JPH04129177A - Organic electrolyte cell - Google Patents

Organic electrolyte cell

Info

Publication number
JPH04129177A
JPH04129177A JP2251379A JP25137990A JPH04129177A JP H04129177 A JPH04129177 A JP H04129177A JP 2251379 A JP2251379 A JP 2251379A JP 25137990 A JP25137990 A JP 25137990A JP H04129177 A JPH04129177 A JP H04129177A
Authority
JP
Japan
Prior art keywords
powder
lithium
electrode
cell
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2251379A
Other languages
Japanese (ja)
Inventor
Hisashi Tsukamoto
寿 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2251379A priority Critical patent/JPH04129177A/en
Publication of JPH04129177A publication Critical patent/JPH04129177A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To extend the cycle life of an organic electrolyte cell by fitting the cell with a negative electrode plate comprising a mixture of powder mainly composed of metal capable of storing and releasing lithium, and metal powder of nickel, titanium, stainless steel, copper, iron or the like, or a fiber incapable of storing lithium. CONSTITUTION:The volume of a powder grain in a negative electrode plate remarkably increases, upon storage of lithium due to charging, thereby closing an electrode hole. As a result, it becomes difficult for an electrolyte to diffuse into the electrode. Thereafter, even if a cell is discharged, the volume of the powder grain, once expanded, hardly contracts and the diffusion of the electrolyte remains hindered. It is difficult, therefore, for lithium stored in the electrode to be discharged. In order to maintain the porosity of the powder electrode, therefore, metal powder incapable of storing lithium, such as nickel, titanium, stainless steel, copper and iron is added to the electrode. As a result, the discharge capacity of a cell can be remarkably improved. For preventing a loss in the electronic conduction of the electrode, it is preferable to use an additive metal powder excellent in electronic conduction.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機電解質電池に間する。[Detailed description of the invention] Industrial applications The present invention relates to organic electrolyte batteries.

従来の技術およびその課題 有機電解質電池は、金属リチウムまたはリチウムアルミ
ニウム合金もしくはリチウム鉛合金などの箔または板か
らなる負極を用いたものが多い。
BACKGROUND ART Many organic electrolyte batteries use a negative electrode made of a foil or plate of metal lithium, lithium aluminum alloy, lithium lead alloy, or the like.

これに対して、アルミニウム、ビスマス、シリコン、ボ
ロンおよび鉛などのリチウムの吸蔵放出が可能な金属の
粉末またはこれらのリチウム合金の粉末を負極に用いた
ものもある。粉末負極板を用いた場合には、負極の作用
面積が増大するので電池性能の向上が期待できる。
On the other hand, there are also negative electrodes using powders of metals capable of intercalating and extracting lithium, such as aluminum, bismuth, silicon, boron, and lead, or powders of lithium alloys of these metals. When a powder negative electrode plate is used, an improvement in battery performance can be expected because the active area of the negative electrode increases.

しかし、発明者は、粉末負極板を用いた有機電解質電池
について詳しく検討した結果、この電池が充電電気量に
比して放電電気量が少ないという問題点があることを見
いだした。
However, as a result of detailed study of organic electrolyte batteries using powder negative electrode plates, the inventors found that this battery has a problem in that the amount of electricity discharged is smaller than the amount of electricity charged.

課題を解決するための手段 本発明は、リチウムの吸蔵放出が可能な金属を主体とす
る金属粉末またはそのリチウム合金粉末と、ニッケル、
チタン、ステンレス、銅、鉄などのリチウムを吸蔵しな
い金属の粉末または繊維との混合物を用いた負極板を備
えたことを特徴とする有機電解質電池を用いて前記課題
を解決するものである。
Means for Solving the Problems The present invention provides a metal powder mainly consisting of a metal capable of intercalating and deintercalating lithium or a lithium alloy powder thereof, nickel,
The above problem is solved using an organic electrolyte battery characterized by having a negative electrode plate made of a mixture with powder or fiber of a metal that does not occlude lithium, such as titanium, stainless steel, copper, or iron.

作用 発明者は、粉末負極板の放電利用率が低い原因について
検討した結果つぎの現象を見いだした。
The inventor investigated the cause of the low discharge utilization rate of the powder negative electrode plate and discovered the following phenomenon.

すなわち、粉末負極板は、充電によってリチウムを吸蔵
すると粉末粒子が著しく体積膨張して電極の孔をつぶす
結果、電極内部への電解液の拡散か困難になる。その後
、放電しても一旦膨張した粉末粒子の体積はほとんど収
縮しないので電解)夜の拡散は阻害されたままとなり電
極内部に吸蔵されたリチウムは放電が困難となる。この
ことが放電利用率か低い最大の原因と考えられる。した
かつて、粉末電極の放電利用率を向上させるには、電極
の多孔度を維持することが重要である。
That is, when a powder negative electrode plate occludes lithium during charging, the powder particles significantly expand in volume and close the pores of the electrode, making it difficult for the electrolyte to diffuse into the electrode. After that, even if the powder particles are discharged, the volume of the once expanded powder particles will hardly shrink, so diffusion during the electrolysis period will remain inhibited, making it difficult to discharge the lithium occluded inside the electrode. This is considered to be the main reason for the low discharge utilization rate. Previously, in order to improve the discharge utilization rate of powder electrodes, it is important to maintain the porosity of the electrodes.

そこで、発明者は、粉末電極の多孔度を維持するために
リチウムを吸蔵しないニッケル、チタン。
Therefore, the inventor developed nickel and titanium that do not absorb lithium in order to maintain the porosity of the powder electrode.

ステンレス、銅、鉄などの金属粉末を電極に添加した。Metal powders such as stainless steel, copper, and iron were added to the electrodes.

その結果、後の実施例に示すように電池の放電容量を著
しく向上させることができた。
As a result, the discharge capacity of the battery could be significantly improved as shown in the examples below.

なお、電極の電子伝導性を損なわないためには金属粉末
なと電子伝導性に優れた添加物を用いた方がよい。
In addition, in order not to impair the electronic conductivity of the electrode, it is better to use an additive with excellent electronic conductivity such as metal powder.

実施例 以下、本発明を好適な実施例を用いて説明する。Example The present invention will be explained below using preferred embodiments.

実施例では、アルミニウム合金についてだけ述へている
が、アルミニウムに代えてボロン、シリコンおよび鉛な
とのリチウムを吸蔵てきるその他の金属を用いてもよい
In the embodiment, only an aluminum alloy is described, but other metals capable of occluding lithium such as boron, silicon, and lead may be used instead of aluminum.

第1図のようなホタン型有機電解液電池を下記の要領で
試作した。70wt、XのL i CoO2,20wt
%:のアセチレンブラックおよび10 Ndtχのポリ
テトラフルオロエチレン(PTFE)を混合して正極合
剤とした。そして、この正極合剤を0.50.g採集し
て、325mesl+のステンレス製金網に包み込んで
、径か12mmで厚さが2.1丁の正極板ベレッ)(1
)を試作した。この正極板ベレットの放電容量は、0.
5モルのリチウムが吸蔵放出されるとした場合に約50
mAhである。
A hothane-type organic electrolyte battery as shown in FIG. 1 was prototyped in the following manner. 70wt, X Li CoO2, 20wt
%: of acetylene black and 10 Ndtχ of polytetrafluoroethylene (PTFE) were mixed to prepare a positive electrode mixture. Then, this positive electrode mixture was added to 0.50. g collected, wrapped it in a 325 mesl+ stainless steel wire mesh, and placed it in a positive electrode plate with a diameter of 12 mm and a thickness of 2.1 mm) (1
) was prototyped. The discharge capacity of this positive plate pellet is 0.
If 5 moles of lithium are intercalated and desorbed, approximately 50
It is mAh.

AI(94vt%)−Bi(5wt%)−Mn(1wt
*)合金をカスアトマイズ法によって平均粒径が8ミク
ロンの粉末に加工した。そして、このアルミニウム合金
粉末とINcO社製のTYPE255ニッケル粉末とを
重量比2:1て混合し、0.283採集して325me
shのステンレス金網に包み込んで径が10闘で厚さか
1.9闘の負極板ペレット(2)を試作した。
AI (94vt%) - Bi (5wt%) - Mn (1wt
*) The alloy was processed into powder with an average particle size of 8 microns by the cast atomization method. Then, this aluminum alloy powder and TYPE 255 nickel powder made by INcO were mixed at a weight ratio of 2:1, and 0.283 was collected and 325 me
A negative electrode plate pellet (2) with a diameter of 10 mm and a thickness of 1.9 mm was produced by wrapping it in a stainless steel wire mesh.

葉脈状の無孔部と、孔が3次元的に配列した有孔部とを
有する平均厚さが23ミクロンのポリエチレン製微孔膜
を直径14mmに打ち抜いて微孔性セパレーター(3)
を試作した。また、ポリプロピレンの不織布を12mm
に打ち抜いて平均厚さか0.2mmの不織布セパレータ
ー(4)を試作した。これらに1.0M過塩素酸リすウ
ム/エチレンカーボネート+アセトニトリル電解液を真
空含浸したのち、耐蝕性ステンレス鋼板製の正極缶(5
)、負極缶(6)、およびポリプロピレン製の絶縁力ス
ケット(7)からなる電池ケースに収納して径が15.
4闘で厚さが 4.8mmの本発明のボタン型有機電解
質電池(A)を試作した。
A microporous separator (3) made by punching a polyethylene microporous membrane with an average thickness of 23 microns into a diameter of 14 mm, which has a leaf-like non-porous part and a perforated part with three-dimensionally arranged pores.
We made a prototype. In addition, 12mm polypropylene nonwoven fabric
A non-woven fabric separator (4) having an average thickness of 0.2 mm was produced by punching out a sample. After vacuum impregnating these with 1.0M lithium perchlorate/ethylene carbonate + acetonitrile electrolyte, a positive electrode can made of corrosion-resistant stainless steel plate (5
), a negative electrode can (6), and a polypropylene insulation socket (7).
A button-type organic electrolyte battery (A) of the present invention having a thickness of 4.8 mm was manufactured using four tests.

また、前記N1粉末の代わりにFe、 CuおよびT1
の混合粉末を用いた以外は、前記(A)電池と同様の構
成を有する本発明の有機電解質電池(B)を試作した。
Also, instead of the N1 powder, Fe, Cu and T1
An organic electrolyte battery (B) of the present invention having the same configuration as the battery (A) above except that the mixed powder was used was fabricated.

また、前記N1粉末の代わりにSUS繊維(φ0.05
mm、長さ0.3mm)を用いた以外は、前記(A)電
池と同様の構成を有する本発明の有機電解質電池(C)
を試作した。
Also, instead of the N1 powder, SUS fiber (φ0.05
An organic electrolyte battery (C) of the present invention having the same configuration as the battery (A) above, except that a battery (mm, length 0.3 mm) was used.
We made a prototype.

つぎに、AI(94wt%)−Bi(5wt$)−Mn
(1wt$)合金粉末のみによって負極が構成されてい
る以外は、前記(A)電池と同様の構成を有する比較の
ための有機電解質電池(D)を試作した。
Next, AI (94wt%)-Bi (5wt$)-Mn
(1wt$) An organic electrolyte battery (D) for comparison having the same configuration as the battery (A) except that the negative electrode was composed of only the alloy powder was fabricated.

これらの電池を2mAで端子電圧が4.OVに至るまで
充電したのち2.5〜lまで放電した。このときの放電
容量を表1に示す。
These batteries are connected at 2mA and the terminal voltage is 4. After charging to OV, the battery was discharged to 2.5 to 1 liters. Table 1 shows the discharge capacity at this time.

表1 電池 放電容量(mAh) (A) (B) (C) (D) 表から明らかなように本発明の電池(A)。Table 1 battery Discharge capacity (mAh) (A) (B) (C) (D) As is clear from the table, the battery (A) of the present invention.

(B)、(C)は、比較のための電池(D)よりも放電
容量が多い。これは、負極の放電利用率が高いことに起
因している。
(B) and (C) have a higher discharge capacity than the comparative battery (D). This is due to the high discharge utilization rate of the negative electrode.

また、電池(A)と(D)とを前記の充放電条件でサイ
クル寿命試験にかけた。その結果を第2図に示す。本発
明の電池(A)か比較的良好な容量保持性能を示すのに
対して電池(D)は、急激に容量が低下している。これ
は、電池(D)は負極の放電利用率が低いために活物質
の一部が集中的に使われ、そのために急激に負極の劣化
が進むことに起因している。
In addition, batteries (A) and (D) were subjected to a cycle life test under the above charging and discharging conditions. The results are shown in FIG. While the battery (A) of the present invention exhibits relatively good capacity retention performance, the battery (D) exhibits a rapid decrease in capacity. This is because in battery (D), a part of the active material is used intensively due to the low discharge utilization rate of the negative electrode, which causes rapid deterioration of the negative electrode.

発明の効果 本発明の電池は、従来の電池に比較して放電容量が大き
く、サイクル寿命も長い。
Effects of the Invention The battery of the present invention has a larger discharge capacity and a longer cycle life than conventional batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の有機電解質電池の一例であるボタン
電池の内部構造を示した図。第2図は、本発明の電池(
A)と従来の電池(D)とのサイクル寿命性能の比較を
示した図。
FIG. 1 is a diagram showing the internal structure of a button battery, which is an example of the organic electrolyte battery of the present invention. FIG. 2 shows the battery of the present invention (
A diagram showing a comparison of cycle life performance between A) and a conventional battery (D).

Claims (1)

【特許請求の範囲】[Claims]  リチウムの吸蔵放出が可能な金属を主体とする金属粉
末またはそのリチウム合金粉末と、ニッケル、チタン、
ステンレス、銅、鉄などのリチウムを吸蔵しない金属の
粉末または繊維との混合物を用いた負極板を備えたこと
を特徴とする有機電解質電池。
Metal powder mainly composed of metals that can absorb and release lithium, or lithium alloy powder, and nickel, titanium,
An organic electrolyte battery characterized by having a negative electrode plate made of a mixture with powder or fiber of a metal that does not absorb lithium, such as stainless steel, copper, or iron.
JP2251379A 1990-09-19 1990-09-19 Organic electrolyte cell Pending JPH04129177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2251379A JPH04129177A (en) 1990-09-19 1990-09-19 Organic electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2251379A JPH04129177A (en) 1990-09-19 1990-09-19 Organic electrolyte cell

Publications (1)

Publication Number Publication Date
JPH04129177A true JPH04129177A (en) 1992-04-30

Family

ID=17221961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2251379A Pending JPH04129177A (en) 1990-09-19 1990-09-19 Organic electrolyte cell

Country Status (1)

Country Link
JP (1) JPH04129177A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514181A (en) * 2005-10-31 2009-04-02 ティ/ジェイ テクノロジーズ インコーポレイテッド High capacity electrodes and methods for their manufacture and use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514181A (en) * 2005-10-31 2009-04-02 ティ/ジェイ テクノロジーズ インコーポレイテッド High capacity electrodes and methods for their manufacture and use

Similar Documents

Publication Publication Date Title
JP3805876B2 (en) Nickel metal hydride battery
JP3825548B2 (en) Nickel metal hydride secondary battery
JPH11162459A (en) Nickel-hydrogen secondary battery
JP2001118597A (en) Alkaline secondary cell
JPH11162468A (en) Alkaline secondary battery
JPH04129177A (en) Organic electrolyte cell
JP3567021B2 (en) Alkaline secondary battery
JPH11288735A (en) Alkaline secondary battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2001223000A (en) Alkaline secondary battery
JP2001236930A (en) Secondary alkaline battery
JPH1040950A (en) Alkaline secondary battery
JP2003257474A (en) Secondary battery
JP3352205B2 (en) Nickel hydride rechargeable battery
JP2004127590A (en) Hydrogen storing alloy electrode and alkaline storage battery using the same
JPH1196999A (en) Sealed nickel-hydrogen secondary battery
JPH1021904A (en) Alkaline storage battery
JP2000021398A (en) Alkaline secondary battery
JP3213684B2 (en) Manufacturing method of alkaline secondary battery
JPH07220713A (en) Nickel-hydrogen secondary battery
JPH10334941A (en) Alkaline secondary battery
JPH1140161A (en) Paste type positive electrode and alkaline secondary battery
JPH11111283A (en) Sealed nickel hydrogen secondary battery
JPH11250903A (en) Nickel hydrogen storage battery
JPH07220711A (en) Nickel-hydrogen secondary battery