JPH04135551A - Optical three-dimensional image observing device - Google Patents

Optical three-dimensional image observing device

Info

Publication number
JPH04135551A
JPH04135551A JP25991590A JP25991590A JPH04135551A JP H04135551 A JPH04135551 A JP H04135551A JP 25991590 A JP25991590 A JP 25991590A JP 25991590 A JP25991590 A JP 25991590A JP H04135551 A JPH04135551 A JP H04135551A
Authority
JP
Japan
Prior art keywords
optical
light
dimensional image
fiber bundle
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25991590A
Other languages
Japanese (ja)
Inventor
Mamoru Kaneko
守 金子
Kuniaki Kami
邦彰 上
Shoichi Gotanda
正一 五反田
Shuichi Takayama
修一 高山
Ichiro Nakamura
一郎 中村
Kazunari Nakamura
一成 中村
Eiichi Fuse
栄一 布施
Susumu Takahashi
進 高橋
Yoshihiro Kosaka
小坂 芳広
Hiromasa Suzuki
鈴木 博雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP25991590A priority Critical patent/JPH04135551A/en
Priority to US07/700,225 priority patent/US5305759A/en
Publication of JPH04135551A publication Critical patent/JPH04135551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To exactly and easily grasp the three-dimensional structure of the inside of a body to be examined by processing a reflected light pulse which passes through a light opening/closing means and detecting a tomographic image of a measuring object, and constituting a three-dimensional image of the measuring object from this tomographic image. CONSTITUTION:By a pulse laser 6 in an optical three-dimensional image processor 20, light of scores of picoseconds is generated from an Nd:YAG laser and radiated to a pigment in a pigment laser 8 and excites it, and from this pigment laser 8, a light pulse of extremely short time width of several picoseconds is emitted. Subsequently, an opening timing of a car shutter 13 is set, and reflected light intensity is analyzed by sending a reflected light pulse from each point in a tissue guided by an optical fiber bundle 4 to an image pickup device 18, by which an optical tomographic image of a lesion 52 corresponding to an irradiation plane of the light pulse by the optical fiber bundle 4 is detected at every opening timing of the car shutter 13. By processing this optical tomographic image by a signal processor 19, a three-dimensional image containing a blood vessel, etc., in the inside of the tissue of the lesion 52 is obtained, and displayed on a monitor 30.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は計測対象の光断層像から三次元像を構成する光
三次元像観察装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an optical three-dimensional image observation device that constructs a three-dimensional image from an optical tomographic image of a measurement target.

[従来技術] 近年、診療における画像利用が普及し、被検体の内部情
報を無侵襲的、非接触的に計測する技術の重要性がます
ます高まっている。
[Prior Art] In recent years, the use of images in medical treatment has become widespread, and the importance of technology for measuring internal information of a subject in a non-invasive and non-contact manner is increasing.

従来、生体などの被検体内部の情報の無侵襲的、非接触
的な計測は、主としてX線によって行われていたが、こ
のX線の使用は、放射線被爆の問題や生体機能の画像化
が困難という問題があり、超音波内視鏡による体腔内組
織の透視が行われるようになった。
Conventionally, non-invasive, non-contact measurement of information inside a subject such as a living body has been mainly performed using X-rays, but the use of X-rays poses problems such as radiation exposure and the imaging of biological functions. Due to this problem, fluoroscopy of the internal tissues of body cavities using an ultrasound endoscope has been performed.

しかしながら、前記超音波内視鏡は、空間分解能があま
り高くなく、形態以外の生理的組成などの情報を知るこ
とはできない、さらに前記超音波内視鏡の使用に際して
は、水などの媒体が必要であるため、被検体の観察に際
しての処置が繁雑であるという問題がある。
However, the ultrasonic endoscope does not have very high spatial resolution and cannot obtain information such as physiological composition other than morphology, and furthermore, when using the ultrasonic endoscope, a medium such as water is required. Therefore, there is a problem that the procedure for observing the subject is complicated.

このため、最近では、光を用いて被検体の内部情報を可
視化する技術が種々提案されており、例えば、特開昭6
1−85417号公報に、その先行技術が開示されてい
る。
For this reason, various techniques for visualizing internal information of a subject using light have been proposed recently.
The prior art is disclosed in Japanese Patent No. 1-85417.

[発明が解決しようとする課題] しかしながら、生体などの被検体の内部を詳細に調べる
場合、断層像のみから組織内部の構造を正確に把握する
ことは容易でなく、内部構造の解析のために多数の断層
像が必要となって多大な労力を必要とする。さらに、血
管内の酸素飽和度などの代謝機能に係わる診断において
も、断層像のみでは平面的な情報しか得られず、解析に
長時間を要することになる。
[Problems to be Solved by the Invention] However, when examining the inside of a subject such as a living body in detail, it is not easy to accurately understand the internal structure of the tissue from only tomographic images. A large number of tomographic images are required, which requires a great deal of labor. Furthermore, even in diagnosis related to metabolic functions such as intravascular oxygen saturation, only two-dimensional information can be obtained from tomographic images alone, and analysis requires a long time.

本発明は上記事情に鑑みてなされたものであり、被検体
内部の三次元構造を正確かつ容易に把握することができ
、さらに、構造的な計測のみならず、機能的な計測をも
可能とする光三次元像観察装置を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and enables accurate and easy understanding of the three-dimensional structure inside a subject, and further enables not only structural measurements but also functional measurements. The purpose of the present invention is to provide an optical three-dimensional image observation device.

[課題を解決するための手段] 本発明の光三次元像II察装置は、計測用の光パルスを
発生する光パルス発生手段と、前記光パルス発生手段で
発生した光パルスを計測対象に導くとともに、前記計測
対象の内部で反射した反射光パルスを導く光ファイバ束
と、前記光パルスを前記光ファイバ束に均一に拡散して
入射する光入射手段と、前記反射光パルスを任意の時間
に通過させる光開閉手段と、前記光開閉手段を通過した
反射光パルスを処理して前記計測対象の断層像を検出し
、この断層像から前記計測対象の三次元像を構成する画
像処理手段とを備えたものである。
[Means for Solving the Problems] The optical three-dimensional image II detection device of the present invention includes a light pulse generation means for generating a light pulse for measurement, and a light pulse generated by the light pulse generation means for guiding the light pulse to a measurement target. Additionally, an optical fiber bundle that guides the reflected light pulses reflected inside the measurement object, a light input means that uniformly diffuses and inputs the light pulses into the optical fiber bundle, and a light input means that inputs the reflected light pulses at an arbitrary time. a light opening/closing means for passing light; and an image processing means for processing the reflected light pulses that have passed through the light opening/closing means to detect a tomographic image of the measurement target and constructing a three-dimensional image of the measurement target from this tomographic image. It is prepared.

[作 用] 本発明では、光パルス発生手段で発生された光パルスは
、光入射手段により光ファイバ束に均一に拡散されて入
射され、この光ファイバ束により計測対象に導かれる。
[Function] In the present invention, the light pulses generated by the light pulse generation means are uniformly diffused and incident on the optical fiber bundle by the light incidence means, and guided to the measurement target by the optical fiber bundle.

そして、前記計測対象の内部で反射された反射光パルス
は、前記光ファイバ束によって導かれ、任意の時間で光
開閉手段を通過させられて画像処理手段にて処理される
。その結果、前記計測対象の断層像が検出され、この断
層像がら前記計測対象の三次元像が構成される。
The reflected light pulse reflected inside the object to be measured is guided by the optical fiber bundle, passed through the optical opening/closing means at an arbitrary time, and processed by the image processing means. As a result, a tomographic image of the measurement target is detected, and a three-dimensional image of the measurement target is constructed from this tomographic image.

[実施例] 以下、図面を参照して本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained with reference to the drawings.

図面は本発明の一実施例を示し、第1図は光三次元像観
察装置のシステム構成図、第2図は光三次元像観察装置
による体腔内の観察例を示す説明図、第3図は反射光の
時間と組織の深さとの関係を示す説明図、第4図は反射
光強度の時間分解波形を示す説明図、第5図は光開閉の
制御タイミングを示すタイムチャート、第6図は測定結
果を示す説明図、第7図は散乱光抑制のための内視鏡先
端の構成を示す説明図、第8図は非線形光学素子による
光間閉動作の説明図、第9図は観察領域広角化のための
光ファイバ束を示す説明図、第10図は観察領域広角化
のためのレンズアレーを示す説明図、第11図はレンズ
アレーの正面図である。
The drawings show one embodiment of the present invention, and FIG. 1 is a system configuration diagram of an optical three-dimensional image observation device, FIG. 2 is an explanatory diagram showing an example of observation inside a body cavity by the optical three-dimensional image observation device, and FIG. 3 is an explanatory diagram showing the relationship between the time of reflected light and the tissue depth, Fig. 4 is an explanatory diagram showing the time-resolved waveform of reflected light intensity, Fig. 5 is a time chart showing the control timing of light opening/closing, and Fig. 6 is an explanatory diagram showing the measurement results, Fig. 7 is an explanatory diagram showing the configuration of the endoscope tip for suppressing scattered light, Fig. 8 is an explanatory diagram of the optical closing operation by the nonlinear optical element, and Fig. 9 is an illustration of observation. FIG. 10 is an explanatory view showing an optical fiber bundle for widening the viewing area, FIG. 10 is an explanatory view showing a lens array for widening the viewing area, and FIG. 11 is a front view of the lens array.

第1図に示すように、光三次元像観察装置は、内視鏡1
と、この内視鏡1が接続される光三次元像処理装置20
と、この光三次元像処理装!20に接続されるモニタ3
0とを備えている。
As shown in FIG. 1, the optical three-dimensional image observation device includes an endoscope 1
and an optical three-dimensional image processing device 20 to which this endoscope 1 is connected.
And this optical three-dimensional image processing system! Monitor 3 connected to 20
0.

前記内視鏡1は、被検体内部に挿入される細長で可視性
を有する挿入部に、被検体内部の表面部観察のためのラ
イトガイド2及びイメージガイド3と、前記光三次元像
処理装置20に接続される光ファイバ束4とが挿通され
ている。
The endoscope 1 includes a light guide 2 and an image guide 3 for observing the surface inside the subject, and the optical three-dimensional image processing device, in an elongated and visible insertion section that is inserted into the subject. An optical fiber bundle 4 connected to 20 is inserted therethrough.

前記ライトガイド2は、光源5から図示しない集光レン
ズを介して入射される照明光を伝送し、前記挿入部先端
に装着された図示しない配光レンズを介して観察部位に
照射するようになっている。
The light guide 2 transmits illumination light incident from the light source 5 through a condensing lens (not shown), and illuminates the observation site through a light distribution lens (not shown) attached to the distal end of the insertion section. ing.

また、前記イメージガイド3は、前記挿入部先端の図示
しない対物レンズによって結像された観察部位の光学像
を導き、後端面に設けられた図示しない接眼レンズを介
して肉眼観察が可能なようになっている。
Further, the image guide 3 guides an optical image of the observation site formed by an objective lens (not shown) at the tip of the insertion section, and enables observation with the naked eye via an eyepiece (not shown) provided at the rear end surface. It has become.

また、前記光三次元像処理装置2oは、光パルス発生手
段としてのパルスレーザ−6を備え、このパルスレーザ
−6は、Nd : YAGレーザ−7と色素レーザー8
とから構成されている。前記Nd:YAGレーザ−7か
らの出射光は、前記色素レーザー8内の色素(例えば、
Rhodamine  G)に照射され、この色素レー
ザー8がち出射される光は、ミラー9で反射されてビー
ムスプリッタ10により2つに分離されるようになって
いる。
Further, the optical three-dimensional image processing device 2o is equipped with a pulse laser 6 as a light pulse generating means, and this pulse laser 6 is composed of a Nd:YAG laser 7 and a dye laser 8.
It is composed of. The light emitted from the Nd:YAG laser 7 is emitted from the dye in the dye laser 8 (for example,
The light emitted from the dye laser 8 is reflected by a mirror 9 and separated into two by a beam splitter 10.

前記ビームスプリッタ10を透過した光は、ビームスプ
リッタ11で反射された後、光入射手段としてのビーム
エクスパンダ12により、細いビーム光から前記光ファ
イバ束4と同程度の径の平行光に拡大される。そして、
前記光ファイバ束4に均一に拡散されて入射され、この
光ファイバ束4を経て患部40などの計測対象に照射さ
れるようになっている。
The light transmitted through the beam splitter 10 is reflected by the beam splitter 11, and then expanded from a thin beam into parallel light having a diameter comparable to that of the optical fiber bundle 4 by a beam expander 12 serving as a light input means. Ru. and,
The light is uniformly diffused and incident on the optical fiber bundle 4, and is irradiated onto a measurement target such as the affected area 40 through the optical fiber bundle 4.

この患部40にて反射された反射光は、前記光ファイバ
束4によって導かれ、この光ファイバ束4から前記ビー
ムエクスパンダ12を経てビームスプリッタ11を透過
し、光開閉手段としてのカー (K e r r )シ
ャッタ13に入射されるようになっている。
The reflected light reflected at the affected area 40 is guided by the optical fiber bundle 4, passes through the beam expander 12, passes through the beam splitter 11, and is transmitted to a car (K e r r ) The light is incident on the shutter 13.

一方、前記色素レーザー8から出射され、前記ビームス
プリッタ10で反射された光は、ビームスプリッタ14
を透過して遅延ミラー装置15のミラー15aにより反
射される。さらに、このミラー15 aで反射された光
は、前記ビームスプリッタ14で反射されてフォトダイ
オードなどからなる駆動装置16に入射され、この駆動
装置16からの電気信号により前記カーシャッタ13が
開かれるようになっている。
On the other hand, the light emitted from the dye laser 8 and reflected by the beam splitter 10 is transmitted to the beam splitter 14.
and is reflected by the mirror 15a of the delay mirror device 15. Further, the light reflected by the mirror 15a is reflected by the beam splitter 14 and enters a drive device 16 consisting of a photodiode or the like, and an electric signal from the drive device 16 causes the car shutter 13 to be opened. It has become.

前記遅延ミラー装置15は、前記ミラー15aが固定さ
れる可動ステージ15bを備え、この可動ステージ15
bがステップモータ15cにより駆動されて先細方向に
移動することにより、前記駆動装置16への光路長を変
化させるようになっている。
The delay mirror device 15 includes a movable stage 15b to which the mirror 15a is fixed.
b is driven by a step motor 15c to move in the tapering direction, thereby changing the optical path length to the drive device 16.

そして、前記カーシャッタ13を通過した光は、ビーム
エクスパンダ17を経て、映像増倍管とSITカメラと
を組合わせな高感度の撮像装置18に入射され、この撮
像装置t18からの出力信号が信号処理装置19にて処
理される。
The light that has passed through the car shutter 13 passes through a beam expander 17 and enters a highly sensitive imaging device 18, which is a combination of an image intensifier and an SIT camera, and the output signal from this imaging device t18 is The signal is processed by the signal processing device 19.

画像処理手段としての前記撮像装置18及び前記信号処
理装置19では、前記信号処理装置19にて前記遅延ミ
ラー装置t15のステップモータ15cを制御するとと
もに、前記撮像装置18によって検出された計測部位の
断層像に基づいて三次元像を構成し、前記モニタ30に
表示する。
In the imaging device 18 and the signal processing device 19 as image processing means, the signal processing device 19 controls the step motor 15c of the delay mirror device t15, and the tomographic image of the measurement region detected by the imaging device 18 is controlled by the signal processing device 19. A three-dimensional image is constructed based on the image and displayed on the monitor 30.

次に、この先玉次元像観察装置による被検体内部の三次
元像観察について説明する。
Next, three-dimensional image observation of the inside of the subject using this pre-ball dimensional image observation device will be explained.

第2図に示すように、例えば、人体50の臓器51にお
ける三次元像を観察する場合、まず、内視鏡1の挿入部
を人体50の体腔内部に挿入し、先端部を癌や潰瘍など
の患部52に対向させる。
As shown in FIG. 2, for example, when observing a three-dimensional image of an organ 51 of a human body 50, the insertion section of the endoscope 1 is first inserted into the body cavity of the human body 50, and the tip of the endoscope 1 is inserted into the body cavity of the human body 50. to face the affected area 52 of.

次いで、先玉次元像処理装置20内のパルスレーザ−6
で、Nd:YAGレーザ−7より数十ピコ秒の光を発生
させて色素レーザー8内の色素に照射して励起させ、こ
の色素レーザー8がら数ピコ秒の極めて時間幅の短い光
パルスを出射する。
Next, the pulse laser 6 in the front lens dimensional image processing device 20
Then, the Nd:YAG laser 7 generates light of several tens of picoseconds and irradiates the dye in the dye laser 8 to excite it, and this dye laser 8 emits a light pulse with an extremely short time width of several picoseconds. do.

この光パルスは、ミラー9、ビームスプリッタ10.1
1を経てビームエクスパンダ12により拡大されて光フ
ァイバ束4に均一に入射され、計測対象である患部52
へ面状に照射される。
This light pulse is transmitted to mirror 9, beam splitter 10.1
1, the beam is expanded by the beam expander 12, and uniformly enters the optical fiber bundle 4, and the affected area 52 to be measured is
Irradiated horizontally.

そして、照射された光パルスが患部52の表面及び深部
で反射されると、反射光パルスが前記光ファイバ束4か
ら前記先玉次元像処理装置20に導かれ、前記ビームエ
クスパンダ12によって再び細いビーム光に収束されて
ビームスプリッタ11を透過し、カーシャッタ13に入
射される。
When the irradiated light pulse is reflected on the surface and deep part of the affected area 52, the reflected light pulse is guided from the optical fiber bundle 4 to the front lens dimensional image processing device 20, and is again narrowed by the beam expander 12. The light beam is converged into a beam, passes through the beam splitter 11, and enters the Kerr shutter 13.

このとき、前記色素レーザー6より出射され、ビームス
プリッタ10にて分離された光パルスは、ビームスプリ
ッタ14→ミラー15a→ビームスプリツタ14→駆動
装置16へと導かれ、この駆動装置16で光電変換され
た信号により、前記カーシャッタ13が所定の時間開放
され、このカーシャッタ13を通過した反射光がビーム
エクスパンダ17を経て撮像装置18に導かれる。
At this time, the optical pulse emitted from the dye laser 6 and separated by the beam splitter 10 is guided to the beam splitter 14 → mirror 15a → beam splitter 14 → driving device 16, and is photoelectrically converted by this driving device 16. In response to the signal, the car shutter 13 is opened for a predetermined period of time, and the reflected light that has passed through the car shutter 13 is guided to the imaging device 18 via the beam expander 17.

前記カーシャッタ13の開放タイミングは、前記遅延ミ
ラー装置15のミラー15aを移動させて光路長を変化
させ、前記駆動装置16への光パルスの到達時間を制御
することにより設定される。
The opening timing of the car shutter 13 is set by moving the mirror 15a of the delay mirror device 15 to change the optical path length and controlling the arrival time of the optical pulse to the drive device 16.

すなわち、第3図に示すように、患部52への入射光に
対し、反射光が前記カーシャッタ13に到達する時間口
、 t2.t3.tn、・・・、tnは、患部52の組
織深さによって異なるため、第4図に示すように、破線
で示した入射光に対し、組織内の各点からの反射光の強
度は、実線で示すような時間分解波形から得ることがで
きる。
That is, as shown in FIG. 3, the time point at which the reflected light reaches the car shutter 13 with respect to the incident light on the affected area 52, t2. t3. Since tn, ..., tn vary depending on the tissue depth of the affected area 52, as shown in FIG. It can be obtained from the time-resolved waveform shown in .

従って、前記カーシャッタ13の開放タイミングを、第
5図に示すように、時間t1. t2.t3.t4・・
・、tn毎に設定し、前記光ファイバ束4によって導か
れた組織内の各点からの反射光パルスを前記撮像装置1
8に送って反射光強度を解析することにより、前記カー
シャッタ13の各開放タイミング毎に、前記光ファイバ
束4による光パルスの照射平面に対応する患部52の光
断層像を検出することができるのである。
Therefore, as shown in FIG. 5, the opening timing of the car shutter 13 is set at time t1. t2. t3. t4...
, tn, and the reflected light pulses from each point in the tissue guided by the optical fiber bundle 4 are transmitted to the imaging device 1.
8 and analyzes the intensity of the reflected light, it is possible to detect an optical tomographic image of the affected area 52 corresponding to the irradiation plane of the light pulse by the optical fiber bundle 4 at each opening timing of the car shutter 13. It is.

そして、この時間H,t2.t3.t4.・・・、tn
毎の光断層像を前記信号処理装置19にて処理すること
により、第6図に示すように、患部52の組織内部の血
管53などを含む三次元像が得られ、モニタ30に表示
することができる。
Then, at this time H, t2. t3. t4. ...,tn
By processing each optical tomographic image in the signal processing device 19, a three-dimensional image including the blood vessels 53 inside the tissue of the affected area 52 and the like is obtained, as shown in FIG. 6, and displayed on the monitor 30. I can do it.

これにより、組織内部の構造を正確に、しかも容易に把
握することができ、患部52内部状態の正確な診断が可
能となる。さらには、前記パルスレーザ−6の色素レー
ザー8の波長を変化させて計測を繰返し、波長の異なる
光パルスによって得られた各断層像間で演算を行なうこ
とにより、例えば、前記血管54内の酸素飽和度などの
生理的組成の三次元表示が可能となる。従って、組織内
構造のみならず代謝機能の状態を把握することができ、
総合的な診断を可能とすることができる。
Thereby, the internal structure of the tissue can be accurately and easily grasped, and the internal state of the affected area 52 can be accurately diagnosed. Furthermore, by repeating measurement by changing the wavelength of the dye laser 8 of the pulsed laser 6 and performing calculations between the tomographic images obtained by light pulses of different wavelengths, for example, oxygen in the blood vessel 54 can be measured. Three-dimensional display of physiological composition such as saturation level becomes possible. Therefore, it is possible to understand not only the internal tissue structure but also the state of metabolic function.
Comprehensive diagnosis can be made possible.

ところで、この先玉次元像観察装置においては、患部5
2からの散乱光が前記撮像装W、18に入射された場合
、ノイズとなって画像劣化の原因となる。そこで、前記
散乱光を抑制して直進成分のみを抽出する必要がある。
By the way, in this dimensional image observation device, the affected area 5
When the scattered light from 2 enters the imaging device W, 18, it becomes noise and causes image deterioration. Therefore, it is necessary to suppress the scattered light and extract only the straight component.

第7図は、その散乱光を抑制する手段を内視鏡1先端部
に設けた一例を示すものであり、前記光ファイバ束4の
前面に、レンズ54.アパーチャ(絞り)55.レンズ
56が順次配置されたコリメータを設け、散乱光などの
余分な光を制限するようになっている。
FIG. 7 shows an example in which a means for suppressing the scattered light is provided at the distal end of the endoscope 1, in which a lens 54. Aperture (diaphragm) 55. A collimator in which lenses 56 are sequentially arranged is provided to limit unnecessary light such as scattered light.

尚、前記コリメータによらず、前記光ファイバ束をシン
グルモードファイバとすることによっても、散乱光を有
効に抑制することが可能である。
Incidentally, it is possible to effectively suppress scattered light by using a single mode fiber as the optical fiber bundle instead of using the collimator.

また、光開閉手段としては、前述したカーシャッタ13
の他、第8図に示すように、非線形光学素子57を使用
しても良く、この非線形光学素子57としては、例えば
、C32などが採用される。
Further, as the light opening/closing means, the above-mentioned car shutter 13
In addition, as shown in FIG. 8, a nonlinear optical element 57 may be used, and as this nonlinear optical element 57, for example, C32 or the like is adopted.

このCS2は、偏光板58を介して入射される計測部位
からの反射光に対し、参照光を入力することにより第2
高調波を発生する。この第2高調波の強度は、前記反射
光と参照光をそれぞれ時間の間数とした場合の反射光と
参照光の積の積分値に比例するものであり、偏光板59
.フィルタ60を介して前記C82からの第2高調波を
狭い帯域で透過させ、光電子増倍管などを備えたカメラ
61で検出することにより、同様に時間分解波形が得ら
れる。
This CS2 inputs a reference light to the reflected light from the measurement site that enters through the polarizing plate 58, thereby providing a second
Generates harmonics. The intensity of this second harmonic is proportional to the integral value of the product of the reflected light and the reference light when each of the reflected light and the reference light is a time interval, and is
.. A time-resolved waveform can be similarly obtained by transmitting the second harmonic from C82 in a narrow band through a filter 60 and detecting it with a camera 61 equipped with a photomultiplier tube or the like.

また、本発明の先玉次元像観察装置を効果的に活用する
ためには、観察領域の広角化が有効であり、以下、その
例について説明する。
Furthermore, in order to effectively utilize the leading lens dimensional image observation device of the present invention, it is effective to widen the observation area, and an example thereof will be described below.

第9図は、光ファイバ束62の先端部で、この光ファイ
バ束62を構成する各光ファイバ62aを放射状に広げ
ることにJ:す、患部52周辺の広い領域に渡って内部
の三次元像観察を可能にするものである。
FIG. 9 shows an internal three-dimensional image of the distal end of the optical fiber bundle 62, in which each optical fiber 62a constituting the optical fiber bundle 62 is spread radially over a wide area around the affected area 52. It enables observation.

この場合、前記光ファイバ束4の前面に通常のレンズを
配置し、観察領域の広角化を図ることも可能であるが、
第10図に示すようなレンズアレー63を用いることに
より、さらに効果的に広角化を図ることができる。
In this case, it is also possible to arrange a normal lens in front of the optical fiber bundle 4 to widen the observation area.
By using a lens array 63 as shown in FIG. 10, it is possible to further effectively widen the angle of view.

すなわち、前記レンズアレー63は、前記光ファイバ束
4を構成する各光フアイバ48間のピッチよりもやや大
きいピッチで、しがも、周辺はど偏芯して各レンズ63
aが配置されており、第11図に示すように、各レンズ
63a間の遮光部63bは、黒色の酸化処理ガラスなど
により構成されている。
That is, the lens array 63 has a pitch that is slightly larger than the pitch between the optical fibers 48 constituting the optical fiber bundle 4, and each lens 63 is eccentric at the periphery.
As shown in FIG. 11, the light shielding portions 63b between the lenses 63a are made of black oxidized glass or the like.

このレンズアレー63を前記光ファイバ束4前面に対向
して配置することにより、観察領域を広角化することが
でき、また、前記各レンズ63aのレンズ直径及び前記
遮光部63bの厚さを適切に設定して入射開口数あるい
はF値を絞り込むことにより、前記光ファイバ4aを多
モードファイバとした場合においても入射モード数を減
らして光伝送時のファイバ内の分散を抑制することがで
きる。
By arranging this lens array 63 facing the front surface of the optical fiber bundle 4, the observation area can be widened, and the lens diameter of each lens 63a and the thickness of the light shielding part 63b can be adjusted appropriately. By setting and narrowing down the entrance numerical aperture or F value, even when the optical fiber 4a is a multimode fiber, the number of entrance modes can be reduced and dispersion within the fiber during optical transmission can be suppressed.

さらに、前記レンズアレー63と前記光ファイバ束4端
面との距離を適切に設定することにより、各光ファイバ
4aへの入射光の広がりを絞ることが可能なため、計測
面の広がり方向の分離ができ、各光フアイバ4a相互の
情報のクロストークを避けることができる。
Furthermore, by appropriately setting the distance between the lens array 63 and the end face of the optical fiber bundle 4, it is possible to narrow down the spread of the incident light to each optical fiber 4a, so that separation in the direction of spread of the measurement plane is possible. Therefore, crosstalk of information between the optical fibers 4a can be avoided.

[発明の効果] 以上述べたように本発明によれば、計測対象の光断層像
から三次元像を得ることができるので、計測対象内部の
形態を正確且つ容易にとらえることができ、さらに、構
造的な計測のみならず機能的な計測をも含めた総合的な
計測を可能とすることができるという効果がある。
[Effects of the Invention] As described above, according to the present invention, a three-dimensional image can be obtained from an optical tomographic image of a measurement object, so the internal form of the measurement object can be accurately and easily captured, and further, This has the effect of making it possible to perform comprehensive measurements, including not only structural measurements but also functional measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は先玉次元像観
察装置のシステム構成図、第2図は先玉次元像観察装置
による体腔内の観察例を示す説明図、第3図は反射光の
時間と組織の深さとの関係を示す説明図、第4図は反射
光強度の時間分解波形を示す説明図、第5図は光開閉の
制御タイミングを示すタイムチャート、第6図は測定結
果を示す説明図、第7図は散乱光抑制のための内視鏡先
端の構成を示す説明図、第8図は非線形光学素子による
光間閉動作の説明図、第9図は観察領域広角化のための
光ファイバ束を示す説明図、第10図は観察領域広角化
のためのレンズアレーを示す説明図、第11図はレンズ
アレーの正面図である。 4・・・光ファイバ束 6・・・パルスレーザ− 12・・・ビームエクスパンダ 13・・・カーシャッタ 18・・・撮像装置 19・・・信号処理装置 第5図 第7図 第8図 第6図 第9図 第11図
The drawings show one embodiment of the present invention, and FIG. 1 is a system configuration diagram of the front lens dimensional image observation device, FIG. 2 is an explanatory diagram showing an example of observation inside a body cavity by the front lens dimensional image observation device, and FIG. 3 is an explanatory diagram showing the relationship between the time of reflected light and the tissue depth, Fig. 4 is an explanatory diagram showing the time-resolved waveform of reflected light intensity, Fig. 5 is a time chart showing the control timing of light opening/closing, and Fig. 6 is an explanatory diagram showing the measurement results, Fig. 7 is an explanatory diagram showing the configuration of the endoscope tip for suppressing scattered light, Fig. 8 is an explanatory diagram of the optical closing operation by the nonlinear optical element, and Fig. 9 is an illustration of observation. FIG. 10 is an explanatory view showing an optical fiber bundle for widening the viewing area, FIG. 10 is an explanatory view showing a lens array for widening the viewing area, and FIG. 11 is a front view of the lens array. 4... Optical fiber bundle 6... Pulse laser 12... Beam expander 13... Kerr shutter 18... Imaging device 19... Signal processing device Fig. 5 Fig. 7 Fig. 8 Figure 6 Figure 9 Figure 11

Claims (1)

【特許請求の範囲】 計測用の光パルスを発生する光パルス発生手段と、 前記光パルス発生手段で発生した光パルスを計測対象に
導くとともに、前記計測対象の内部で反射した反射光パ
ルスを導く光ファイバ束と、前記光パルスを前記光ファ
イバ束に均一に拡散して入射する光入射手段と、 前記反射光パルスを任意の時間に通過させる光開閉手段
と、 前記光開閉手段を通過した反射光パルスを処理して前記
計測対象の断層像を検出し、この断層像から前記計測対
象の三次元像を構成する画像処理手段とを備えたことを
特徴とする光三次元像観察装置。
[Scope of Claims] Optical pulse generating means for generating optical pulses for measurement; guiding the optical pulses generated by the optical pulse generating means to a measurement object, and guiding reflected optical pulses reflected inside the measurement object. an optical fiber bundle; a light input means for uniformly diffusing and inputting the light pulse into the optical fiber bundle; a light opening/closing means for passing the reflected light pulse at an arbitrary time; and a reflection having passed through the optical opening/closing means. An optical three-dimensional image observation apparatus comprising: an image processing means for processing light pulses to detect a tomographic image of the measurement target and constructing a three-dimensional image of the measurement target from the tomographic image.
JP25991590A 1990-09-26 1990-09-27 Optical three-dimensional image observing device Pending JPH04135551A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25991590A JPH04135551A (en) 1990-09-27 1990-09-27 Optical three-dimensional image observing device
US07/700,225 US5305759A (en) 1990-09-26 1991-05-14 Examined body interior information observing apparatus by using photo-pulses controlling gains for depths

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25991590A JPH04135551A (en) 1990-09-27 1990-09-27 Optical three-dimensional image observing device

Publications (1)

Publication Number Publication Date
JPH04135551A true JPH04135551A (en) 1992-05-11

Family

ID=17340698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25991590A Pending JPH04135551A (en) 1990-09-26 1990-09-27 Optical three-dimensional image observing device

Country Status (1)

Country Link
JP (1) JPH04135551A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051374A (en) * 1995-06-09 2006-02-23 Cybro Medical Ltd Sensor, method and device for optical measurement of blood oxygen saturation
JP2007327909A (en) * 2006-06-09 2007-12-20 Fujifilm Corp Optical tomography apparatus
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US9646377B2 (en) 2006-01-19 2017-05-09 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9642531B2 (en) 2010-03-05 2017-05-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
US9668652B2 (en) 2013-07-26 2017-06-06 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US9777053B2 (en) 2006-02-08 2017-10-03 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US9791317B2 (en) 2006-01-19 2017-10-17 The General Hospital Corporation Spectrally-encoded endoscopy techniques and methods
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US9812846B2 (en) 2003-10-27 2017-11-07 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
US9897538B2 (en) 2001-04-30 2018-02-20 The General Hospital Corporation Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
US9951269B2 (en) 2010-05-03 2018-04-24 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US10104315B2 (en) 2015-06-17 2018-10-16 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus including light source that emits pulsed light, image sensor, and control circuit
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10270998B2 (en) 2016-12-15 2019-04-23 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus including light source that emits pulsed light beam onto object and light detector that detects light returning from object
US10534129B2 (en) 2007-03-30 2020-01-14 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
US10939825B2 (en) 2010-05-25 2021-03-09 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US11123047B2 (en) 2008-01-28 2021-09-21 The General Hospital Corporation Hybrid systems and methods for multi-modal acquisition of intravascular imaging data and counteracting the effects of signal absorption in blood
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051374A (en) * 1995-06-09 2006-02-23 Cybro Medical Ltd Sensor, method and device for optical measurement of blood oxygen saturation
US9897538B2 (en) 2001-04-30 2018-02-20 The General Hospital Corporation Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
US9812846B2 (en) 2003-10-27 2017-11-07 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US10987000B2 (en) 2006-01-19 2021-04-27 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9646377B2 (en) 2006-01-19 2017-05-09 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9791317B2 (en) 2006-01-19 2017-10-17 The General Hospital Corporation Spectrally-encoded endoscopy techniques and methods
US9777053B2 (en) 2006-02-08 2017-10-03 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
JP2007327909A (en) * 2006-06-09 2007-12-20 Fujifilm Corp Optical tomography apparatus
US10534129B2 (en) 2007-03-30 2020-01-14 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
US11123047B2 (en) 2008-01-28 2021-09-21 The General Hospital Corporation Hybrid systems and methods for multi-modal acquisition of intravascular imaging data and counteracting the effects of signal absorption in blood
US9642531B2 (en) 2010-03-05 2017-05-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9951269B2 (en) 2010-05-03 2018-04-24 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US10939825B2 (en) 2010-05-25 2021-03-09 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US10058250B2 (en) 2013-07-26 2018-08-28 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US9668652B2 (en) 2013-07-26 2017-06-06 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
US10194099B2 (en) 2015-06-17 2019-01-29 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus including light source that emits pulsed light and which reduces noise caused by surface reflections
US10911697B2 (en) 2015-06-17 2021-02-02 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus including light source that emits pulsed light, image sensor, and control circuit
US10652482B2 (en) 2015-06-17 2020-05-12 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus including light source that emits pulsed light, image sensor, and control circuit
US10334188B2 (en) 2015-06-17 2019-06-25 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus including light source that emits pulsed light, image sensor, and control circuit
US10104315B2 (en) 2015-06-17 2018-10-16 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus including light source that emits pulsed light, image sensor, and control circuit
US11303828B2 (en) 2015-06-17 2022-04-12 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus including light source that emits pulsed light, image sensor, and control circuit
US10270998B2 (en) 2016-12-15 2019-04-23 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus including light source that emits pulsed light beam onto object and light detector that detects light returning from object

Similar Documents

Publication Publication Date Title
JPH04135551A (en) Optical three-dimensional image observing device
JP3104984B2 (en) Optical scanning device for tomographic image observation
JP2879003B2 (en) Image measurement device
JP5692988B2 (en) Acoustic wave measuring device
US11022540B2 (en) Camera-based photoacoustic remote sensing (C-PARS)
US5386819A (en) Method and apparatus for inhibiting a scattered component in a light having passed through an examined object
JP3162070B2 (en) Subject internal information observation device
US20060184042A1 (en) Method, system and apparatus for dark-field reflection-mode photoacoustic tomography
EP2359745A1 (en) Method and device for multi-spectral photonic imaging
JP6674038B2 (en) Integrated catheter device for cardiovascular diagnosis and image processing system using the same
JP4939237B2 (en) SUBJECT INFORMATION ANALYSIS DEVICE, ENDOSCOPE DEVICE, AND SUBJECT INFORMATION ANALYSIS METHOD
JPH05228154A (en) Optically measuring device of tissue to inspect objective
JP2007528500A (en) Methods and systems for tomographic imaging using fluorescent proteins
JPH04193158A (en) Blood flow measuring device
KR20080108918A (en) Medical apparatus for obtaining information indicative of internal state of an object based on physical interaction between ultrasonic wave and light
CN103462645A (en) Forward-looking optic-acoustic endoscope
CN110361357A (en) A kind of single array element photoacoustic spectrum signal acquisition system and method for skin detection
Li et al. Miniature probe for forward-view wide-field optical-resolution photoacoustic endoscopy
KR101610837B1 (en) Photoacoustic imaging system for diagnosis animals of the ophthalmic diseases
US4142796A (en) Blood flow measurement
WO2013062067A1 (en) Object information acquiring apparatus and control method for controlling the same
JPH05130995A (en) Optical tomographinc imaging device using spatial difference
US10314494B2 (en) Object information acquiring apparatus and method of controlling object information acquiring apparatus
JPH08131445A (en) Optical measuring instrument
JPH04135552A (en) Optical tomographic image observing device