JPH04140555A - Control device for continuously variable transmission - Google Patents

Control device for continuously variable transmission

Info

Publication number
JPH04140555A
JPH04140555A JP25989390A JP25989390A JPH04140555A JP H04140555 A JPH04140555 A JP H04140555A JP 25989390 A JP25989390 A JP 25989390A JP 25989390 A JP25989390 A JP 25989390A JP H04140555 A JPH04140555 A JP H04140555A
Authority
JP
Japan
Prior art keywords
deviation
primary
oil pressure
pulley
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25989390A
Other languages
Japanese (ja)
Inventor
Nobusada Hoshikawa
星川 宣禎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP25989390A priority Critical patent/JPH04140555A/en
Publication of JPH04140555A publication Critical patent/JPH04140555A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To set a speed change feedback control gain taking account of the actual speed change state so as to improve controllability and convergence by setting the deviation proportional part, in a control gain, of the deviation between the target value and the actual value using clamping pressure difference. CONSTITUTION:The signals of primary pulley rotating speed Np, secondary pulley rotating speed Ns, acceleration opening theta, secondary oil pressure Ps, primary oil pressure Pp, and the like corresponding to engine operation and the travel state are inputted into a control unit 40, where an actual speed change ratio (i), deviation DELTAN between the target primary pulley rotating speed Npd and the primary pulley rotating speed Np, and clamping force difference DELTAP from the secondary oil pressure Ps and primary oil pressure Pp are computed. When the specified deviation DELTAN is generated at the transient time, the value of the integrated part Ki and differential part Kd of this deviation DELTAN is computed to determine deviation proportional part Kp. Since the deviation proportional part Kp is thus set using the oil pressure ratio between the primary and secondary oil pressure, an appropriate control gain can be set in relation to the delay or the like of the whole continuously variable transmission system.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車両用のベルト式無段変速機の変速等を電子
的に制御する制御装置に関し、詳しくは、変速用フィー
ドバック制御系の制御ゲインに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a control device for electronically controlling the speed change, etc. of a belt-type continuously variable transmission for a vehicle, and more specifically, the present invention relates to a control device for electronically controlling the speed change, etc. of a belt-type continuously variable transmission for a vehicle. Regarding gain.

〔従来の技術〕[Conventional technology]

この種の無段変速機においては、エンジンからの伝達ト
ルクに応じたセカンダリ油圧を設定するライン圧制御系
と、セカンダリ油圧に対し所定の変速比を得るに必要な
プライマリ油圧を設定する変速制御系とを有している。
This type of continuously variable transmission has a line pressure control system that sets the secondary oil pressure according to the torque transmitted from the engine, and a shift control system that sets the primary oil pressure necessary to obtain a predetermined gear ratio with respect to the secondary oil pressure. It has

ここで変速制御系では、エンジン運転状態、車両走行状
態に応じて最適な目標値が予め設定され、この目標値と
実際値の偏差に基づいてフィードバック制御の操作量を
算出する。また、かかる操作量を定めるに当たっては、
無段変速機の制御系に特有の特性、油圧駆動する場合の
特性、走行フィーリング等の種々の事情を考慮して、制
御ゲインが調整され、変速制御の応答性、変速スピード
の適正化が計られている。
In the shift control system, an optimal target value is set in advance according to the engine operating state and the vehicle running state, and the manipulated variable for feedback control is calculated based on the deviation between this target value and the actual value. In addition, in determining the amount of operation,
The control gain is adjusted in consideration of various circumstances such as characteristics specific to the control system of continuously variable transmissions, characteristics of hydraulic drive, driving feeling, etc., and the responsiveness of shift control and shift speed are optimized. It is measured.

そこで、従来この無段変速機の制御装置において、フィ
ードバックの制御ゲインを調整するものに関しては、例
えば、特開昭61−271134号公報がある。ここで
、エンジン回転状態に関係して目標変速速度を設定し、
フィードバック制御でのゲインを目標変速速度に関係し
て設定することが示されている。
Therefore, regarding a conventional control device for a continuously variable transmission that adjusts the feedback control gain, there is, for example, Japanese Patent Application Laid-Open No. 61-271134. Here, the target shift speed is set in relation to the engine rotational state,
It is shown that the gain in feedback control is set in relation to the target shift speed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記先行技術のものにあっては、フィードバ
ック制御のゲインを電子制御系において、電気的に処理
して設定された目標変速速度により設定しているため、
以下のような不具合がある。
By the way, in the prior art described above, the feedback control gain is set in the electronic control system based on the target shift speed that is electrically processed and set.
There are the following problems.

即ち、無段変速機は、プーリ、ベルトの機械的変速部を
油圧制御系で作動する構成になっている。
That is, the continuously variable transmission has a structure in which a mechanical transmission section including pulleys and a belt is operated by a hydraulic control system.

そこで、油圧制御系等の遅れ要素を含み、実際にはセカ
ンダリ油圧とプライマリ油圧との油圧比で変速されるた
め、先行技術のように電子制御系でソフト的に設定され
た要素で制御ゲインを設定しても、実際の制御に適合し
ない。従って、無段変速機全体の系として、充分に制御
性、収束性を向上し得ない。
Therefore, since it includes delay elements such as the hydraulic control system, and the speed is actually changed based on the hydraulic ratio between the secondary hydraulic pressure and the primary hydraulic pressure, the control gain is controlled by elements set software in the electronic control system, as in the prior art. Even if it is set, it does not match the actual control. Therefore, the controllability and convergence of the entire continuously variable transmission system cannot be sufficiently improved.

本発明は、かかる点に鑑みてなされたもので、その目的
とするところは、油圧制御系の実際の変速状態を加味し
て変速用フィードバック制御ゲインを設定し、制御性、
収束性を有効に向上することが可能な無段変速機の制御
装置を提供することにある。
The present invention has been made in view of the above, and an object of the present invention is to set a feedback control gain for speed change in consideration of the actual speed change state of the hydraulic control system, thereby improving controllability and improving controllability.
An object of the present invention is to provide a control device for a continuously variable transmission that can effectively improve convergence.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の無段変速機の制御装
置は、油圧サーボ装置によりブーり溝幅を変更すること
によりプーリ実効径を変更可能に設けられたプライマリ
プーリとセカンダリプーリと、前記プライマリプーリと
セカンダリプーリの間にベルトを巻装し、少なくともプ
ライマリプーリの油圧サーボ装置とセカンダリプーリの
油圧サーボ装置とのクランプ力の釣合によってブーり比
を可変制御する無段変速機における、目標値と実際値と
の偏差に基づき操作量を定めてフィードバック制御する
変速制御系において、目標値と実際値との偏差を算出す
る偏差算出手段と、セカンダリプーリの油圧サーボ装置
とプライマリプーリの油圧サーボ装置のクランプ力差を
算出するクランプ力差算出部と、偏差とクランプ力差に
基づき偏差比例分を設定し、この偏差比例分と偏差で偏
差ゲインを決定する偏差ゲイン決定手段と、少なくとも
偏差ゲインに応じ実際値の制御量を調整演算して操作量
を設定する操作量設定手段と、を備えるものである。
In order to achieve the above object, the control device for a continuously variable transmission of the present invention includes a primary pulley and a secondary pulley, which are provided so that the effective diameter of the pulley can be changed by changing the width of the bobbin groove using a hydraulic servo device; A goal of a continuously variable transmission in which a belt is wound between a primary pulley and a secondary pulley, and the boolean ratio is variably controlled by balancing the clamping forces of at least the hydraulic servo device of the primary pulley and the hydraulic servo device of the secondary pulley. In a speed change control system that determines a manipulated variable based on the deviation between a value and an actual value and performs feedback control, there is a deviation calculation means that calculates the deviation between the target value and the actual value, a hydraulic servo device for the secondary pulley, and a hydraulic servo device for the primary pulley. a clamping force difference calculation unit that calculates a clamping force difference of the device; a deviation gain determining unit that sets a deviation proportional amount based on the deviation and the clamping force difference; and a deviation gain determining unit that determines a deviation gain based on the deviation proportional amount and the deviation; and a manipulated variable setting means that adjusts and calculates the actual value of the controlled variable to set the manipulated variable.

〔作   用〕[For production]

上記構成に基づき、無段変速機のフィードバック変速制
御において、目標値と実際値の偏差の制御ゲインにおけ
る偏差比例分が、無段変速機側のセカンダリとプライマ
リの油圧差等によるクランプ力差で設定されることで、
低速段と高速段側において、実際の変速状態を加味して
変速スピードが適正に制御される。そして、各変速比毎
にクランプ力差と共に偏差比例分が変化して、応答性と
安定性を向上することが可能になる。
Based on the above configuration, in the feedback shift control of the continuously variable transmission, the deviation proportional portion in the control gain of the deviation between the target value and the actual value is set by the clamping force difference due to the hydraulic pressure difference between the secondary and primary on the continuously variable transmission side. By being
At the low gear and high gear sides, the shift speed is appropriately controlled taking into account the actual gear shift state. Then, the proportional deviation changes together with the clamping force difference for each gear ratio, making it possible to improve responsiveness and stability.

〔実 施 例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図において、本発明の無段変速機の制御装置の実施
例について述べると、符合lはエンジンであり、このエ
ンジン1がクラッチ21前後進切換装置3を介して無段
変速機5のブリマリ軸4゜プライマリプーリ6に連結す
る。無段変速機5はプライマリプーリ6に対しセカンダ
リプーリ7が平行配置されており、両プーリ6.7間に
ベルト8が掛けられて、ベルト8の巻付は径の比を変え
ることで無段変速することが可能になっている。
In FIG. 1, an embodiment of the control device for a continuously variable transmission according to the present invention will be described. Reference numeral 1 indicates an engine, and this engine 1 is connected to the continuously variable transmission 5 through a clutch 21 and a forward/reverse switching device 3. Shaft 4° connects to primary pulley 6. In the continuously variable transmission 5, a secondary pulley 7 is arranged parallel to a primary pulley 6, and a belt 8 is hung between both pulleys 6 and 7. The winding of the belt 8 is continuously variable by changing the diameter ratio. It is possible to change gears.

そして、セカンダリプーリ7から更にセカンダリ軸9.
ギヤ10.ディファレンシャル装置11.車軸12を介
して車輪13側に伝動構成されている。
Then, from the secondary pulley 7, the secondary shaft 9.
Gear 10. Differential device 11. Transmission is configured to the wheel 13 side via the axle 12.

また無段変速機5の油圧制御系では、ライン圧制御弁2
0が油路21を介しセカンダリシリンダ7aに連通し、
伝達トルクに応じたセカンダリ油圧Psを作用して、ベ
ルトスリップを生じないようなプーリ押付は力を付与す
る。上記油路21は変速制御弁22.油路23を介して
プライマリシリンダ6aに連通し、セカンダリ油圧Ps
に対して所定のプライマリ油圧Ppを作用し、このプラ
イマリ油圧Ppの押付は力でベルト8を両プーリ6.7
の一方から他方へ移行して、所定の変速比に制御するよ
うに構成される。
In addition, in the hydraulic control system of the continuously variable transmission 5, the line pressure control valve 2
0 communicates with the secondary cylinder 7a via the oil passage 21,
A secondary hydraulic pressure Ps corresponding to the transmitted torque is applied to apply force to the pulley in a manner that does not cause belt slip. The oil passage 21 is connected to the speed change control valve 22. It communicates with the primary cylinder 6a via the oil passage 23, and the secondary hydraulic pressure Ps
A predetermined primary hydraulic pressure Pp acts on the
The gear ratio is controlled to a predetermined speed ratio by shifting from one to the other.

次に、変速用フィードバック制御系について述べる。Next, the shift feedback control system will be described.

先ず、制御ゲインの設定原理について述べる。First, the principle of setting the control gain will be described.

無段変速機の制御系において実際の変速に直接関係する
のは、セカンダリ油圧Psとプライマリ油圧Ppの必要
油圧比epであり、この必要油圧比ep、実変速比i及
び伝達トルク余裕率aの関係を示すと、第4図のように
なる。伝達トルク余裕率aは、無段変速機の入力トルク
Tinと、実際に作用しているセカンダリ油圧Psで伝
達可能な最大トルクT waxとの比(T +n/ T
 wax)である。
In the control system of a continuously variable transmission, what is directly related to the actual speed change is the required oil pressure ratio ep between the secondary oil pressure Ps and the primary oil pressure Pp, and the required oil pressure ratio ep, the actual gear ratio i, and the transfer torque margin rate a. The relationship is shown in Figure 4. The transmission torque margin ratio a is the ratio between the input torque Tin of the continuously variable transmission and the maximum torque T wax that can be transmitted by the actually acting secondary hydraulic pressure Ps (T + n/T
wax).

この図から、実変速比lの大きい低速段では必要油圧比
epが小さ(、実変速比1の小さい高速段になるほど必
要油圧比epが大きくなることがわかる。そこで、セカ
ンダリ油圧Psとプライマリ油圧Ppとの差をブーり側
のクランプ力差ΔPとして示すと、低速段ではクランプ
力差ΔPの値が大きく、高速段側ではそのクランプ力差
ΔPの値が順次小さくなる。こうしてクランプ力差ΔP
の値は、実際の変速状態に対応して各変速比Iに応じ変
化する要素であり、これを用いて制御ゲインを設定する
ことて、適正に変速制御できることになる。
From this figure, it can be seen that the required oil pressure ratio ep is small in the low speed gear where the actual gear ratio 1 is large (and the required oil pressure ratio ep becomes larger as the actual gear ratio 1 is smaller in the higher gear gear. Therefore, the secondary oil pressure Ps and the primary oil pressure When the difference from Pp is expressed as the clamping force difference ΔP on the boolean side, the value of the clamping force difference ΔP is large in the low speed gear, and the value of the clamping force difference ΔP gradually decreases in the high speed gear.Thus, the clamping force difference ΔP
The value of is an element that changes according to each speed ratio I in accordance with the actual speed change state, and by using this value to set the control gain, it is possible to appropriately control the speed change.

ここで、変速制御のアップシフトを考察すると、低速段
では変速スピードが速く、高速段側では遅いことが望ま
れる。この要求に合致するには、クランプ力差ΔPに対
して制御ゲインの比例骨Kpを比例的に設定すればよい
。また、ダウンシフトは高速段で変速スピードが速く、
低速段側で遅いことが望まれる。このためには、制御ゲ
インの比例骨Kpをクランプ力差ΔPの逆数で反比例的
に設定すればよいことになる。
Here, when considering upshifts in shift control, it is desirable that the shift speed be fast in low gears and slow in high gears. To meet this requirement, the proportional bone Kp of the control gain may be set proportionally to the clamping force difference ΔP. In addition, the downshift is at a high speed and the gear change speed is fast.
It is desirable that the speed is slow on the low speed side. For this purpose, the proportional bone Kp of the control gain may be set in inverse proportion to the reciprocal of the clamping force difference ΔP.

そこで、かかる制御ゲインの設定原理を加味して変速制
御系を示すと、以下のようになる。
Therefore, if the shift control system is shown taking into account the principle of setting the control gain, it will be as follows.

先ず、無段変速機5の入力側のプライマリプーリ回転数
センサ30.その出力側のセカンダリプーリ回転数セン
サ31.アクセル開度センサ32.ライン圧センサ33
.伝達トルク余裕率設定手段34及びプライマリ圧セン
サ35を有し、これらのセンサ信号が制御ユニット40
に入力して処理される。
First, the primary pulley rotation speed sensor 30 on the input side of the continuously variable transmission 5. Secondary pulley rotation speed sensor 31 on the output side. Accelerator opening sensor 32. Line pressure sensor 33
.. It has a transmission torque margin setting means 34 and a primary pressure sensor 35, and these sensor signals are transmitted to the control unit 40.
is input and processed.

制御ユニット40は、プライマリプーリ回転数センサ3
0.セカンダリプーリ回転数センサ3Iのプライマリプ
ーリ回転数Np、セカンダリプーリ回転数Nsが人力す
る実変速比算出部41を有し、実変速比iを、プライマ
リプーリ回転数Npとセカンダリプーリ回転数Nsとの
比により算出する。この実変速比iとライン圧センサ3
3のセカンダリ油圧Ps、伝達トルク余裕率aは、プラ
イマリ油圧設定部42に入力して、必要油圧比1)(P
P/Ps)。
The control unit 40 includes a primary pulley rotation speed sensor 3
0. The primary pulley rotation speed Np and the secondary pulley rotation speed Ns of the secondary pulley rotation speed sensor 3I have an actual gear ratio calculating section 41 which manually calculates the actual gear ratio i by calculating the primary pulley rotation speed Np and the secondary pulley rotation speed Ns. Calculated by ratio. This actual gear ratio i and line pressure sensor 3
The secondary oil pressure Ps and transmission torque margin rate a of No. 3 are input to the primary oil pressure setting section 42, and the required oil pressure ratio 1) (P
P/Ps).

伝達トルク余裕率a及びセカンダリ油圧Psの関係から
必要プライマリ油圧Pptを算出する。
The required primary oil pressure Ppt is calculated from the relationship between the transmission torque margin rate a and the secondary oil pressure Ps.

また、セカンダリプーリ回転数Nsとアクセル開度セン
サ32のアクセル開度θが入力する目標プライマリプー
リ回転数検索部43を有し、セカンダリプーリ回転数N
s、アクセル開度θの関係から最適な目標プライマリプ
ーリ回転数Npdを定める。
It also has a target primary pulley rotation speed search unit 43 into which the secondary pulley rotation speed Ns and the accelerator opening θ of the accelerator opening sensor 32 are input, and the secondary pulley rotation speed N
The optimum target primary pulley rotation speed Npd is determined from the relationship between S and accelerator opening θ.

目標プライマリプーリ回転数Npdとプライマリプーリ
回転数Npは偏差算出部44に入力して、偏差ΔNを、
ΔN−Npd−Npにより算出する。
The target primary pulley rotation speed Npd and the primary pulley rotation speed Np are input to the deviation calculation section 44, and the deviation ΔN is calculated as follows.
Calculated by ΔN-Npd-Np.

次に、上記プライマリプーリ回転数の偏差ΔNに基づい
てフィードバック制御する際の、制御ゲインを設定する
制御系について述べる。先ず、偏差ΔNが入力する偏差
積分算出部45を有し、偏差積分分Kiを、Kl−ΔN
dtにより算出し、同様に偏差微分算出部4Bを有して
、偏差微分骨Kdを、Kd −dΔN/dtにより算出
する。
Next, a control system for setting a control gain when performing feedback control based on the deviation ΔN of the primary pulley rotation speed will be described. First, there is a deviation integral calculation unit 45 to which the deviation ΔN is input, and the deviation integral Ki is calculated as Kl−ΔN
Similarly, the deviation differential calculation section 4B calculates the deviation differential bone Kd by Kd - dΔN/dt.

また、偏差比例骨を設定するため、セカンダリ油圧Ps
とプライマリ油圧Ppが入力するクランプ力差算出部5
0を有し、クランプ力差ΔPを、ΔP−Ps −Pp により算出する。
In addition, in order to set the deviation proportional bone, the secondary hydraulic pressure Ps
and the primary hydraulic pressure Pp are input to the clamping force difference calculation unit 5.
0, and the clamping force difference ΔP is calculated by ΔP−Ps−Pp.

上記プライマリプーリ回転数の偏差ΔNとクランプ力差
ΔPは偏差ゲイン決定部に入力し、先ず、偏差ΔNの値
が零及び負の場合にアップシフトを判断し、正の場合に
ダウンシフトを判断する。そして、既に述べた制御ゲイ
ンの設定原理に基づき、アップシフトでは偏差比例骨K
pを、偏差ΔNとクランプ力差ΔPにより、 Kp−f(ΔN、ΔP) で設定する。また、ダウンシフトでは偏差比例骨Kpを
、偏差ΔNとクランプ力差ΔPの逆数により、 Kp−f(ΔN、 1/ΔP) で設定する。こうして設定された偏差比例骨Kpと偏差
ΔNとにより偏差ゲインGを、以下のように決定する。
The deviation ΔN of the primary pulley rotation speed and the clamping force difference ΔP are input to the deviation gain determining section, and first, an upshift is determined when the value of the deviation ΔN is zero or negative, and a downshift is determined when the value of the deviation ΔN is positive. . Based on the control gain setting principle described above, in upshift, the deviation proportional bone K
p is set as Kp-f(ΔN, ΔP) using the deviation ΔN and the clamping force difference ΔP. Further, in the downshift, the deviation proportional bone Kp is set as Kp-f(ΔN, 1/ΔP) by the reciprocal of the deviation ΔN and the clamping force difference ΔP. The deviation gain G is determined as follows based on the deviation proportional bone Kp and the deviation ΔN thus set.

G−Kp ・ΔN そして、これらの偏差積分分Kj、偏差微分分Kd、偏
差ゲインGは操作量設定部48に入力して、実変速比i
に応じた必要プライマリ油圧Pptに対しに1.Kd、
Gを乗算して操作量りを定める。
G-Kp ・ΔN Then, these deviation integral Kj, deviation differential Kd, and deviation gain G are input to the manipulated variable setting section 48 to set the actual gear ratio i.
1 for the required primary oil pressure Ppt according to. Kd,
Multiply by G to determine the operating amount.

この操作量りが、駆動部49を介して変速制御弁22に
出力するように構成されている。
This operation amount is configured to be output to the speed change control valve 22 via the drive section 49.

次いで、この実施例の作用について述べる。Next, the operation of this embodiment will be described.

先ず、エンジン1の動力がクラッチ21前後進切換装置
3を介し無段変速機5のプライマリプーリ6に入力する
。このとき、ライン圧制御弁20により伝達トルクに応
じたセカンダリ油圧Psがセカンダリシリンダ7aに供
給されており、変速制御弁22により所定のプライマリ
油圧Ppがプライマリシリンダ6aに導かれ、ベルト8
を所定の位置に移行する。そこで、エンジン動力はこれ
らのプライマリプーリ6、セカンダリプーリ7及びベル
ト8により変速してセカンダリ軸9に出力し、更にこの
変速動力が車輪13側に伝達することで走行するように
なる。
First, the power of the engine 1 is input to the primary pulley 6 of the continuously variable transmission 5 via the clutch 21 and the forward/reverse switching device 3. At this time, the line pressure control valve 20 supplies the secondary hydraulic pressure Ps corresponding to the transmission torque to the secondary cylinder 7a, and the speed change control valve 22 guides a predetermined primary hydraulic pressure Pp to the primary cylinder 6a, and the belt 8
into position. Therefore, the engine power is shifted by the primary pulley 6, secondary pulley 7, and belt 8 and output to the secondary shaft 9, and this shifting power is further transmitted to the wheels 13, thereby driving the vehicle.

ところで、この走行時には、エンジン運転、走行の状態
に応じたプライマリプーリ回転数Np。
By the way, during this traveling, the primary pulley rotation speed Np depends on the engine operation and traveling conditions.

セカンダリプーリ回転数Ns、アクセル開度θ。Secondary pulley rotation speed Ns, accelerator opening θ.

セカンダリ油圧Ps、プライマリ油圧Pp等の信号が制
御ユニット40に入力する。そして、実変速比1.目標
プライマリプーリ回転数Npd及びプライマリプーリ回
転数の偏差ΔNが算出される。また、セカンダリ油圧P
sとプライマリ油圧Ppによりクランプ力差ΔPが算出
される。
Signals such as secondary oil pressure Ps and primary oil pressure Pp are input to the control unit 40. Then, the actual gear ratio is 1. The target primary pulley rotation speed Npd and the deviation ΔN of the primary pulley rotation speed are calculated. In addition, the secondary hydraulic pressure P
A clamping force difference ΔP is calculated from s and the primary oil pressure Pp.

そこで、偏差ΔNが零の定常時には、プライマリ圧設定
部42において必要油圧比epを用いて実変速比1.セ
カンダリ油圧Psに応じて算出された必要プライマリ油
圧Pptの制御量がそのまま保持され、この変速信号が
変速制御弁22に出力して一定の変速比に保持される。
Therefore, during steady state when the deviation ΔN is zero, the primary pressure setting section 42 uses the required oil pressure ratio ep to set the actual gear ratio to 1. The control amount of the required primary oil pressure Ppt calculated according to the secondary oil pressure Ps is maintained as it is, and this shift signal is output to the shift control valve 22 to maintain a constant gear ratio.

一方、過渡時に所定の偏差ΔNを生じると、この偏差Δ
Nの積分分KI、微分分Kdの値が算出される。また、
第2図のフローチャートが実行されて、偏差比例骨Kp
が決定される。
On the other hand, if a predetermined deviation ΔN occurs during a transient period, this deviation ΔN
The values of the integral KI and the differential Kd of N are calculated. Also,
The flowchart in FIG. 2 is executed, and the deviation proportional bone Kp
is determined.

即ち、ステップS1で偏差ΔNとクランプ力差ΔPを読
込み、ステップS2で偏差ΔNの値の正負によりダウン
シフトまたはアップシフトを判断する。アップシフトの
場合はステップS3に進み、偏差比例骨Kpを、偏差Δ
Nとクランプ力差ΔPとに応じて設定し、ステップS4
で偏差比例骨Kpと偏差ΔNとにより偏差ゲインGを算
出し、更にステップS5に進んでこの偏差ゲインGを出
力するのである。この偏差ゲインGは積分分Kl。
That is, in step S1, the deviation ΔN and the clamping force difference ΔP are read, and in step S2, a downshift or an upshift is determined based on the sign of the deviation ΔN. In the case of upshift, proceed to step S3, and change the deviation proportional bone Kp to the deviation Δ
N and the clamping force difference ΔP, and step S4
Then, a deviation gain G is calculated from the deviation proportional bone Kp and the deviation ΔN, and the process further proceeds to step S5, where this deviation gain G is output. This deviation gain G is the integral Kl.

微分分Kdと共に操作量設定部48に入力し、必要プラ
イマリ油圧Pptの制御量に乗算して操作量りが設定さ
れる。そしてこの操作量りの変速信号が変速制御弁22
に出力してプライマリ油圧Ppを増大することで、目標
プライマリプーリ回転数Npdに追従するように高速段
側に変速制御される。
It is input to the operation amount setting section 48 together with the differential Kd, and is multiplied by the control amount of the required primary oil pressure Ppt to set the operation amount. Then, the shift signal corresponding to the amount of operation is transmitted to the shift control valve 22.
By increasing the primary oil pressure Pp by outputting an output to the primary pulley rotation speed Npd, the gear shift is controlled to the high speed side so as to follow the target primary pulley rotation speed Npd.

この時、目標プライマリプーリ回転数Npdの変化と共
に偏差ΔNが大きいほど制御ゲインのKi。
At this time, as the target primary pulley rotation speed Npd changes and the deviation ΔN increases, the control gain Ki increases.

Kd、Gの値か大きくなって、変速スピードが速くなる
。またクランプ力差ΔPは低速段で大きく、高速段で小
さくなり、このクランプ力差ΔPに比例して偏差比例骨
Kpが設定される。このため、第3図のLuのような変
速ラインでアップシフトする場合に、最大変速比り側で
はΔp、KDの値が大きいため変速スピードが速くなり
、応答性、加速性が良くなる。そして、最小変速比IH
側に進むのに従ってΔp、Kpの値の減少により変速ス
ピードが遅くなり、走行安定性が重視されることになる
The values of Kd and G become larger, and the shifting speed becomes faster. Further, the clamping force difference ΔP is large at the low speed stage and small at the high speed stage, and the deviation proportional bone Kp is set in proportion to this clamping force difference ΔP. Therefore, when upshifting with a shift line such as Lu in FIG. 3, the values of Δp and KD are large on the side of the maximum shift ratio, so the shift speed becomes faster and responsiveness and acceleration are improved. And the minimum gear ratio IH
As the vehicle moves toward the side, the values of Δp and Kp decrease, and the shifting speed becomes slower, and driving stability becomes more important.

一方、ダウンシフトの場合は、第2図のフローチャート
でステップS2からステップS6に進み、偏差比例骨K
pがクランプ力差ΔPの逆数で設定される。そこ−C1
第3図のLdのような変速ラインでダウンシフトする場
合に、最小変速比ill側ては]、/ΔPによりKpの
値が逆に大きくなって変速スピードが速くなり、特にキ
ックダウンが迅速に行われる。そして、最大変速比ft
側に進むに従って変速スピードが遅くなり、低速走行の
安定性が増すことになる。
On the other hand, in the case of a downshift, the process proceeds from step S2 to step S6 in the flowchart of FIG.
p is set as the reciprocal of the clamping force difference ΔP. There-C1
When downshifting with a shift line like Ld in Figure 3, on the side of the minimum gear ratio ill], the value of Kp becomes larger due to /ΔP, and the shift speed becomes faster, and especially the kickdown becomes faster. It will be done. And the maximum gear ratio ft
As you move toward the side, the shift speed becomes slower, increasing stability at low speeds.

以上、本発明の実施例について説明したが、これのみに
限定されない。例えば、目標値として目標プライマリプ
ーリ回転数のみならず、変速比やブーり位置等を用いた
ものにも適応できる。
Although the embodiments of the present invention have been described above, the present invention is not limited thereto. For example, it is possible to apply not only the target primary pulley rotation speed but also the gear ratio, boolean position, etc. as the target value.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、無段変速機の制
御装置で目標値と実際値との偏差に基づきフィードバッ
クして変速制御し、この場合の制御ゲインを調整する方
式において、無段変速機側のプライマリとセカンダリの
油圧比を用いて偏差比例骨を設定するので、無段変速機
全体の系の遅れ等に対して適正に制御ゲインを定めるこ
とができる。
As explained above, according to the present invention, in a method in which a control device for a continuously variable transmission performs speed change control by feedback based on the deviation between a target value and an actual value, and adjusts a control gain in this case, Since the deviation proportionality is set using the primary and secondary oil pressure ratios on the transmission side, it is possible to appropriately determine the control gain for delays in the entire system of the continuously variable transmission.

各変速比のセカンダリとプライマリのクランプ力差の変
化を利用して偏差比例骨を設定するので、低速段と高速
段側で変速スピードを最適に制御でき、応答性と安定性
を共に向上できる。
Since the deviation proportional bone is set using changes in the clamping force difference between the secondary and primary of each gear ratio, the gear shifting speed can be optimally controlled on the low and high gear sides, improving both responsiveness and stability.

アップシフトでは高速段側にシフトするのに応じて変速
スピードを遅くし、ダウンシフトでは逆の特性に設定す
るので、両度速制御の制御性を最適化できる。
In an upshift, the shift speed is slowed down in response to a shift to a high speed gear, and in a downshift, the opposite characteristics are set, so the controllability of both-speed control can be optimized.

偏差比例骨は各シフト状態で、クランプ力差の値を比例
的または反比例的に定めて設定されるので、制御が容易
になり、アップシフトとダウンシフトの特性が一致して
好ましい。
Since the deviation proportional bone is set by proportionally or inversely proportionally determining the value of the clamping force difference in each shift state, control is facilitated and the upshift and downshift characteristics match, which is preferable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る無段変速機の駆動系、油
圧制御系、電子制御系の構成図、第2図は偏差比例骨の
設定作用のフローチャートを示す図、 第3図はアップシフトとダウンシフトの変速状態を示す
図、 第4図は変速比、伝達トルク余裕率と必要油圧比との関
係を示す図である。 5・・・無段変速機、22・・・変速制御弁、40・・
・制御ユニット、4I・・・実変速比算出部、42・・
・目標プライマリプーリ回転数検索部、44・・・偏差
算出部、47・・・偏差ゲイン決定部、48・・・操作
量設定部、50・・・クランプ力差算出部。 同
Fig. 1 is a block diagram of the drive system, hydraulic control system, and electronic control system of a continuously variable transmission according to an embodiment of the present invention, Fig. 2 is a flowchart of the setting operation of the deviation proportional bone, and Fig. 3 is FIG. 4 is a diagram showing the gear change states of upshift and downshift. FIG. 4 is a diagram showing the relationship among the gear ratio, transmission torque margin ratio, and required oil pressure ratio. 5... Continuously variable transmission, 22... Speed change control valve, 40...
・Control unit, 4I...Actual gear ratio calculation unit, 42...
-Target primary pulley rotation speed search unit, 44...deviation calculation unit, 47...deviation gain determination unit, 48...operation amount setting unit, 50...clamp force difference calculation unit. same

Claims (3)

【特許請求の範囲】[Claims] (1)油圧サーボ装置によりプーリ溝幅を変更すること
によりプーリ実効径を変更可能に設けられたプライマリ
プーリとセカンダリプーリと、前記プライマリプーリと
セカンダリプーリの間にベルトを巻装し、少なくともプ
ライマリプーリの油圧サーボ装置とセカンダリプーリの
油圧サーボ装置とのクランプ力の釣合によってプーリ比
を可変制御する無段変速機における、目標値と実際値と
の偏差に基づき操作量を定めてフィードバック制御する
変速制御系において、 目標値と実際値との偏差を算出する偏差算出手段と、 セカンダリプーリの油圧サーボ装置とプライマリプーリ
の油圧サーボ装置のクランプ力差を算出するクランプ力
差算出部と、 偏差とクランプ力差に基づき偏差比例分を設定し、この
偏差比例分と偏差で偏差ゲインを決定する偏差ゲイン決
定手段と、 少なくとも偏差ゲインに応じ実際値の制御量を調整演算
して操作量を設定する操作量設定手段と、を備えること
を特徴とする無段変速機の制御装置。
(1) A primary pulley and a secondary pulley are provided so that the effective diameter of the pulley can be changed by changing the pulley groove width using a hydraulic servo device, and a belt is wound between the primary pulley and the secondary pulley, and at least the primary pulley In a continuously variable transmission that variably controls the pulley ratio by balancing the clamping force between the hydraulic servo device of the secondary pulley and the hydraulic servo device of the secondary pulley, a shift is performed in which the operation amount is determined based on the deviation between the target value and the actual value and feedback control is performed. In the control system, a deviation calculation means that calculates the deviation between the target value and the actual value, a clamp force difference calculation unit that calculates the clamp force difference between the hydraulic servo device of the secondary pulley and the hydraulic servo device of the primary pulley, and a device that calculates the difference between the deviation and the clamp. A deviation gain determining means that sets a proportional deviation based on the force difference and determines a deviation gain using the proportional deviation and the deviation, and an operation that adjusts and calculates the control amount of the actual value according to at least the deviation gain and sets the manipulated variable. 1. A control device for a continuously variable transmission, comprising: an amount setting means.
(2)クランプ力差は、セカンダリプーリの油圧サーボ
装置に供給されるセカンダリ油圧とプライマリプーリの
油圧サーボ装置に供給されるプライマリ油圧とを減算し
て算出することを特徴とする請求項(1)記載の無段変
速機の制御装置。
(2) Claim (1) characterized in that the clamping force difference is calculated by subtracting the secondary hydraulic pressure supplied to the hydraulic servo device of the secondary pulley and the primary hydraulic pressure supplied to the hydraulic servo device of the primary pulley. A control device for the continuously variable transmission described above.
(3)アップシフトではクランプ力差に応じて偏差比例
分を設定し、ダウンシフトではクランプ力差の逆数に応
じて偏差比例分を設定することを特徴とする請求項(1
)記載の無段変速機の制御装置。
(3) In an upshift, the proportional deviation is set according to the clamping force difference, and in a downshift, the proportional deviation is set according to the reciprocal of the clamping force difference.
) Control device for the continuously variable transmission.
JP25989390A 1990-09-28 1990-09-28 Control device for continuously variable transmission Pending JPH04140555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25989390A JPH04140555A (en) 1990-09-28 1990-09-28 Control device for continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25989390A JPH04140555A (en) 1990-09-28 1990-09-28 Control device for continuously variable transmission

Publications (1)

Publication Number Publication Date
JPH04140555A true JPH04140555A (en) 1992-05-14

Family

ID=17340404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25989390A Pending JPH04140555A (en) 1990-09-28 1990-09-28 Control device for continuously variable transmission

Country Status (1)

Country Link
JP (1) JPH04140555A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046526A (en) * 2004-08-05 2006-02-16 Toyota Central Res & Dev Lab Inc Continuously variable transmission control device
WO2013190954A1 (en) * 2012-06-20 2013-12-27 ジヤトコ株式会社 Continuously variable transmission and method for controlling same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046526A (en) * 2004-08-05 2006-02-16 Toyota Central Res & Dev Lab Inc Continuously variable transmission control device
JP4649907B2 (en) * 2004-08-05 2011-03-16 株式会社豊田中央研究所 Control device for continuously variable transmission
WO2013190954A1 (en) * 2012-06-20 2013-12-27 ジヤトコ株式会社 Continuously variable transmission and method for controlling same
JP5860535B2 (en) * 2012-06-20 2016-02-16 ジヤトコ株式会社 Continuously variable transmission and control method thereof
US9611933B2 (en) 2012-06-20 2017-04-04 Jatco Ltd Continuously variable transmission and control method therefor

Similar Documents

Publication Publication Date Title
JP3042684B2 (en) Shift control method for belt-type continuously variable transmission
JP2004092669A (en) Belt type continuously variable transmission
JPH0624895B2 (en) Line pressure control device for continuously variable transmission
JPH0564263B2 (en)
JPH0554588B2 (en)
JPH0564267B2 (en)
EP0364269B1 (en) Transmission ratio control system for a continuously variable transmission
JPS62122836A (en) Controller for continuously variable transmission
JPH0674017B2 (en) Controller for continuously variable transmission
JPH0564272B2 (en)
JPH0554582B2 (en)
KR100331239B1 (en) Speed change ratio controller for continuously variable transmission
JPS6277241A (en) Control device for continuously variable transmission
JPH0830529B2 (en) Controller for continuously variable transmission
JPH0564264B2 (en)
JP3944042B2 (en) Hydraulic pressure reduction rate limiting device for V-belt type continuously variable transmission
JPH10281272A (en) Gear ratio control device of continuously variable transmission
JPH04140555A (en) Control device for continuously variable transmission
JPH0564260B2 (en)
JP2900282B2 (en) Control device for continuously variable transmission
JPS624646A (en) Control device of continuously variable speed change gear
JPH0554587B2 (en)
JPH07117146B2 (en) Controller for continuously variable transmission
JP3334553B2 (en) Gear ratio control device for continuously variable transmission
JP2665955B2 (en) Transmission control device for continuously variable transmission