JPH04135640A - Oxidation catalyst - Google Patents

Oxidation catalyst

Info

Publication number
JPH04135640A
JPH04135640A JP2255159A JP25515990A JPH04135640A JP H04135640 A JPH04135640 A JP H04135640A JP 2255159 A JP2255159 A JP 2255159A JP 25515990 A JP25515990 A JP 25515990A JP H04135640 A JPH04135640 A JP H04135640A
Authority
JP
Japan
Prior art keywords
catalyst
oxidation catalyst
lanthanum manganite
oxidation
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2255159A
Other languages
Japanese (ja)
Other versions
JP2772130B2 (en
Inventor
Tetsuya Imai
哲也 今井
Kikuji Tsuneyoshi
紀久士 常吉
Akihiro Sawada
沢田 明宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2255159A priority Critical patent/JP2772130B2/en
Publication of JPH04135640A publication Critical patent/JPH04135640A/en
Application granted granted Critical
Publication of JP2772130B2 publication Critical patent/JP2772130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an oxidation catalyst excellent in heat resistance which is hardly sintered even at a high temp. by using a lanthanum manganite perovskite-type oxide of specified compsn. CONSTITUTION:A lanthanum manganite perovskite-type oxide expressed by La1-xAxMn1-alphaO3 (wherein 1<=x<=0.6, A is one or more kinds of elements selected from Ca, Sr and Ba, and alpha>0) is used as the oxidation catalyst for the combustion of gas such as hydrogen, carbon monoxide and hydrocarbon. This oxidation catalyst is prepared by compounding a small amt. of Mn2O3 and then calcined to cause Mn shortage. Thereby, the obtd. catalyst is excellent in heat resistance and is hardly sintered even at a high temp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化触媒、例えば水素、−酸化炭素、炭化水素
などのガスを燃焼させるための酸化触媒に関し、特に各
種可燃性ガスの中で最も酸化されにくいメタンを低温、
高いガス流量/触媒容積比の条件下で高効率で酸化する
ことができ、しかも1000℃以上の高温においても優
れた耐熱性を有する酸化触媒に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an oxidation catalyst, for example, an oxidation catalyst for burning gases such as hydrogen, carbon oxide, hydrocarbons, etc. Methane, which is difficult to oxidize, at low temperature,
The present invention relates to an oxidation catalyst that can perform oxidation with high efficiency under conditions of a high gas flow rate/catalyst volume ratio and has excellent heat resistance even at high temperatures of 1000° C. or higher.

〔従来の技術〕[Conventional technology]

一酸化炭素、水素、あるいは炭化水素等の可燃性ガスを
酸化触媒の存在下で燃焼させる接触燃焼法は主として自
動車排ガスの浄化を目的に研究され、多くの酸化触媒が
開発されている。
The catalytic combustion method, in which combustible gases such as carbon monoxide, hydrogen, or hydrocarbons are burned in the presence of an oxidation catalyst, has been studied primarily for the purpose of purifying automobile exhaust gas, and many oxidation catalysts have been developed.

その主なものは白金のような貴金属、銅や鉄のような卑
金属の酸化物を活性成分とし、各活性成分を粒状やハニ
カム状等に成形したり、あるいはアルミナやチタニア等
の担体に直接担持させたものである。
The main active ingredients are oxides of noble metals such as platinum or base metals such as copper and iron, and each active ingredient is formed into granules or honeycomb shapes, or directly supported on a carrier such as alumina or titania. This is what I did.

一方、最近では低NOX燃焼法開発の一環として、プロ
パン、低熱量ガス、オイル等を燃焼させる酸化触媒が研
究されている。この触媒はハニカム型のコージェライト
やムライト等のセラミックスを基材とし、この基材にr
  A120s(ガンマアルミナ)  ジルコニア、マ
グネシア、α−^120!  (アルファアルミナ)等
の担体をつオシュコートし、活性成分としてPt、 P
t+Pd。
On the other hand, recently, as part of the development of low NOx combustion methods, oxidation catalysts for burning propane, low calorific value gas, oil, etc. have been researched. This catalyst uses honeycomb-shaped ceramics such as cordierite or mullite as a base material, and this base material has r
A120s (gamma alumina) Zirconia, Magnesia, α-^120! (alpha alumina), etc., and Pt, P as active ingredients.
t+Pd.

Pd、 Pt+Rh等の貴金属、あるいはコバルト、ニ
ッケル、マンガン等の卑金属の酸化物を担持させたもの
である。
It supports oxides of noble metals such as Pd, Pt+Rh, or base metals such as cobalt, nickel, and manganese.

上記のような従来の酸化触媒は、−酸化炭素やプロパン
に対しては高活性を示すものの、より安定なメタンに対
してはいずれも性能が悪く、現在のところメタンに対し
てはその酸化性能において多くの問題点を残している。
Although the conventional oxidation catalysts mentioned above show high activity against carbon oxide and propane, they have poor performance against methane, which is more stable, and their oxidation performance against methane is currently limited. Many problems remain.

また最近では1000℃前後でも耐熱性がある触媒とし
て、アルミニウムとランタンの複合酸化物を主成分とす
る担体に、触媒活性成分を担持した触媒(特開昭60−
12132号公報)又はアルカリ土類金属元素とアルミ
ニウムの複合酸化物を主成分とする触媒(特開昭62−
153158号公報)などが提案されている。
Recently, as a catalyst that is heat resistant even at around 1000 degrees Celsius, a catalyst in which a catalytically active component is supported on a carrier mainly composed of a composite oxide of aluminum and lanthanum (Japanese Unexamined Patent Application Publication No. 1989-1999-1) has been developed.
12132) or a catalyst whose main component is a composite oxide of an alkaline earth metal element and aluminum (Japanese Unexamined Patent Publication No. 12132-
153158) and the like have been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の触媒は1000℃以上で使用すると担体又は触媒
活性成分が熱によりシンタリングし活性が急激に低下す
るため実用上使用することができない。
When conventional catalysts are used at temperatures above 1000° C., the carrier or catalytic active components are sintered by heat, resulting in a rapid decrease in activity, making them practically unusable.

本発明は上記技術水準に鑑み、高温下でもシンタリング
しにくい耐熱性の優れた酸化触媒を提供しようとするも
のである。
In view of the above-mentioned state of the art, the present invention aims to provide an oxidation catalyst with excellent heat resistance that is resistant to sintering even at high temperatures.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は (1)  Lad−xAxMn1−g [+3  (0
≦x≦0.6、A : Ca。
The present invention provides (1) Lad-xAxMn1-g [+3 (0
≦x≦0.6, A: Ca.

Sr、 Baの一種以上、α>0)で表わされるランタ
ンマンガナイト系ペロブスカイト型酸化物からなること
を特徴とする酸化触媒。
An oxidation catalyst comprising a lanthanum manganite perovskite oxide represented by one or more of Sr and Ba (α>0).

(2)  コージェライト、ムライト又はMgO,Al
2O3゜TlO2よりなる結晶性複合酸化物のうちから
選択されるハニカム状耐熱基材に上記(1)項のランタ
ンマンガナイト系ペロブスカイト型酸化物をコーティン
グしてなることを特徴とする酸化触媒。
(2) Cordierite, mullite or MgO, Al
An oxidation catalyst comprising a honeycomb-shaped heat-resistant base material selected from crystalline composite oxides consisting of 2O3°TlO2 and coated with the lanthanum manganite perovskite oxide of item (1) above.

である。It is.

ペロブスカイト型酸化物はABO3(A、  Blt金
属元素)で表わされる。例えばLaMnO3の場合、L
aをムライト、MnBサイト元素という。従来の△ ペロブスカイト型酸化物は例えばランタンマンガナイト
系(La−Mn系)ではムライトのLaの一部をCa、
 Sr又はBaで置換したLad−xAJn03の組成
のものが多用されている。
Perovskite type oxide is represented by ABO3 (A, Blt metal element). For example, in the case of LaMnO3, L
a is called mullite, an MnB site element. Conventional △ perovskite type oxides, for example, in lanthanum manganite type (La-Mn type), a part of La in mullite is replaced with Ca,
Lad-xAJn03 compositions substituted with Sr or Ba are often used.

本発明者らはランタンマンガナイト系のペロブスカイト
型酸化物において、Mn欠損を生じさせることによって
熱によるシンタリングが防止でき、高温でも優れた酸化
活性を有することを見出して本発明を完成したものであ
る。
The present inventors completed the present invention by discovering that sintering due to heat can be prevented by creating Mn defects in a lanthanum manganite-based perovskite oxide, and that it has excellent oxidation activity even at high temperatures. be.

〔作用〕[Effect]

本発明にいうLad−xAJr++ −cx 03  
(0≦x≦0.6、A : Ca、 Sr、 Baの一
種以上、α>0)で表わされるランタンマンガナイト系
ペロブスカイト型酸化物とは、Mn欠損を生じさせるこ
とで熱によるシンタリングを防止しているもので下記方
法で製造される。
Lad-xAJr++ -cx 03 according to the present invention
A lanthanum manganite-based perovskite oxide expressed by (0≦x≦0.6, A: one or more of Ca, Sr, Ba, α>0) is a lanthanum manganite-based perovskite oxide that resists sintering due to heat by creating Mn defects. It is manufactured by the following method.

■ Lad−xAxMr++−αO3の組成になるよう
に、La化合物、[a及び/又はSr及び/又はBa化
合物及びMn化合物を配合してか焼する。
(2) La compound, [a and/or Sr and/or Ba compound, and Mn compound are blended and calcined so that the composition becomes Lad-xAxMr++-αO3.

■ Lad−xAJno3の組成になるように、La化
合物、Ca、 Sr及び/又はBa化合物、及びMn化
合物を配合した上に、さらに少量のCa及び/又はSr
及び/又はBa化合物を配合してか焼する。
■ In addition to blending a La compound, Ca, Sr and/or Ba compound, and Mn compound to obtain the composition of Lad-xAJno3, a small amount of Ca and/or Sr is added.
and/or a Ba compound and calcined.

なお、上記のMgO,Al2O3,Ti0zよりなる結
晶性複合酸化物とは、マグネシア、炭酸マグネシウム、
水酸化マグネシウムのようなMg化合物、アルミナ、水
酸化アルミニウムのようなAI化合物及びアナターゼ又
はルチル型酸化チタンのようなTi化合物の混合物を、
1300〜1700℃で焼成して結晶化することによっ
て得られた低膨張性のものを意味する。
In addition, the above-mentioned crystalline composite oxide consisting of MgO, Al2O3, and TiOz includes magnesia, magnesium carbonate,
A mixture of Mg compounds such as magnesium hydroxide, alumina, AI compounds such as aluminum hydroxide, and Ti compounds such as anatase or rutile titanium oxide,
It means a low-expansion product obtained by crystallizing by firing at 1300 to 1700°C.

Lad−XAxMnO+  (0≦x≦0.6、A=C
a及び/又はSr及び/又はBa)は、例えばLa2O
3,CaCO3及び/又は5rCOs及び/又はBaC
O3及びMn2Lを各元素が目標組成となるように配合
してか焼することによって製造するが、か焼温度を13
50℃ともすれば、か焼物はるつぼの中で固結した状態
となる。ところがLad−++AxMn+−αo3(α
>0)となるようにMnzO3を前記より少く配合して
か焼すると、全く固結することなしにか焼物を得ること
ができる。
Lad-XAxMnO+ (0≦x≦0.6, A=C
a and/or Sr and/or Ba) is, for example, La2O
3, CaCO3 and/or 5rCOs and/or BaC
It is manufactured by blending O3 and Mn2L so that each element has the target composition and calcination, but the calcination temperature is set to 13
If the temperature is 50°C, the calcined product becomes solidified in the crucible. However, Lad−++AxMn+−αo3(α
> 0), a calcined product can be obtained without caking at all.

更にLa2D、 、 CaCO3及びMn2O3をL 
a + −X Ca x M n03の組成に合わせて
、またLa20a 、 5rCO+及びMn2O3をL
a+−xsrJnlLの組成に合わせて配合し、これら
に各々微量のBanを加えてか焼すると、これらも固結
することなしにか焼物を得ることができる。CaCLや
5rCLを余分に加えても同様である。
Furthermore, La2D, , CaCO3 and Mn2O3 are
In accordance with the composition of a + -X Ca x Mn03, La20a, 5rCO+ and Mn2O3 were also added to L
If they are mixed according to the composition of a+-xsrJnlL, and a trace amount of Ban is added to each of these and calcined, a calcined product can be obtained without caking. The same effect can be obtained even if CaCL or 5rCL is added in excess.

コージェライト、ムライト又はMgO,Al2O3゜T
lO2よりなる結晶性複合酸化物のうちから選択される
ハニカム状耐熱基材に上記ランタンマンガナイト系ペロ
ブスカイト型酸化物を担持する方法としては、ペロブス
カイト型複合酸化物粉末のスラリー中に担体を浸漬して
ウォッシュコートし、500℃以上で焼付けることによ
り一般的になされる。
Cordierite, mullite or MgO, Al2O3゜T
As a method for supporting the above-mentioned lanthanum manganite perovskite type oxide on a honeycomb-shaped heat-resistant base material selected from crystalline composite oxides consisting of 1O2, the support is immersed in a slurry of perovskite type composite oxide powder. This is generally done by washcoating at a temperature of 500°C or higher and baking at a temperature of 500°C or higher.

本発明の触媒は、水素、−酸化炭素、メタンなどの炭化
水素ガス、含酸素化合物などの可燃性ガスの接触燃焼に
用いられ、温度100〜1400℃、ガス空塔速度(G
H3V)102〜106h−’の条件で使用される。
The catalyst of the present invention is used for catalytic combustion of hydrocarbon gases such as hydrogen, carbon oxide, and methane, and combustible gases such as oxygen-containing compounds, at a temperature of 100 to 1400°C, gas superficial velocity (G
H3V) used under conditions of 102 to 106h-'.

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

〔実施例1〕 LaJ3.5rCL 、 CaCO3及びMn2O3の
粉末を原料として表1に示す配合で混合し、1350℃
で5時間のか焼を行い、表1に示す組成のMn欠損タイ
プのランタンマンガナイト系ペロブスカイト型酸化物の
触媒1〜4及び比較触媒としてMn欠損のない比較触媒
を得た。
[Example 1] Powders of LaJ3.5rCL, CaCO3 and Mn2O3 were mixed as raw materials in the proportions shown in Table 1, and heated at 1350°C.
Calcining was performed for 5 hours to obtain catalysts 1 to 4 of lanthanum manganite-based perovskite oxides of the Mn-deficient type having the compositions shown in Table 1, and a comparative catalyst without Mn deficiency as a comparative catalyst.

これらの触媒をメタン1%(残部空気)含有ガスを用い
、ガス空塔速度100.000h反応温度1000℃で
活性評価を行った。活性評価試験10時間及び1000
時間後の転化率を表1に示す。
The activity of these catalysts was evaluated using a gas containing 1% methane (the balance being air) at a superficial gas velocity of 100,000 h and a reaction temperature of 1000°C. Activity evaluation test 10 hours and 1000
The conversion rate after time is shown in Table 1.

表 〔実施例2〕 実施例1の比較触媒の配合にSrCO3を0.88g(
触媒5)、又はCaCO3を0.6g(触媒6)又はB
aOを0.91g(触媒7)追加し、1350℃で5時
間か焼を行いMn欠損タイプのランタンマンガナイト系
ペロブスカイト型酸化物の触媒5〜7を得た。
Table [Example 2] 0.88g of SrCO3 (
Catalyst 5) or 0.6 g of CaCO3 (catalyst 6) or B
0.91 g of aO (catalyst 7) was added and calcined at 1350° C. for 5 hours to obtain Mn-deficient lanthanum manganite perovskite oxide catalysts 5 to 7.

これらの触媒を実施例1と同じ方法で試験を行った結果
を表2に示す。
These catalysts were tested in the same manner as in Example 1, and the results are shown in Table 2.

表  2 〔実施例3〕 SrCO3,[:aCDs 、 BaC0+のいずれか
乙しa (DH) 3及びMnJ3の粉末を原料として
所定の比率になるように混合し、1000℃で24時間
のか焼を行い、表3に示す組成のMn欠損タイプのラン
タンマンガナイト系ペロブスカイト型酸化物の触媒8〜
12を得た。
Table 2 [Example 3] SrCO3, [:aCDs, BaC0+, a (DH)3 and MnJ3 powders were mixed as raw materials in a predetermined ratio and calcined at 1000°C for 24 hours. , Mn-deficient lanthanum manganite perovskite oxide catalyst 8 with the composition shown in Table 3
I got 12.

これらの触媒を実施例1と同じ方法で試験を行った結果
を表3に示す。
These catalysts were tested in the same manner as in Example 1, and the results are shown in Table 3.

表  3 〔実施例4〕 実施例3の触媒10を用い、水素、−酸化炭素、メタノ
ール又はプロパンを含有する空気を原料として反応温度
300℃、ガス空塔速度1000h−’の条件で活性評
価試験を行った結果、いずれの原料とも転化率は100
%であった。
Table 3 [Example 4] Activity evaluation test using catalyst 10 of Example 3 using air containing hydrogen, -carbon oxide, methanol or propane as a raw material at a reaction temperature of 300°C and a superficial gas velocity of 1000h-' As a result, the conversion rate was 100 for all raw materials.
%Met.

〔実施例5〕 直径1インチで1平方インチ当たり200個の開口部(
200セル)を有するハニカム状のコージェライト(2
MgO・2AI203・5SI02)基材又はMgO、
A12[]3 、 TiO2よりなる結晶性複合酸化物
(MgD・4A1203・6TiO−)基材を用い、実
施例3の触媒10の粉末を上記基材にウォッシュコート
し、1200℃で焼付けて基材100重量部当たり触媒
10を20重量部コートした触媒20.21を得た。
[Example 5] 200 openings per square inch with a diameter of 1 inch (
Honeycomb-like cordierite (200 cells) with
MgO・2AI203・5SI02) base material or MgO,
Using a crystalline composite oxide (MgD・4A1203・6TiO−) base material consisting of A12[]3 and TiO2, the powder of catalyst 10 of Example 3 was wash coated on the base material, and baked at 1200°C to form the base material. A catalyst 20.21 coated with 20 parts by weight of catalyst 10 per 100 parts by weight was obtained.

これらの触媒をメタン1%含有空気を用いガス空塔速度
200,000h−’、触媒層入口ガス温度700℃の
条件で活性評価を行い表5に示す。表5には、1000
時間活性評価試験後の結果も併記する。
The activity of these catalysts was evaluated using air containing 1% methane at a superficial gas velocity of 200,000 h-' and a gas temperature at the inlet of the catalyst layer of 700 DEG C. The results are shown in Table 5. Table 5 shows 1000
The results after the time activity evaluation test are also listed.

表  5 〔発明の効果〕 以上詳述したように本発明によれば活性が高くかつ耐熱
性に優れた酸化触媒を提供できる。
Table 5 [Effects of the Invention] As detailed above, according to the present invention, an oxidation catalyst with high activity and excellent heat resistance can be provided.

Akira

Claims (2)

【特許請求の範囲】[Claims] (1)La_1_−_xA_xMn_1_−_αO_3
(0≦x≦0.6、A:Ca、Sr、Baの一種以上、
α>0)で表わされるランタンマンガナイト系ペロブス
カイト型酸化物からなることを特徴とする酸化触媒。
(1) La_1_-_xA_xMn_1_-_αO_3
(0≦x≦0.6, A: one or more of Ca, Sr, Ba,
An oxidation catalyst comprising a lanthanum manganite perovskite oxide represented by α>0).
(2)コージェライト、ムライト又はMgO、Al_2
O_3、TiO_2よりなる結晶性複合酸化物のうちか
ら選択されるハニカム状耐熱基材に特許請求の範囲第(
1)項のランタンマンガナイト系ペロブスカイト型酸化
物をコーティングしてなることを特徴とする酸化触媒。
(2) Cordierite, mullite or MgO, Al_2
A honeycomb-shaped heat-resistant base material selected from crystalline composite oxides consisting of O_3 and TiO_2 is
An oxidation catalyst characterized by being coated with the lanthanum manganite perovskite oxide of item 1).
JP2255159A 1990-09-27 1990-09-27 Oxidation catalyst Expired - Fee Related JP2772130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2255159A JP2772130B2 (en) 1990-09-27 1990-09-27 Oxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2255159A JP2772130B2 (en) 1990-09-27 1990-09-27 Oxidation catalyst

Publications (2)

Publication Number Publication Date
JPH04135640A true JPH04135640A (en) 1992-05-11
JP2772130B2 JP2772130B2 (en) 1998-07-02

Family

ID=17274884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2255159A Expired - Fee Related JP2772130B2 (en) 1990-09-27 1990-09-27 Oxidation catalyst

Country Status (1)

Country Link
JP (1) JP2772130B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443807A (en) * 1990-07-26 1995-08-22 Peking University Conversion of carbon monoxide utilizing a perovskite-type rare earth complex oxide catalyst
US5882616A (en) * 1995-06-07 1999-03-16 Megtec Systems, Inc. Catalyst and method for oxidizing oxygen-containing organic compounds in waste gas
CN100406542C (en) * 2004-11-23 2008-07-30 北京化工大学 Metal carrier catalyst for methane catalyzed burning and production thereof
JP2010207754A (en) * 2009-03-11 2010-09-24 Nissan Motor Co Ltd Oxidation catalyst and particulate filter
CN103172364A (en) * 2011-12-22 2013-06-26 深圳市大富科技股份有限公司 Preparation method of microwave dielectric ceramic material
CN105056939A (en) * 2015-08-17 2015-11-18 内蒙古大学 Preparation method of doping type rare earth double perovskite catalyst for methane combustion

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732499B (en) * 2016-12-12 2019-12-17 北京三聚环保新材料股份有限公司 Preparation method of alumina membrane layer carrier of integral methane combustion catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483535A (en) * 1990-07-26 1992-03-17 Univ Beijing Rare earth element composite oxide combustion catalyst of perovskite type

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483535A (en) * 1990-07-26 1992-03-17 Univ Beijing Rare earth element composite oxide combustion catalyst of perovskite type

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443807A (en) * 1990-07-26 1995-08-22 Peking University Conversion of carbon monoxide utilizing a perovskite-type rare earth complex oxide catalyst
US5882616A (en) * 1995-06-07 1999-03-16 Megtec Systems, Inc. Catalyst and method for oxidizing oxygen-containing organic compounds in waste gas
CN100406542C (en) * 2004-11-23 2008-07-30 北京化工大学 Metal carrier catalyst for methane catalyzed burning and production thereof
JP2010207754A (en) * 2009-03-11 2010-09-24 Nissan Motor Co Ltd Oxidation catalyst and particulate filter
CN103172364A (en) * 2011-12-22 2013-06-26 深圳市大富科技股份有限公司 Preparation method of microwave dielectric ceramic material
CN105056939A (en) * 2015-08-17 2015-11-18 内蒙古大学 Preparation method of doping type rare earth double perovskite catalyst for methane combustion

Also Published As

Publication number Publication date
JP2772130B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
JPH01168343A (en) Exhaust gas purifying catalyst
JPH04135640A (en) Oxidation catalyst
JP2772129B2 (en) Oxidation catalyst
JPH0820054B2 (en) Catalytic combustion method of combustible gas
JPS63267804A (en) Oxidizing catalyst for high temperature service
JPH04166228A (en) Oxidation catalyst
JPH0729055B2 (en) Catalyst for oxidizing carbon-containing compound and method for producing the same
JPH04150944A (en) Oxidizing catalyst
JPH04349935A (en) Oxidation catalyst
JPH04135641A (en) Oxidation catalyst
WO2022097330A1 (en) Exhaust gas purifying catalyst and exhaust gas treatment apparatus
JPH04166227A (en) Oxidation catalyst
JPH04330940A (en) Oxidation catalyst
JPH06205973A (en) Oxidation catalyst
JP3219447B2 (en) Oxidation catalyst
JPH06304476A (en) Oxidation catalyst
JPH06304477A (en) Oxidation catalyst
JPH0949609A (en) Burning method for combustible gas
JPH05277367A (en) Oxidation catalyst
JPH04330941A (en) Oxidation catalyst
JPH04354537A (en) Oxidation catalyst
JPH04349937A (en) Oxidation catalyst
JP3089042B2 (en) Oxidation catalyst for combustion
JPH04358538A (en) Oxidizing catalyst
JPH05277365A (en) Oxidation catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees