JPH04132231A - Thin-film transistor and manufacture thereof - Google Patents

Thin-film transistor and manufacture thereof

Info

Publication number
JPH04132231A
JPH04132231A JP25198890A JP25198890A JPH04132231A JP H04132231 A JPH04132231 A JP H04132231A JP 25198890 A JP25198890 A JP 25198890A JP 25198890 A JP25198890 A JP 25198890A JP H04132231 A JPH04132231 A JP H04132231A
Authority
JP
Japan
Prior art keywords
semiconductor layer
insulating film
pattern
substrate
photoresist pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25198890A
Other languages
Japanese (ja)
Inventor
Kunio Masushige
邦雄 増茂
Masaki Yuki
結城 正記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP25198890A priority Critical patent/JPH04132231A/en
Publication of JPH04132231A publication Critical patent/JPH04132231A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the interface between a gate insulating film and a semiconductor clean and to enhance a transistor characteristic by a method wherein the gate insulating film and the semiconductor are formed continuously inside the same vacuum apparatus. CONSTITUTION:At least a gate electrode 2, a gate insulating film 3 and a non- single-crystal semiconductor layer 4 are formed on a substrate 1 in this order. In addition, a positive-type photoresist formed on the upper layer form the semiconductor layer is exposed from the rear of the substrate; and it is developed. Thereby, a photoresist pattern 5 whose pattern is the same as that of the gate electrode is formed. Impurity ions 6 are implanted into a source-drain region of the non-single-crystal semiconductor layer by using the pattern as a mask; after that, the photoresist pattern 5 is removed. Alternatively, an insulating film formed between the semiconductor layer and the photoresist pattern is etched by using the photoresist pattern 5 as a mask; the photo resist pattern is removed; and after that, impurity ions are implanted into the source-drain region of the semiconductor layer by using the insulating film as a mask.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は画像表示装置等の駆動に使用される薄膜トラン
ジスタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film transistor used for driving an image display device or the like.

[従来の技術] 近年平面デイスプレィ等の画像表示素子への応用を目的
とした薄膜トランジスタ(TPT)の開発が活発に行わ
れている。デイスプレィの大型化、さらには周辺駆動回
路のTFT化に対応するためTPT動作速度の向上が望
まれている。TPTの動作速度を向上させるためにゲー
ト・ドレイン間の寄生容量を減少させる試みが行われて
いるが、ソース・トレイン電極をゲート電極と自己整合
的に形成する方法はきわめて有効な方法である。
[Prior Art] In recent years, thin film transistors (TPTs) have been actively developed for application to image display elements such as flat displays. In order to cope with the increase in the size of displays and the use of TFTs in peripheral drive circuits, it is desired to improve the TPT operating speed. Attempts have been made to reduce the parasitic capacitance between the gate and drain in order to improve the operating speed of the TPT, and forming the source train electrode in self-alignment with the gate electrode is an extremely effective method.

ソース・ドレイン領域をイオン注入法によりゲート電極
と自己整合的に形成する従来の自己整合型TPTの製造
方法を、レーザー多結晶化半導体TPTを例にとって、
第5図(a)、(b)を参照しながら説明する。
Taking laser polycrystalline semiconductor TPT as an example, we will explain the conventional manufacturing method of self-aligned TPT in which the source and drain regions are formed in self-alignment with the gate electrode by ion implantation.
This will be explained with reference to FIGS. 5(a) and 5(b).

絶縁性を有する基板51上にパッシベーション膜52、
非晶質半導体9層53を積層しく第5図(a) ) 、
レーザー光照射多結晶化を行い、フォトリソグラフィー
により多結晶半導体薄膜56のパターンを形成、その上
にゲート絶縁膜54゜ゲート電極材料55を積層し、再
びフォトリソグラフィーによりゲート電極のパターンを
形成。
A passivation film 52 is formed on a substrate 51 having insulating properties.
Stacking nine amorphous semiconductor layers 53 (FIG. 5(a)),
Polycrystalization is performed by laser beam irradiation, a pattern of a polycrystalline semiconductor thin film 56 is formed by photolithography, a gate insulating film 54 and a gate electrode material 55 are laminated thereon, and a gate electrode pattern is formed by photolithography again.

ゲート絶縁層もゲート電極と同じパターンにエツチング
する(第5図(b) ) 、ここでイオン注入法により
ゲート電極をマスクに多結晶半導体層56に不純物イオ
ンをドーピングし、不純物イオン活性化のための熱処理
を行いソース・ドレイン領域を形成する。さらに層間絶
縁膜を堆積し、ソース・ドレイン領域上にコンタクトホ
ールを形成し、その上にソース電極・ドレイン電極を形
成する。
The gate insulating layer is also etched in the same pattern as the gate electrode (FIG. 5(b)). Here, impurity ions are doped into the polycrystalline semiconductor layer 56 using the gate electrode as a mask by ion implantation to activate the impurity ions. Heat treatment is performed to form source/drain regions. Furthermore, an interlayer insulating film is deposited, contact holes are formed on the source/drain regions, and source and drain electrodes are formed thereon.

[発明の解決しようとする課題] 従来の半導体層上のゲート電極をイオン注入のマスクと
する方法では、ゲート絶縁膜54形成前に半導体層を島
状にパターン化する必要があり、トランジスタ動作にと
って重要な界面である半導体層・ゲート絶縁膜間を連続
に形成することができない。そのためこの界面を清浄な
欠陥の少ないものにすることはむずかしく、十分なトラ
ンジスタ特性・信頼性を得ることが難しいという問題が
あった。
[Problems to be Solved by the Invention] In the conventional method of using a gate electrode on a semiconductor layer as a mask for ion implantation, it is necessary to pattern the semiconductor layer into an island shape before forming the gate insulating film 54, which is difficult for transistor operation. The important interface between the semiconductor layer and the gate insulating film cannot be formed continuously. Therefore, it is difficult to make this interface clean and free from defects, and there is a problem in that it is difficult to obtain sufficient transistor characteristics and reliability.

[課題を解決するための手段] 本発明は上記の問題点を解決すべくなされたものであり
、絶縁性を有する基板上の逆スタガー構造の薄膜トラン
ジスタの製造方法において、該基板上に少なくともゲー
ト電極、ゲート絶縁膜、非単結晶半導体層の順に形成し
、更に該半導体層より上層に形成されたポジ型のフォト
レジストを該基板裏面より露光し、現像することにより
上記ゲート電極と同一のパターンのフォトレジストパタ
ーンを形成し、このパターンをマスクとして非単結晶半
導体層のソース・ドレイン領域に不純物イオンを注入し
たのち、該フォトレジストパターンを除去したことを特
徴とする薄膜トランジスタの製造方法及び、絶縁性を有
する基板上の逆スタガー構造の薄膜トランジスタの製造
方法において、該基板上に少なくともゲート電極、ゲー
ト絶縁膜、非単結晶半導体層の順に形成し、更に該半導
体層より上層に形成されたポジ型のフォトレジストを該
基板裏面より露光、現像することにより上記ゲート電極
と同一のフォトレジストパターンを形成し、このパター
ンをマスクとして該半導体層と該フォトレジストパター
ンとの間に形成された絶縁膜をエツチングし、該フォト
レジストパターンを除去後、該絶縁膜をマスクとして該
半導体層のソース・ドレイン領域に不純物イオンを注入
したことを特徴とする薄膜トランジスタの製造方法を提
供するものである。
[Means for Solving the Problems] The present invention has been made to solve the above problems, and includes a method for manufacturing a thin film transistor having an inverted staggered structure on an insulating substrate. , a gate insulating film, and a non-single-crystal semiconductor layer are formed in this order, and a positive photoresist formed above the semiconductor layer is exposed to light from the back side of the substrate and developed to form the same pattern as the gate electrode. A method for manufacturing a thin film transistor, characterized in that a photoresist pattern is formed, impurity ions are implanted into a source/drain region of a non-single crystal semiconductor layer using this pattern as a mask, and then the photoresist pattern is removed; In a method for manufacturing a thin film transistor with an inverted stagger structure on a substrate having a substrate, at least a gate electrode, a gate insulating film, and a non-single crystal semiconductor layer are formed in this order on the substrate, and a positive type thin film transistor formed above the semiconductor layer is further provided. A photoresist pattern identical to the gate electrode is formed by exposing and developing the photoresist from the back side of the substrate, and using this pattern as a mask, the insulating film formed between the semiconductor layer and the photoresist pattern is etched. The present invention also provides a method for manufacturing a thin film transistor, characterized in that after removing the photoresist pattern, impurity ions are implanted into the source/drain regions of the semiconductor layer using the insulating film as a mask.

以下に図面に従って本発明を説明する。The present invention will be explained below with reference to the drawings.

第1図は本発明の製造方法を示すTPTの断面図を示し
、第1図(a) 、 (b) 、 (c)の順で工程が
進行する。まず、ガラス、セラミック、プラスチック等
の必要に応じて透明で絶縁性を有する基板1上に電子線
加熱蒸着法等の蒸着法によりクロム(Cr)、タンタル
(Ta)等のゲート電極材料を堆積し、フォトリソグラ
フィーによりゲート電極2のパターンを形成、その上に
ブラズvcVD法等により SiO,5iON 、Si
N等のゲート絶縁膜3、SL 、Ge等の非晶質半導体
層4を堆積し、必要に応じてレーザー光照射を行い非晶
質半導体層4を多結晶化する。尚、非晶質半導体層4を
多結晶化する必要がない場合にはレーザー光照射は行わ
ない。
FIG. 1 shows a cross-sectional view of TPT showing the manufacturing method of the present invention, and the steps proceed in the order of FIGS. 1(a), (b), and (c). First, a gate electrode material such as chromium (Cr) or tantalum (Ta) is deposited on a transparent and insulating substrate 1 made of glass, ceramic, plastic, etc., as required, by an evaporation method such as an electron beam heating evaporation method. , a pattern of the gate electrode 2 is formed by photolithography, and SiO, 5iON, Si
A gate insulating film 3 made of N or the like and an amorphous semiconductor layer 4 made of SL, Ge or the like are deposited, and the amorphous semiconductor layer 4 is polycrystallized by irradiation with laser light if necessary. Note that if there is no need to polycrystallize the amorphous semiconductor layer 4, laser light irradiation is not performed.

ここでポジ型フォトレジストを塗布等の方法で形成し、
基板lの裏面より露光し現像することにより自己整合的
にゲート電極と同一パターンのポジ型のフォトレジスト
パターン5を形成する(第1図 (a))。イオン注入
法によりこのフォトレジストパターン5をマスクに非晶
質半導体層4のソース・ドレイン領域になる部分にリン
 (P)、ホウ素 (B)、ヒ素 (As )等の不純
物イオン6をドーピングする(第1図(b))。フォト
レジストパターン5を除去した後、必要に応じて不純物
イオンの活性化のための熱処理を行う、尚、該活性化の
必要がないときはこの熱処理を行わない。
Here, a positive photoresist is formed by a method such as coating,
By exposing and developing the substrate 1 from the back surface, a positive photoresist pattern 5 having the same pattern as the gate electrode is formed in a self-aligned manner (FIG. 1(a)). Using this photoresist pattern 5 as a mask, impurity ions 6 such as phosphorus (P), boron (B), and arsenic (As) are doped into the portions of the amorphous semiconductor layer 4 that will become the source and drain regions by ion implantation ( Figure 1(b)). After removing the photoresist pattern 5, heat treatment is performed to activate the impurity ions as necessary. Note that this heat treatment is not performed when the activation is not necessary.

フォトリソグラフィーにより半導体薄膜をパターン化し
、その上にSiO,5iON 、SiN等の絶縁膜7を
堆積し、ソース・ドレイン領域上にコンタクトホールな
形成し、その上にソース電極・トレイン電極8を形成す
る。
A semiconductor thin film is patterned by photolithography, an insulating film 7 of SiO, 5iON, SiN, etc. is deposited thereon, a contact hole is formed on the source/drain region, and a source electrode/train electrode 8 is formed thereon. .

ところで、第1図(b)において第2図に示すように、
非晶質半導体層4をパターン化した後裏面露光によるフ
ォトレジストパターン5を形成、イオン注入6、レーザ
ー光照射を行ってもよい。また第3図に示すように、非
晶質半導体層4上に絶縁膜7を堆積し、その上に裏面露
光によるフォトレジストパターン5を形成、絶縁膜7上
からイオン注入6を行ってもよいし、このフォトレジス
トパターン5を用いて絶縁膜7をエツチングした後イオ
ン注入してもよい、また第4図に示すように絶縁膜7を
エツチングした後フォトレジストパターン5を除去し、
該絶縁膜7をマスクにイオンの注入エネルギーを小さく
し、イオン注入を行ってもよい。
By the way, as shown in FIG. 2 in FIG. 1(b),
After patterning the amorphous semiconductor layer 4, a photoresist pattern 5 may be formed by backside exposure, ion implantation 6, and laser light irradiation may be performed. Alternatively, as shown in FIG. 3, an insulating film 7 may be deposited on the amorphous semiconductor layer 4, a photoresist pattern 5 may be formed thereon by back exposure, and ion implantation 6 may be performed from above the insulating film 7. However, ions may be implanted after etching the insulating film 7 using this photoresist pattern 5. Alternatively, as shown in FIG. 4, after etching the insulating film 7, removing the photoresist pattern 5,
Ion implantation may be performed using the insulating film 7 as a mask and reducing the ion implantation energy.

尚、基板1は上記露光に使用する波長の透過性を有する
ことが必要である。例えば可視光を使用する場合は基板
1は透明性を有したものでなければならない。
Note that the substrate 1 needs to have transparency for the wavelength used for the exposure. For example, when using visible light, the substrate 1 must be transparent.

上記非晶質半導体層4の半導体として非単結晶半導体た
る非晶質半導体の代わりに粒径が50μm未満の微細な
結晶粒子が含まれるいわゆる微結晶半導体または多結晶
半導体をも使用できる。多結晶半導体を使用した場合は
、必要がある場合には後でおこなうレーザー照射により
、結晶性の向上を施し、TPTの電流増幅率の向上を行
うものである。このように非晶質半導体、微結晶半導体
、多結晶半導体を総称して非単結晶半導体というものと
する。
As the semiconductor of the amorphous semiconductor layer 4, a so-called microcrystalline semiconductor or a polycrystalline semiconductor containing fine crystal grains with a grain size of less than 50 μm can be used instead of an amorphous semiconductor that is a non-single crystal semiconductor. When a polycrystalline semiconductor is used, if necessary, laser irradiation is performed later to improve crystallinity and improve the current amplification factor of TPT. Thus, amorphous semiconductors, microcrystalline semiconductors, and polycrystalline semiconductors are collectively referred to as non-single crystal semiconductors.

[実施例] 実施例1 以下、第1図を参照しながら本実施例を説明する。[Example] Example 1 The present embodiment will be described below with reference to FIG.

ガラス基板1上にCr 60 nuを電子線加熱蒸着法
により蒸着、フォトリソグラフィーによりゲート電極2
のパターンを形成し、その上にプラズマCVD法により
 5LON 200 nmからなるゲート絶縁膜3、お
よび100口I厚のa−3iによる非晶質半導体層4を
積層し、レーザー光照射を行い半導体層を多結晶化した
。ここでポジ型フォトレジスト(東京応化製OF P 
R−800)を塗布し、基板裏面より露光し現像するこ
とにより自己整合的にゲート電極と同一パターンのフォ
トレジストパターン5を形成した。イオン注入法により
このフォトレジストパターンをマスクに半導体層のソー
ス・ドレイン領域になる部分に、Pイオン6を加速電圧
1(l KeV、ドーズ量2XlO”の条件でドーピン
グした。フォトレジストパターン5を酸素プラズマによ
り除去した後、不純物イオンの活性化のための熱処理を
行った。フォトリソグラフィーにより poly−3L
を島状にパターン化し、その上にプラズマCVD法によ
り 5LON 200 nmからなる絶縁膜7を堆積し
、ソース・ドレイン領域上にコンタクトホールを形成し
、その上にソース電極・トレイン電極8を形成した。
Cr 60 nu was deposited on the glass substrate 1 by electron beam heating evaporation method, and the gate electrode 2 was formed by photolithography.
A gate insulating film 3 made of 200 nm 5LON and an amorphous semiconductor layer 4 made of A-3I with a thickness of 100 I are laminated thereon by plasma CVD, and the semiconductor layer is irradiated with laser light. was polycrystallized. Here, a positive photoresist (OF P manufactured by Tokyo Ohka Co., Ltd.
A photoresist pattern 5 having the same pattern as the gate electrode was formed in a self-aligned manner by applying R-800), exposing it to light from the back surface of the substrate, and developing it. Using this photoresist pattern as a mask, P ions 6 were doped into the source/drain regions of the semiconductor layer using the ion implantation method at an acceleration voltage of 1 (l KeV and a dose of 2XlO).The photoresist pattern 5 was doped with oxygen. After removal by plasma, heat treatment was performed to activate impurity ions.Poly-3L was removed by photolithography.
was patterned into an island shape, an insulating film 7 made of 200 nm of 5LON was deposited thereon by plasma CVD, contact holes were formed on the source/drain regions, and source electrodes/train electrodes 8 were formed thereon. .

このようにして同一基板上に100個TPTを形成し、
ソース・ドレイン領域の導電率を測定した結果、100
個すべてのTPTが約80Ω−C−一1以上であった。
In this way, 100 TPTs were formed on the same substrate,
As a result of measuring the conductivity of the source/drain region, it was found that 100
All TPTs were greater than or equal to about 80 Ω-C-1.

実施例2 以下、第6図を参照しながら本実施例を説明する。Example 2 This embodiment will be described below with reference to FIG.

ガラス基板61上にCr 60r+a+を電子線加熱蒸
着法により蒸着、フォトリソグラフィーによりゲート電
極62のパターンを形成し、その上にブラズ?CVD法
により 5iON 200nmからなるゲート絶縁膜6
3、loonm厚のa−3Lによる非晶質半導体層(a
−Si) 64 、および保護絶縁膜65として200
止厚の5iONを積層した。ここでポジ型フォトレジス
ト(東京応化製OF P R−800)を塗布し、ガラ
ス基板61裏面より露光し現像することにより自己整合
的にゲート電極63と同一パターンのフォトレジストを
形成し、これをマスクに保護絶縁膜65の5iONをエ
ツチングした。
Cr 60r+a+ is deposited on a glass substrate 61 by electron beam heating evaporation, a gate electrode 62 pattern is formed by photolithography, and a Blaz? Gate insulating film 6 made of 5iON 200nm is formed by CVD method.
3. Amorphous semiconductor layer (a
-Si) 64 and 200 as the protective insulating film 65
5iON was laminated to a certain thickness. Here, a positive type photoresist (OF PR-800 manufactured by Tokyo Ohka Co., Ltd.) is applied, exposed to light from the back surface of the glass substrate 61, and developed to form a photoresist with the same pattern as the gate electrode 63 in a self-aligned manner. A protective insulating film 65 of 5iON was etched onto the mask.

レジストはくり液によりフォトレジストを除去したのち
、イオン注入法により保護絶縁膜をマスクにa−SL層
64のソース・ドレイン領域になる部分に、Pイオン6
を加速電圧5 KeV、ドーズ量2X 10”の条件で
ドーピングした。
After removing the photoresist with a resist stripping solution, P ions 6 are injected into the source/drain regions of the a-SL layer 64 using an ion implantation method using the protective insulating film as a mask.
Doping was performed under the conditions of an accelerating voltage of 5 KeV and a dose of 2×10”.

フォトリソグラフィーにより保護絶縁11165、a−
Si層64を島状にパターン化し、その上にブラズvC
VD法により 5LON 300 nmからなる絶縁膜
67を堆積し、ソース・ドレイン領域上にコンタクトホ
ールを形成し、その上にソース電極・ドレイン電極68
を形成した。
Protective insulation 11165, a- by photolithography
The Si layer 64 is patterned into an island shape, and BRAZE vC is formed on it.
An insulating film 67 made of 5LON 300 nm is deposited by the VD method, contact holes are formed on the source/drain regions, and source/drain electrodes 68 are formed on the contact holes.
was formed.

[発明の効果] 本発明の薄膜トランジスタは逆スタガー構造をとってお
り、ゲート絶縁膜と半導体とを同一真空装置内で連続に
形成できるため、この間の界面を清浄なものにすること
ができ、トランジスタ特性を向上させることができる。
[Effects of the Invention] The thin film transistor of the present invention has an inverted staggered structure, and since the gate insulating film and the semiconductor can be formed continuously in the same vacuum device, the interface between them can be made clean, and the transistor Characteristics can be improved.

従来の構造のTPTの電界効果移動度が約15cm”/
Vsであるのに対して、本発明によるTPTでは50 
cm”/Vs以上と3倍以上に向上させることができた
The field effect mobility of TPT with a conventional structure is approximately 15 cm”/
Vs, whereas in the TPT according to the present invention, it is 50
cm”/Vs or more, an improvement of more than three times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図 (a) 、(b) 、(c)は、本発明のTP
Tの製造方法を順に示す断面図であり、第2図〜第4図
は本発明のTPTの製造方法を示す断面図である。第5
図(a) 、(b)は従来のTPT(7)製造方法を順
に示す断面図である。第6図(a)。 (b)は、実施例2に係るTPTの製造方法を順に示す
断面図である。 1:基板 2:ゲート電極 3:ゲート絶縁膜 4:非晶質半導体層 6:不純物イオン 52:パッシベーション膜 舅2(支) ル ↓ ↓ 〜6 ↓
Figure 1 (a), (b), and (c) show the TP of the present invention.
FIGS. 2A and 2B are cross-sectional views sequentially showing a method for manufacturing a TPT, and FIGS. 2 to 4 are cross-sectional views showing a method for manufacturing a TPT according to the present invention. Fifth
Figures (a) and (b) are cross-sectional views sequentially showing a conventional TPT (7) manufacturing method. Figure 6(a). (b) is a cross-sectional view sequentially showing a method for manufacturing TPT according to Example 2. 1: Substrate 2: Gate electrode 3: Gate insulating film 4: Amorphous semiconductor layer 6: Impurity ion 52: Passivation film 2 (support) Ru ↓ ↓ ~ 6 ↓

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁性を有する基板上の逆スタガー構造の薄膜ト
ランジスタの製造方法において、該基板上に少なくとも
ゲート電極、ゲート絶縁 膜、非単結晶半導体層の順に形成し、更に該半導体層よ
り上層に形成されたポジ型のフォトレジストを該基板裏
面より露光し、現像することにより上記ゲート電極と同
一のパターンのフォトレジストパターンを形成し、この
パターンをマスクとして非単結晶半導体層のソース・ド
レイン領域に不純物イオンを注入したのち、該フォトレ
ジストパターンを除去したことを特徴とする薄膜トラン
ジスタの製造方法。
(1) In a method for manufacturing a thin film transistor with an inverted staggered structure on an insulating substrate, at least a gate electrode, a gate insulating film, and a non-single crystal semiconductor layer are formed in this order on the substrate, and further formed in a layer above the semiconductor layer. The positive photoresist thus prepared is exposed to light from the back side of the substrate and developed to form a photoresist pattern with the same pattern as the gate electrode, and using this pattern as a mask, the source/drain regions of the non-single crystal semiconductor layer are exposed. 1. A method of manufacturing a thin film transistor, comprising removing the photoresist pattern after implanting impurity ions.
(2)絶縁性を有する基板上の逆スタガー構造の薄膜ト
ランジスタの製造方法において、該基板上に少なくとも
ゲート電極、ゲート絶縁 膜、非単結晶半導体層の順に形成し、更に該半導体層よ
り上層に形成されたポジ型のフォトレジストを該基板裏
面より露光、現像することにより上記ゲート電極と同一
のフォトレジストパターンを形成し、このパターンをマ
スクとして該半導体層と該フォトレジストパターンとの
間に形成された絶縁膜をエッチングし、該フォトレジス
トパターンを除去後、該絶縁膜をマスクとして該半導体
層のソー ス・ドレイン領域に不純物イオンを注入したことを特徴
とする薄膜トランジスタの製造 方法。
(2) In a method for manufacturing a thin film transistor with an inverted staggered structure on an insulating substrate, at least a gate electrode, a gate insulating film, and a non-single crystal semiconductor layer are formed in this order on the substrate, and further formed in a layer above the semiconductor layer. A photoresist pattern identical to the gate electrode is formed by exposing and developing the positive photoresist from the back side of the substrate, and using this pattern as a mask, a pattern is formed between the semiconductor layer and the photoresist pattern. A method for manufacturing a thin film transistor, comprising: etching the insulating film, removing the photoresist pattern, and implanting impurity ions into the source/drain regions of the semiconductor layer using the insulating film as a mask.
(3)請求項(1)又は請求項(2)に記載された製造
方法によって製造された薄膜トランジス タ。
(3) A thin film transistor manufactured by the manufacturing method according to claim (1) or claim (2).
JP25198890A 1990-09-25 1990-09-25 Thin-film transistor and manufacture thereof Pending JPH04132231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25198890A JPH04132231A (en) 1990-09-25 1990-09-25 Thin-film transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25198890A JPH04132231A (en) 1990-09-25 1990-09-25 Thin-film transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04132231A true JPH04132231A (en) 1992-05-06

Family

ID=17230987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25198890A Pending JPH04132231A (en) 1990-09-25 1990-09-25 Thin-film transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04132231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286659A (en) * 1990-12-28 1994-02-15 Sharp Kabushiki Kaisha Method for producing an active matrix substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286659A (en) * 1990-12-28 1994-02-15 Sharp Kabushiki Kaisha Method for producing an active matrix substrate

Similar Documents

Publication Publication Date Title
JP2798769B2 (en) Method for manufacturing thin film transistor
JP3296975B2 (en) Thin film transistor and method of manufacturing the same
JPH07176750A (en) Manufacture of thin-film transistor
JPH0680685B2 (en) Thin film transistor and manufacturing method thereof
JP3122177B2 (en) Thin film transistor and manufacturing method thereof
JPH07211912A (en) Thin film transistor and its manufacture
JP2659976B2 (en) Thin film transistor and method of manufacturing the same
JPH0612780B2 (en) Method of manufacturing thin film transistor array
JPH04132231A (en) Thin-film transistor and manufacture thereof
JPH06349856A (en) Thin-film transistor and its manufacture
JP3358284B2 (en) Method for manufacturing thin film transistor
JP2630195B2 (en) Thin film field effect transistor and method of manufacturing the same
JP2694912B2 (en) Active matrix substrate manufacturing method
JPH06252402A (en) Manufacture of thin film transistor
JP3923600B2 (en) Thin film transistor manufacturing method
JPH09246554A (en) Manufacture of thin-film transistor and liquid-crystal display device
JP3331642B2 (en) Method for manufacturing thin film transistor
JPH0645355A (en) Manufacture of thin film transitor
JPH08213632A (en) Thin film semiconductor device and its manufacture
JPH01236655A (en) Thin film field-effect transistor and manufacture thereof
KR100304911B1 (en) Method for manufacturing thin film transistor
JPH04130734A (en) Polycrystalline semiconductor thin-film transistor and manufacture thereof
JPH0677486A (en) Thin-film transistor element
JP2716035B2 (en) Thin film field effect transistor
KR0156215B1 (en) Fully self-aligned thin film transistor