an AIG that injects ammonia into the gas turbine exhaust gas in order to reduce nitrogen oxides, so-called NOx, in the gas turbine exhaust gas.
A denitrification catalyst device (hereinafter referred to as DeNOx) is installed downstream of the denitrification catalyst.

第4図に従来の排熱回収熱交換器の一例を示している。FIG. 4 shows an example of a conventional exhaust heat recovery heat exchanger.

本図は蒸気発生系統を二系統備えた複圧式の自然循環形
排熱回収熱交換器1を示している。
This figure shows a double pressure natural circulation type exhaust heat recovery heat exchanger 1 equipped with two steam generation systems.

図示しない低圧給水ポンプから供給される給水は、低圧
節炭器2、低圧蒸気ドラム3及び低圧蒸発器4を順次通
過するうちにガスタービンの排ガス5と熱交換し、一部
が蒸発し残りは低圧蒸気ドラム3に戻される。この間発
生した蒸気は低圧主蒸気管を経て低圧蒸気タービンに導
かれる。
Feed water supplied from a low-pressure water pump (not shown) exchanges heat with the exhaust gas 5 of the gas turbine while sequentially passing through a low-pressure economizer 2, a low-pressure steam drum 3, and a low-pressure evaporator 4, and part of it evaporates while the rest It is returned to the low pressure steam drum 3. The steam generated during this time is guided to the low pressure steam turbine via the low pressure main steam pipe.

また、低圧節炭器2を出た給水は一部が途中で主経路が
分かれ高圧給水ポンプで昇圧された後、高圧節炭器6.
高圧蒸発器7を順次通過するうちに排ガス5と熱交換し
、一部が蒸発させられ、高圧蒸気ドラム8にて湿分分離
された後、さらに高圧過熱器9を通過して過熱蒸気とな
り、高圧主蒸気管を経て高圧蒸気タービンへ導かれる6
上記高圧蒸発器7と高圧蒸気ドラム8.及び低圧蒸発器
4と低圧蒸気ドラム3の各ループ内においては、各蒸気
ドラム8,3から各蒸発器7,4内の伝熱管に缶水を供
給する降水管内の水と蒸発器伝熱管内の水の密度差によ
って循環力を得て水を循環させる自然循環が実現してい
る。
In addition, part of the water that has exited the low-pressure economizer 2 is separated from the main route midway and is boosted in pressure by the high-pressure water pump.
While successively passing through the high-pressure evaporator 7, it exchanges heat with the exhaust gas 5, and a part of it is evaporated, and after the moisture is separated in the high-pressure steam drum 8, it further passes through the high-pressure superheater 9 and becomes superheated steam. 6 led to the high pressure steam turbine via the high pressure main steam pipe
The high pressure evaporator 7 and the high pressure steam drum 8. In each loop of the low-pressure evaporator 4 and the low-pressure steam drum 3, water in the downcomer tube that supplies canned water from each steam drum 8, 3 to the heat transfer tube in each evaporator 7, 4, and water in the evaporator heat transfer tube. A natural circulation system is realized in which water is circulated by obtaining circulation force from the difference in density of water.

一方、ガスタービンからの排ガス5は、排熱回収熱交換
器1の高圧過熱器9、高圧蒸発器7、高圧節炭器6、低
圧蒸発器4、低圧節炭器2を順次通過し煙突lOより排
出される。
On the other hand, the exhaust gas 5 from the gas turbine sequentially passes through the high-pressure superheater 9, high-pressure evaporator 7, high-pressure economizer 6, low-pressure evaporator 4, and low-pressure economizer 2 of the exhaust heat recovery heat exchanger 1, and passes through the chimney lO more excreted.

ガスタービン排ガス5中のNOxを低減するために、本
図では高圧過熱器9の後流側にAIGIIを設け、さら
に脱硝反応が最適に行われるとされる排ガス温度300
〜400℃の領域にD e N Ox 12を設置して
いる(本図では高圧蒸発器7の下流側に図示している。
In order to reduce NOx in the gas turbine exhaust gas 5, an AIGII is provided on the downstream side of the high-pressure superheater 9 in this figure, and the exhaust gas temperature is set at 300, which is considered to be the optimum level for the denitrification reaction.
DeN Ox 12 is installed in a region of ~400°C (in this figure, it is shown downstream of the high-pressure evaporator 7).

) 第5図にDeNOx12の概粘構成図を示す。) FIG. 5 shows a general viscosity diagram of DeNOx12.

1m角の触媒バスケット13を多数組み込むことにより
1列の触媒層14を形成し、一般的には2〜3列の触媒
層14により成り立っている。この触媒バスケット13
は、幅150w11・高さ150w111・長さ100
0覇程度の単位触媒15よりできている。
One row of catalyst layers 14 is formed by incorporating a large number of 1 m square catalyst baskets 13, and generally consists of two to three rows of catalyst layers 14. This catalyst basket 13
is width 150w11, height 150w111, length 100
It is made up of 15 unit catalysts of about 0.0 cm.

(発明が解決しようとする課題) 従3L DeNOx12においてはアンモニアのリーク
による脱硝性能の低下がないようにガスシール構造には
十分な考慮を施してはいるが、前述のように単位触媒1
5の集合により触媒バスケット13ができていいること
、この触媒バスケット13の集合により一列の触媒層1
4が構成されているということから、ダクト断面を完全
に覆うことはできず、若干の流路隙間が存在することは
否めない。このため、A I Gllより噴霧されたア
ンモニアがDeNOx12でリークし、DeNC)x1
2より後流側に流れていくことになる。
(Problems to be Solved by the Invention) In the conventional 3L DeNOx12, sufficient consideration has been given to the gas seal structure so that the denitrification performance will not deteriorate due to ammonia leakage, but as mentioned above, the unit catalyst 1
5, a catalyst basket 13 is formed by the collection of catalyst baskets 13, and a row of catalyst layers 1 is formed by the collection of catalyst baskets 13.
4, it is impossible to completely cover the duct cross section, and it cannot be denied that there are some flow path gaps. Therefore, ammonia sprayed from A I Gll leaks at DeNOx12, and DeNC)x1
It will flow downstream from 2.

また、コンバインドサイクル発電プラントの運転による
経時劣化により除々に触媒性能が低下していくと、AI
GIIより噴震されたアンモニアがDeNOx12で1
00%反応しないで未反応アンモニアとしてDeNOx
12より後流側に流れていくことになる。
Additionally, as the catalyst performance gradually declines due to deterioration over time due to the operation of a combined cycle power plant, AI
Ammonia erupted from GII is DeNOx12
DeNOx as unreacted ammonia without 00% reaction
It will flow downstream from No. 12.

このようなリークしたアンモニアとガスタービン排ガス
5中のSOxとが約300℃以下の温度になると反応し
て硫酸アンモニウム塩となる。この硫酸アンモニウム塩
の融点は150℃程度であるので、150℃以上300
℃以下の温度範囲では溶融して腐食性で粘着性の強い液
状物質となる。
When such leaked ammonia and SOx in the gas turbine exhaust gas 5 reach a temperature of about 300° C. or lower, they react to form ammonium sulfate salt. Since the melting point of this ammonium sulfate salt is about 150°C,
In the temperature range below ℃, it melts into a corrosive and highly sticky liquid substance.

すなわち、ガスタービン排ガス温度が150℃以上30
0℃以下の部分に設置されている熱交換器管群(第4図
に示す複圧式自然循環形排熱回収熱交換器1の場合は、
低圧蒸発器4及び低圧節炭器2の部分がこの温度領域に
なる)を構成する伝熱管等にこの硫酸アンモニウム塩が
付着すると、その構成材料を腐食させることになる。
In other words, if the gas turbine exhaust gas temperature is 150°C or higher
Heat exchanger tubes installed in areas below 0°C (in the case of the double pressure natural circulation type exhaust heat recovery heat exchanger 1 shown in Figure 4,
If this ammonium sulfate salt adheres to heat transfer tubes and the like that constitute the low-pressure evaporator 4 and low-pressure economizer 2 (the temperature range falls within this temperature range), the constituent materials will corrode.

さらに、排熱回収熱交換器1の各管群はフィンチューブ
により構成されているので、フィンとフィンの間にこの
硫酸アンモニウム塩及び排ガス5中のダストが付着し、
伝熱管の伝熱効果を阻害するばかりでなく、排熱回収熱
交換器1のドラフトロスを増加させガスタービンの出力
低下をもたらすことになる。
Furthermore, since each tube group of the exhaust heat recovery heat exchanger 1 is composed of finned tubes, the ammonium sulfate salt and dust in the exhaust gas 5 adhere between the fins.
This not only impedes the heat transfer effect of the heat transfer tubes, but also increases the draft loss of the exhaust heat recovery heat exchanger 1, resulting in a decrease in the output of the gas turbine.

そこで、本発明の目的はガスタービン排ガス温度が15
0〜300℃の領域で排ガス中のSOxとリークしたア
ンモニアとの反応により生じる硫酸アンモニウム塩がこ
の温度領域に設置されている熱交換器管群へ付着するの
を防止するとともに、付着した硫酸アンモニウム塩によ
る伝熱管の腐食、硫酸アンモニウム塩とガスタービン排
ガス中に含まれるダストの結合により生じる付着物によ
る伝熱効果の阻害並びにドラフトロスの増加によるガス
タービン出力の低下という事態を回避することができる
排熱回収熱交換器を提供することにある。
Therefore, the purpose of the present invention is to reduce the gas turbine exhaust gas temperature to 15
This prevents the ammonium sulfate salt produced by the reaction between SOx in the exhaust gas and leaked ammonia in the range of 0 to 300°C from adhering to the heat exchanger tubes installed in this temperature range, and also prevents the adhering ammonium sulfate salt from adhering to the heat exchanger tube group installed in this temperature range. Exhaust heat recovery can avoid corrosion of heat transfer tubes, inhibition of heat transfer by deposits caused by the combination of ammonium sulfate salts and dust contained in gas turbine exhaust gas, and reduction in gas turbine output due to increased draft loss. Our purpose is to provide heat exchangers.

〔発明の構成] (a題を解決するための手段) 上記課題を解決するために本発明は硫黄含有燃料を使用
するガスタービン排ガス中にアンモニアを注入して、窒
素酸化物を低減させる脱硝装置を備えた排熱回収熱交換
器において、排ガス温度が150〜300℃の領域に熱
交換器管群に付着する硫酸アンモニウム塩を取り除く水
噴射グリッドを設けたことを特徴とするものである。
[Structure of the Invention] (Means for Solving Problem A) In order to solve the above problems, the present invention provides a denitrification device that reduces nitrogen oxides by injecting ammonia into the exhaust gas of a gas turbine that uses sulfur-containing fuel. This exhaust heat recovery heat exchanger is characterized in that a water injection grid for removing ammonium sulfate salt adhering to the heat exchanger tube group is provided in the region where the exhaust gas temperature is 150 to 300°C.

(作用) 硫酸アンモニウム塩は水に溶は易いという特質を持って
いるので、この水噴射グリッドより水を定期的に噴射さ
せることにより、容易に硫酸アンモニウム塩を取り除く
ことができる。
(Function) Since ammonium sulfate salt has the property of being easily soluble in water, ammonium sulfate salt can be easily removed by periodically spraying water from this water injection grid.

また1本方法によれば運転を停止することなく硫酸アン
モニウム塩を取り除くことができるので、付着した硫酸
アンモニウム塩による伝熱管の腐食。
Also, according to this method, ammonium sulfate salt can be removed without stopping the operation, so there is no possibility of corrosion of the heat transfer tubes due to the attached ammonium sulfate salt.

硫酸アンモニウム塩とガスタービン排ガス中に含まれる
ダストの結合により生じる付着物による伝熱効果の阻害
並びにドラフトロスの、増加によるガスタービン出力の
低下という事態を回避することが可能である。
It is possible to avoid a situation in which the heat transfer effect is inhibited by deposits caused by the combination of the ammonium sulfate salt and the dust contained in the gas turbine exhaust gas, and the gas turbine output is reduced due to an increase in draft loss.

(実施例) 本発明による排熱回収熱交換器の一実施例を第1図及び
第2図を参照して説明する。
(Example) An example of the exhaust heat recovery heat exchanger according to the present invention will be described with reference to FIGS. 1 and 2.

第1図の実施例は低圧節炭器2を2分割し、分割して開
いた空間部に節炭器水噴射グリッド16を設けたもので
ある。
In the embodiment shown in FIG. 1, the low-pressure economizer 2 is divided into two parts, and the economizer water injection grid 16 is provided in the open space between the two parts.

水噴射グリッド16の構造としては、例えば第2図に示
すようにパイプ17を格子状に組み合わせ。
The structure of the water injection grid 16 is, for example, as shown in FIG. 2, in which pipes 17 are combined in a grid pattern.

鉛直方向及び水平方向のパイプ17に多数の水噴射孔1
8を設けたものとする。
Numerous water injection holes 1 in vertical and horizontal pipes 17
8 is provided.

また、水噴射に用いる水溶液として中和水を用いるとそ
の廃液は強酸となるため、排熱回収熱交換器ダクト底面
が酸により腐食されることになる。
Furthermore, if neutralized water is used as the aqueous solution for water injection, the waste liquid will become a strong acid, and the bottom surface of the exhaust heat recovery heat exchanger duct will be corroded by the acid.

そこで、アルカリ水溶液を用いることにより廃液が中性
となるように、事前に水噴射用のアルカリ水溶液のPH
を調節しておく。
Therefore, in order to make the waste liquid neutral by using an alkaline aqueous solution, the pH of the alkaline aqueous solution for water injection should be adjusted in advance.
Adjust.

以上の構成によれば、この水噴射グリッド16より水を
定期的に噴射させることにより、容易に硫酸アンモニウ
ム塩を取り除くことができる。
According to the above configuration, ammonium sulfate salt can be easily removed by periodically jetting water from the water jetting grid 16.

したがって、付着した硫酸アンモニウム塩による伝熱管
の腐食、硫酸アンモニウム塩とガスタービン排ガス中に
含まれるダストの結合により生じる付着物による伝熱効
果の阻害並びにドラフトロスの増加によるガスタービン
出力の低下という事態を回避することが可能である。
Therefore, corrosion of heat transfer tubes due to attached ammonium sulfate salts, inhibition of heat transfer effect due to deposits caused by the combination of ammonium sulfate salts and dust contained in gas turbine exhaust gas, and reduction in gas turbine output due to increased draft loss are avoided. It is possible to do so.

第3図は本発明の他の実施例を示している。本実施例は
低圧節炭器2及び低圧蒸発器4とも管群を2分割し、そ
れぞれ分割してできた空間部に節炭器および蒸発器水噴
射グリッド16.19を設けたものである。さらに、低
圧節炭器2と低圧蒸発器4の間にも補助水噴射グリッド
20を設けている。
FIG. 3 shows another embodiment of the invention. In this embodiment, the tube group of both the low-pressure economizer 2 and the low-pressure evaporator 4 is divided into two parts, and the economizer and evaporator water injection grids 16 and 19 are provided in the spaces created by the respective divisions. Furthermore, an auxiliary water injection grid 20 is also provided between the low pressure economizer 2 and the low pressure evaporator 4.

このように低圧節炭器2と共に低圧蒸発器4に対して蒸
発器水噴射グリッド19を設け、反対方向から水を噴き
出す補助水噴射グリッド20を必要に応じて1本あるい
は2本以上設けることにより硫酸アンモニウム塩を確実
に除去することができる。
In this way, the evaporator water injection grid 19 is provided for the low pressure evaporator 4 together with the low pressure energy saver 2, and one or more auxiliary water injection grids 20 that eject water from the opposite direction are provided as necessary. Ammonium sulfate salt can be reliably removed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、コンバインドサイ
クル発電プラントの運転を停止することなく、ガスター
ビン排ガス温度が150〜300℃の領域の熱交換器管
群を構成するフィンチューブに付着する硫酸アンモニウ
ム塩を取り除くことができるので、付着した硫酸アンモ
ニウム塩による伝熱管の腐食、硫酸アンモニウム塩とガ
スタービン排ガス中に含まれるダストの結合により生じ
る付着物による伝熱効果の阻害並びにドラフトロスの増
加によるガスタービン出力の低下という事態を回避する
ことが可能である。
As explained above, according to the present invention, ammonium sulfate salt adheres to the fin tubes constituting the heat exchanger tube group in the region where the gas turbine exhaust gas temperature is 150 to 300 °C, without stopping the operation of the combined cycle power plant. This eliminates corrosion of heat transfer tubes due to attached ammonium sulfate salts, inhibits the heat transfer effect due to deposits caused by the combination of ammonium sulfate salts and dust contained in gas turbine exhaust gas, and reduces gas turbine output due to increased draft loss. It is possible to avoid this situation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による排熱回収熱交換器の一実施例を示
す構成図、第2図は水噴射グリッドの一例を示す構成図
、第3図は本発明の他の実施例を示す構成図、第4図は
従来の排熱回収熱交換器の一例を示す構成図、第5図は
D e N Oλの概略構造を示す斜視図である。 1・・・排熱回収熱交換器 2・・・低圧節炭器 4・・・低圧蒸発器 5・・・ガスタービン排ガス 11・・・アンモニアインジェクショングリッド(AI
G)12・・・脱硝触媒装置(DeNOx)16.19
.20・・・水噴射グリッド代理人 弁理士 則 近 
憲 佑 第2図 第5図 手続補正書(1劃 3.1.11 平成 年 月  日
FIG. 1 is a configuration diagram showing an example of the exhaust heat recovery heat exchanger according to the present invention, FIG. 2 is a configuration diagram showing an example of a water injection grid, and FIG. 3 is a configuration diagram showing another example of the present invention. 4 is a configuration diagram showing an example of a conventional exhaust heat recovery heat exchanger, and FIG. 5 is a perspective view showing a schematic structure of a D e N Oλ. 1...Exhaust heat recovery heat exchanger 2...Low pressure economizer 4...Low pressure evaporator 5...Gas turbine exhaust gas 11...Ammonia injection grid (AI
G) 12...Denitrification catalyst device (DeNOx) 16.19
.. 20...Water injection grid agent Patent attorney Nori Chika
Kensuke Figure 2 Figure 5 Procedure Amendment (Part 1 3.1.11 1989 Month/Day

Claims (1)

【特許請求の範囲】[Claims] 硫黄含有燃料を使用するガスタービンの排ガス中にアン
モニアを注入して、窒素酸化物を低減させる脱硝装置を
備えた排熱回収熱交換器において、排ガス温度が150
〜300℃の領域に熱交換器管群に付着する硫酸アンモ
ニウム塩を取り除く水噴射グリッドを設けたことを特徴
とする排熱回収熱交換器。
In an exhaust heat recovery heat exchanger equipped with a denitrification device that injects ammonia into the exhaust gas of a gas turbine that uses sulfur-containing fuel to reduce nitrogen oxides, the exhaust gas temperature reaches 150 ℃.
An exhaust heat recovery heat exchanger characterized in that a water injection grid for removing ammonium sulfate salt adhering to a group of heat exchanger tubes is provided in a region of 300°C to 300°C.
JP21590590A 1990-08-17 1990-08-17 Waste heat recovery heat exchanger Pending JPH04161702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21590590A JPH04161702A (en) 1990-08-17 1990-08-17 Waste heat recovery heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21590590A JPH04161702A (en) 1990-08-17 1990-08-17 Waste heat recovery heat exchanger

Publications (1)

Publication Number Publication Date
JPH04161702A true JPH04161702A (en) 1992-06-05

Family

ID=16680198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21590590A Pending JPH04161702A (en) 1990-08-17 1990-08-17 Waste heat recovery heat exchanger

Country Status (1)

Country Link
JP (1) JPH04161702A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777304A (en) * 1993-09-06 1995-03-20 Babcock Hitachi Kk Method and apparatus for cleaning heat transfer tube with fins
US5404708A (en) * 1992-07-15 1995-04-11 Siemens Aktiengesellschaft Method for operating a gas and steam turbine plant and gas and steam turbine plant operating according to the method
WO2012094362A2 (en) * 2011-01-04 2012-07-12 Eco Power Solutions (Usa) Corp. APPLYING OZONE NOx CONTROL TO AN HRSG FOR A FOSSIL FUEL TURBINE APPLICATION
US9694317B2 (en) 2012-05-03 2017-07-04 Altira Technology Fund V L.P. Multi-pollutant abatement device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404708A (en) * 1992-07-15 1995-04-11 Siemens Aktiengesellschaft Method for operating a gas and steam turbine plant and gas and steam turbine plant operating according to the method
JPH0777304A (en) * 1993-09-06 1995-03-20 Babcock Hitachi Kk Method and apparatus for cleaning heat transfer tube with fins
WO2012094362A2 (en) * 2011-01-04 2012-07-12 Eco Power Solutions (Usa) Corp. APPLYING OZONE NOx CONTROL TO AN HRSG FOR A FOSSIL FUEL TURBINE APPLICATION
WO2012094362A3 (en) * 2011-01-04 2012-10-18 Eco Power Solutions (Usa) Corp. APPLYING OZONE NOx CONTROL TO AN HRSG FOR A FOSSIL FUEL TURBINE APPLICATION
US20130283796A1 (en) * 2011-01-04 2013-10-31 Eco Power Solutions (Usa) Corp. APPLYING OZONE NOx CONTROL TO AN HRSG FOR A FOSSIL FUEL TURBINE APPLICATION
US9694317B2 (en) 2012-05-03 2017-07-04 Altira Technology Fund V L.P. Multi-pollutant abatement device and method

Similar Documents

Publication Publication Date Title
US5555718A (en) Method and apparatus for injecting reactant for catalytic reduction in a gas turbine combined cycle system
JP3373771B2 (en) Waste heat recovery boiler
EP0670175B1 (en) Exhaust gas boiler
JPH0429923B2 (en)
US20110041783A1 (en) Steam Generator
US20010037641A1 (en) Gas and steam turbine plant
CN102312244A (en) Thermal equipment operation cleaning agent and its application
JPH04161702A (en) Waste heat recovery heat exchanger
EP3236025B1 (en) System and method for improving the performance of a selective catalyst reduction system in a heat recovery steam generator
US8042497B2 (en) Steam generator arrangement
JPH04324002A (en) Waste heat recovering heat exchanger
US10495393B2 (en) System and method for improving the performance of a heat recovery steam generator
JP5613921B2 (en) Exhaust heat recovery boiler and method for preventing corrosion in the can
Ebeling et al. Thermal energy storage and inlet air cooling for combined cycle
JP2004184044A (en) Exhaust heat recovery device
JPH05203103A (en) Double pressure type waste heat recovery boiler
JP2006250494A (en) Exhaust heat recovery boiler and its operation method
JPH0435679B2 (en)
JP2002139201A (en) Waste heat recovery boiler and its repairing method
JPS6127402A (en) Method of washing waste-heat recovery boiler
JP2001317705A (en) Exhaust heat recovery boiler and drain structure of its bottom
JP2007292414A (en) Combined cycle power generation facility and water quality management method for combined cycle power generation facility
Ruiz et al. WORLD'S LARGEST GREENFIELD 100% BIOMASS FIRED POWER PLANT
JPH04155101A (en) Double pressure type exhaust heat recovery boiler
Schreyer et al. Implementation of SCR Systems for Three Boilers at the TVA Paradise Fossil Site