JPH04122589A - Articulated conveyor device in vacuum - Google Patents

Articulated conveyor device in vacuum

Info

Publication number
JPH04122589A
JPH04122589A JP24255790A JP24255790A JPH04122589A JP H04122589 A JPH04122589 A JP H04122589A JP 24255790 A JP24255790 A JP 24255790A JP 24255790 A JP24255790 A JP 24255790A JP H04122589 A JPH04122589 A JP H04122589A
Authority
JP
Japan
Prior art keywords
transmission mechanism
vacuum
arm
driven
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24255790A
Other languages
Japanese (ja)
Inventor
Takashi Asaishi
隆 浅石
Toshio Koike
土志夫 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP24255790A priority Critical patent/JPH04122589A/en
Publication of JPH04122589A publication Critical patent/JPH04122589A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To suppress the scattering of dust generated from a sliding part to a minimum by providing a cover to transmission mechanism that can be the dust generating source. CONSTITUTION:Transmission mechanisms 14, 15 provided between a pair of driven arms 12, 13 and a carrier base 18 is covered with a cover 19. The dust that may be generated in these transmission mechanisms 14, 15 is closed into this cover 19 so as to be substantially prevented from being scattered onto a processed article on the carrier base 18 or into a vacuum processing chamber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、真空処理装置内において被処理物を搬送する
のに用いられる多関節搬送装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a multi-joint transport device used to transport a workpiece within a vacuum processing apparatus.

[従来の技術] 真空中における多関節搬送装置の従来例としては例えば
特開昭60−183738号公報及び特開昭61180
949号公報に記載のものを挙げることができ1、これ
らの公報に開示されたものにおいては、二対のアームの
それぞれの一端を互いに連接し、一方の対のアームの他
端にはセグメントギアを介して搬送台を取り付け、他方
の対のアームの他端は回転できるようにされた支持台上
に互いに係合して回転可能に取り付けられたギアに結合
され、これらのギアは支持台の回転駆動源とは別個の駆
動源に連結され、他方の対のアームの他端に結合された
各ギアをそれの駆動源により駆動させることにより一方
の対のアームの他端に取り付けられた搬送台を支持台に
向う方向または支持台がら離れる方向へ直線運動させ、
また支持台を回転駆動することにより搬送台は支持台の
回転軸を中心として旋回できるように構成されている。
[Prior Art] Conventional examples of multi-joint transfer devices in vacuum include, for example, Japanese Patent Laid-Open No. 60-183738 and Japanese Patent Laid-Open No. 61180.
One example is the one described in Japanese Patent No. 949.1 In the examples disclosed in these publications, one end of each of two pairs of arms is connected to each other, and a segment gear is attached to the other end of one pair of arms. and the other ends of the other pair of arms are coupled to gears rotatably mounted in engagement with each other on the support which is rotatably adapted to rotate. A conveyor connected to a drive source separate from the rotational drive source and attached to the other end of one pair of arms by driving each gear connected to the other end of the other pair of arms by its drive source. Move the table linearly towards the support stand or away from the support stand,
Furthermore, by rotationally driving the support base, the conveyance base is configured to be able to pivot around the rotation axis of the support base.

しかし、このような多関節搬送装置は、搬送台を直進運
動させる機構と旋回運動させる機構とか独立しており、
構造か複雑であり、また搬送台上の被処理物を再現性よ
く高精度に位置決めすることが難しく、更に真空雰囲気
内で使用する場合には真空シールすべき部分が多く装置
自体が高価となる等の欠点があった。
However, in such a multi-joint transport device, the mechanism for moving the transport platform in a straight line and the mechanism for rotating the transport platform are independent.
The structure is complicated, and it is difficult to position the workpiece on the conveyor table with good reproducibility and high precision.Furthermore, when used in a vacuum atmosphere, there are many parts that need to be vacuum sealed, making the equipment itself expensive. There were drawbacks such as.

そこで本発明者らは先に特願平2−80064号におい
て別個の駆動源にそれぞれ伝動機構を介して結合された
同軸駆動軸にそれぞれ一端を回動自在に装着した一対の
駆動アームの他端にそれぞれ一対の従動アームの一端を
相互に回動自在に取り付け、従動アームの他端には伝動
機構を介して搬送台を取り付け、同軸駆動軸の回転駆動
を制御することにより搬送台を直進、旋回できるように
構成した真空処理装置で使用できるいわゆるフロッグレ
ッグ多関節搬送装置を提案した。
Therefore, the present inventors previously proposed in Japanese Patent Application No. 2-80064 a pair of drive arms, each of which has one end rotatably attached to a coaxial drive shaft connected to a separate drive source via a transmission mechanism. One end of a pair of driven arms is attached to each side so that they can rotate freely relative to each other, and a conveyance platform is attached to the other end of the driven arm via a transmission mechanism, and by controlling the rotational drive of the coaxial drive shaft, the conveyance platform can move straightly. We proposed a so-called frog-leg articulated transfer device that can be used in vacuum processing equipment configured to be able to rotate.

この提案により、軸シールの数を減少でき、伝動機構を
簡略化でき、それにより装置のコストを下げることがで
き、しかも搬送台の動きを高精度容易に制御できるよう
になった。
With this proposal, the number of shaft seals can be reduced, the transmission mechanism can be simplified, the cost of the device can be lowered, and the movement of the conveyor table can be easily controlled with high precision.

[発明が解決しようとする課題] ところで、このような先に提案したフロッグレッグ多関
節搬送装置においては、搬送台と対のアームとの間に設
けられた伝動機構は動作時に摺動によりダストを発生す
る。すなわちこの部分の伝動機構は線接触による摺動で
あるため、ダストが発生し易く、発生したダストは広範
囲に飛散し、真空チャンバの壁面や搬送台上の被処理物
(例えばウェハ)を汚染することになり、その結果、歩
留まりの低下を引き起こす等の問題がある。
[Problems to be Solved by the Invention] By the way, in the previously proposed frog-leg multi-joint transfer device, the transmission mechanism provided between the transfer table and the pair of arms slides to remove dust during operation. Occur. In other words, since the transmission mechanism in this part is a sliding motion based on line contact, dust is easily generated, and the generated dust scatters over a wide area and contaminates the walls of the vacuum chamber and the objects to be processed (e.g., wafers) on the carrier table. As a result, there are problems such as a decrease in yield.

ダストの問題に関しては、同軸駆動軸の軸受部にはシー
ルドタイプのベアリングが使用されていても、粒径の極
めて小さいダストは飛散し、問題となる。特に、この部
分は二本の駆動軸が逆向きに回転するため、相対回転速
度が速くなり、またこれらの駆動軸に取り付けられたア
ームのモーメント負荷があるためダストか発生しやすい
Regarding the problem of dust, even if shielded type bearings are used in the bearings of coaxial drive shafts, dust with extremely small particle diameters will scatter and become a problem. Particularly in this part, since the two drive shafts rotate in opposite directions, the relative rotational speed is high, and since there is a moment load from the arms attached to these drive shafts, dust is likely to be generated.

また同軸駆動軸とそれぞれの駆動源との間に設けられた
伝動機構に用いられた歯車部分において摺動部分が存在
するため、これらの部分からダスト発生も汚染源となる
問題がある。
Further, since there are sliding parts in the gear parts used in the transmission mechanism provided between the coaxial drive shaft and each drive source, there is a problem that dust generated from these parts becomes a source of contamination.

そこで、本発明は上記の問題点を解決してダストの影響
を実質的に防止できる真空中における多関節搬送装置を
提供することを目的としている。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a multi-joint transfer device in a vacuum that can solve the above-mentioned problems and substantially prevent the influence of dust.

また本発明の別の目的は、真空処理装置内の処理プロセ
スに影響を及はすダストの発生源を除去できる真空中に
おける多関節搬送装置を提供することにある。
Another object of the present invention is to provide a multi-joint transfer device in a vacuum that can eliminate sources of dust that affect the processing process within the vacuum processing device.

[課題を解決するための手段] 上記の第1の目的を達成するために、本発明によれば、
別個の駆動源に伝動機構を介して結合された同軸駆動軸
にそれぞれ一端を回動自在に装着した一対の駆動アーム
の他端にそれぞれ一対の従動アームの一端を相互に回動
自在に取り付け、従動アームの他端には伝動機構を介し
て搬送台を直進、旋回可能に取り付けた真空中における
多関節搬送装置において、一対の従動アームと搬送台と
の間に設けられた伝動機構にカバーが設けられることを
特徴としている。
[Means for Solving the Problems] In order to achieve the above first object, according to the present invention,
One end of each drive arm is rotatably attached to a coaxial drive shaft connected to a separate drive source via a transmission mechanism, and one end of each driven arm is rotatably attached to the other end of the pair of drive arms. In a vacuum multi-joint transfer device in which a transfer platform is attached to the other end of the driven arm via a transmission mechanism so that it can move straight and rotate, a cover is attached to the transmission mechanism provided between the pair of driven arms and the transfer platform. It is characterized by being provided.

好ましくは、各駆動源と同軸駆動軸との間に設けられた
各伝動機構もカバーで覆われる。
Preferably, each transmission mechanism provided between each drive source and the coaxial drive shaft is also covered with a cover.

また上記の別の目的を達成するために、本発明によれば
、別個の駆動源に伝動機構を介して結合された同軸駆動
軸にそれぞれ一端を回動自在に装着した一対の駆動アー
ムの他端にそれぞれ一対の従動アームの一端を相互に回
動自在に取り付け、従動アームの他端には伝動機構を介
して搬送台を直進、旋回可能に取り付けた真空中におけ
る多関節搬送装置において、一対の従動アームと搬送台
との間に設けられる伝動機構は磁気歯車で構成されるこ
とを特徴としている。
In order to achieve the above-mentioned other object, the present invention provides a pair of drive arms each having one end rotatably attached to a coaxial drive shaft coupled to a separate drive source via a transmission mechanism. In a multi-joint transfer device in vacuum, one end of a pair of driven arms is attached to each end so that they can rotate freely relative to each other, and a transfer platform is attached to the other end of the driven arm via a transmission mechanism so that it can move straight and rotate. The transmission mechanism provided between the driven arm and the conveyance table is characterized by being composed of magnetic gears.

またこの別の目的を達成するために、好ましくは同軸駆
動軸の軸受は反発型受動磁気軸受で構成される。
In order to achieve this other objective, the bearing of the coaxial drive shaft is preferably a repulsive passive magnetic bearing.

[作  用コ このように構成した本発明による真空中における多関節
搬送装置においては、一対の従動アームと搬送台との間
に設けられた伝動機構をカバーで覆っているので、この
伝動機構において発生され得るダストはカバー内に閉じ
こめられ、搬送台上の被処理物や真空処理室内への飛散
は実質的に防止され得る。
[Operation] In the multi-joint transfer device in vacuum according to the present invention configured as described above, the transmission mechanism provided between the pair of driven arms and the transfer table is covered with a cover, so that the transmission mechanism Any dust that may be generated is confined within the cover, and can be substantially prevented from scattering into the workpiece on the conveyor table or into the vacuum processing chamber.

また、各駆動源と同軸駆動軸との間に設けられた各伝動
機構をカバーで覆った場合には、これらの伝動機構にお
いて発生され得るダストの飛散も防止され、それにより
ダストの影響を更に低減することができる。
In addition, if each transmission mechanism provided between each drive source and the coaxial drive shaft is covered with a cover, the dust that may be generated in these transmission mechanisms is also prevented from scattering, thereby further reducing the influence of dust. can be reduced.

一方、一対の従動アームと搬送台との間に設けられる伝
動機構を磁気歯車で構成した場合には、磁気歯車は非接
触構造であるので、伝動機構に摺動部はなくなり、従っ
てダストの発生は避けられる。またこの場合に更に、同
軸駆動軸の軸受を反発型受動磁気軸受で構成することに
より、同軸駆動軸の軸受部分も非接触となるので、この
部分からのダスト発生もなくすことができる。
On the other hand, when the transmission mechanism provided between the pair of driven arms and the transfer platform is constructed of magnetic gears, the magnetic gears have a non-contact structure, so there are no sliding parts in the transmission mechanism, and therefore dust is generated. can be avoided. Furthermore, in this case, by configuring the bearing of the coaxial drive shaft with a repulsion type passive magnetic bearing, the bearing portion of the coaxial drive shaft also becomes non-contact, so that dust generation from this portion can also be eliminated.

[実施例] 以下、添付図面を参照して本発明の実施例について説明
する。
[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図には本発明の実施の対象としている多関節搬送装
置の一例の要部の構成を概略的に示し、第1図において
、1は、中実軸2と中空軸3とが上部軸受4及び下部軸
受5を介して同軸に構成され、しかも互いに独立して同
心的に回転できるようにされた同軸駆動軸であり、中実
軸2は中空軸3の両端から突出して延びている。中実軸
2及び中空軸3の下方端はそれぞれ歯車から成る伝動機
構6.7を介して別個の駆動モータ8.9に連結されて
いる。これらの駆動モータ8.9は可逆モータ、パルス
モータ等から成り得、中実軸2及び中空軸3の回転方向
、回動または回転量を制御できるように構成されている
FIG. 1 schematically shows the configuration of the main parts of an example of a multi-joint conveyance device that is a target of the present invention. In FIG. 4 and a lower bearing 5, and are coaxial drive shafts that can rotate concentrically independently of each other, and the solid shaft 2 protrudes and extends from both ends of the hollow shaft 3. The lower ends of the solid shaft 2 and the hollow shaft 3 are each connected via a gear transmission 6.7 to a separate drive motor 8.9. These drive motors 8.9 can be comprised of reversible motors, pulse motors, etc., and are configured to be able to control the rotation direction, rotation, or amount of rotation of the solid shaft 2 and the hollow shaft 3.

また中実軸2及び中空軸3の上端には一対の駆動アーム
l0111の一端がそれぞれ固定され、これらの駆動ア
ーム10、llの他端は一対の従動アーム12.13の
一端にそれぞれ回動自在に連結されている。この従動ア
ーム12.13の他端には互いに係合する歯車14.1
5が取り付けられ、これらの歯車14.15の軸16.
17には被処理物(例えば半導体ウェハ)の搬送台18
が取り付けられている。歯車14.15は軸16.17
を中心として回動てきるようにされている。従って中実
軸2及び中空軸3を同じ方向に回転させると、搬送台1
8は同軸駆動軸1を中心として旋回され、また中実軸2
及び中空軸3を反対方向に回転させると、多対のアーム
は互いに開く方向または閉しる方向に動き、それにより
搬送台18は同軸駆動軸1に向う方向または同軸駆動軸
1から離れる方向に直進運動する。
Further, one end of a pair of drive arms 10111 is fixed to the upper ends of the solid shaft 2 and the hollow shaft 3, respectively, and the other ends of these drive arms 10 and 11 are rotatably attached to one end of a pair of driven arms 12 and 13, respectively. is connected to. At the other end of this driven arm 12.13 are gears 14.1 that engage with each other.
5 are attached to the shafts 16.15 of these gears 14.15.
17 is a transport table 18 for the object to be processed (for example, a semiconductor wafer).
is installed. Gear 14.15 is connected to shaft 16.17
It is designed to rotate around the center. Therefore, when the solid shaft 2 and the hollow shaft 3 are rotated in the same direction, the transport platform 1
8 is pivoted around a coaxial drive shaft 1 and also has a solid shaft 2
When the hollow shaft 3 is rotated in the opposite direction, the multiple pairs of arms move toward each other in the direction of opening or closing, thereby moving the carrier 18 toward or away from the coaxial drive shaft 1. Move in a straight line.

本発明はこのような多関節搬送装置における各摺動部に
ダスト対策を施すものであり、第2図及び第3図にはそ
の一実施例が示されている。なお、以下の各実施例の説
明において第1図に対応した部分は第1図と同じ符号で
示す。
The present invention provides dust countermeasures for each sliding portion in such a multi-joint conveyance device, and one embodiment thereof is shown in FIGS. 2 and 3. In the following description of each embodiment, parts corresponding to those in FIG. 1 are designated by the same reference numerals as in FIG. 1.

第2図及び第3図に搬送台18の下側において、従動ア
ーム12.13の先端部はそれぞれほぼ垂直に曲げられ
、その先端に歯車14、■5がそれぞれ装着されている
。そしてこれらの歯車14.15を囲んでカバー19が
取り付けられている。このカバー19は第3図に示すよ
うに各従動アーム12.13の先端屈曲部を通す開口の
周縁部20は各アームに沿って上向きに折り曲げられ、
これにより歯車14.15及び軸受部の摺動部から発生
したダストがアーム12.13の移動によってこれらの
開口から落ちないようにしている。また従動アーム12
.13の先端部をほぼ垂直に曲げることにより、動作時
にカバー19の開口に対して従動アームの動きが単に回
動運動だけとなり、それにより開口の大きさを最小にで
き、発生したダストがカバー19の外へ飛び出す確率を
最少となるようにしている。
In FIGS. 2 and 3, the distal ends of the driven arms 12 and 13 are bent approximately vertically on the lower side of the conveyance table 18, and gears 14 and 5 are respectively attached to the distal ends. A cover 19 is attached surrounding these gears 14 and 15. As shown in FIG. 3, this cover 19 has a peripheral edge 20 of an opening through which the bent end of each driven arm 12.13 passes, and is bent upward along each arm.
This prevents dust generated from the sliding parts of the gears 14, 15 and the bearings from falling out of these openings due to the movement of the arms 12, 13. Also, the driven arm 12
.. By bending the tip of the cover 13 almost vertically, the movement of the driven arm relative to the opening of the cover 19 during operation is only a rotational movement, thereby minimizing the size of the opening, and the generated dust is removed from the cover 19. The probability of it jumping out is minimized.

第4図は別の実施例を示し、この実施例では同軸駆動軸
1の中実軸2及び中空軸3の下端と各駆動モータ8.9
との間の伝動機構6.7を覆うカバー21が設けられて
いる。カバー21は図示したように中空軸3の下端を囲
み、中空軸3の下端との間の開口縁部22は下方向に折
り曲げられ、伝動機構6.7及び下部軸受5における摺
動部で発生されたダストが舞い上がってもこの開口縁部
から出難くいようにされている。
FIG. 4 shows another embodiment, in which the lower ends of the solid shaft 2 and the hollow shaft 3 of the coaxial drive shaft 1 and the respective drive motors 8.9
A cover 21 is provided which covers the transmission mechanism 6.7 between. The cover 21 surrounds the lower end of the hollow shaft 3 as shown, and the opening edge 22 between the lower end of the hollow shaft 3 and the lower end is bent downward, and the sliding part of the transmission mechanism 6.7 and the lower bearing 5 occurs. Even if dust is thrown up, it is difficult to escape from the edge of the opening.

第5図は更に別の実施例を示し、この実施例ではダスト
発生源をなくすように構成されている。
FIG. 5 shows yet another embodiment, which is constructed to eliminate dust sources.

すなわち、第1図の従動アーム12.13の先端に設け
られた互いに係合する歯車14.15の代わりに磁′気
歯車24.25が用いられ、各磁気歯車は、真空中ての
放出ガス量をできるだけ少なくするため、電気鉄にC「
またはNi鍍金を施したものや5US440Cに着磁し
たもの或いは永久磁石にC「またはNi鍍金を施したも
のが用いられ、そして各磁気歯車の歯は図示したように
着磁され、または永久磁石を用いる場合にはその永久磁
石を歯部に接着し、歯車状に成形する。それにより磁気
歯車24.25は磁気反発力の作用で互いに無接触状態
て回動てきる。
That is, magnetic gears 24.25 are used in place of the mutually engaging gears 14.15 provided at the ends of the driven arms 12.13 in FIG. In order to minimize the amount of
Alternatively, a Ni-plated gear, a magnetized 5US440C, or a permanent magnet coated with C or Ni plating is used, and the teeth of each magnetic gear are magnetized as shown in the figure, or a permanent magnet is used. When used, the permanent magnets are bonded to the teeth and formed into a gear shape.Thereby, the magnetic gears 24, 25 rotate without contacting each other due to the effect of magnetic repulsion.

各磁気歯車24.25の着磁の仕方は第6図及び第7図
に示すようにすることもてきる。
The magnetic gears 24, 25 may be magnetized as shown in FIGS. 6 and 7.

第8図には変形実施例を示し、この場合には一対の従動
アームの先端にそれぞれ回動輪26.27を取り付け、
これらの回動輪26.27が互いに部分的に接触せずに
重なり合うように構成され、各回動輪26.27の周縁
部は図示したように着磁される。
FIG. 8 shows a modified embodiment, in which rotating wheels 26 and 27 are attached to the tips of a pair of driven arms, respectively.
These rotating wheels 26, 27 are configured to overlap each other without partially contacting each other, and the peripheral edge of each rotating wheel 26, 27 is magnetized as shown.

これにより従動アーム12.13の動きに応じて回動輪
26.27は磁気吸引力の作用で互いに無接触状態で回
動できる。
Accordingly, in accordance with the movement of the driven arm 12.13, the rotary wheels 26.27 can be rotated without contacting each other due to the effect of magnetic attraction.

第9図には本発明の更に別の実施例を示し、この実施例
では第1図に示す同軸駆動軸1の上部軸受4は磁気軸受
で構成される。すなわち中実軸2の周囲には磁極28が
設けられ、またこの磁極28に対向した位置において中
空軸3の内周壁には磁極29が設けられ、これらの磁極
28.29は互いに対向した面が同極すなわちN極また
はS極となるように着磁され、それにより反発力で互い
に接触せず保持できる反発型受動磁気軸受を構成してい
る。
FIG. 9 shows yet another embodiment of the present invention, in which the upper bearing 4 of the coaxial drive shaft 1 shown in FIG. 1 is constituted by a magnetic bearing. That is, a magnetic pole 28 is provided around the solid shaft 2, and a magnetic pole 29 is provided on the inner circumferential wall of the hollow shaft 3 at a position facing the magnetic pole 28, and these magnetic poles 28, 29 have mutually opposing surfaces. They are magnetized to have the same poles, that is, N or S poles, thereby forming a repulsive passive magnetic bearing that can be held without contacting each other by repulsive force.

この場合、下部軸受5は第1図の通常の軸受を使用して
保持しているため、これらの磁極に対して特に制御回路
を設ける必要はない。
In this case, since the lower bearing 5 is held using the normal bearing shown in FIG. 1, there is no need to provide a control circuit for these magnetic poles.

このように構成することにより、搬送台に近い側の軸受
が非接触構造となり、摺動によるダストの発生を避ける
ことができる。
With this configuration, the bearing on the side closer to the transfer table has a non-contact structure, and generation of dust due to sliding can be avoided.

ところで、以上説明では第1図に示す多関節搬送装置に
関しての実施例について例示してきたが、当然本発明は
、他の形式の多関節搬送装置にも適用でき、歯車等から
成る伝動機構や軸受等のダスト発生源となる摺動部を備
えた形式のものであればいかなる形式の多関節搬送装置
も対象となり得る。
By the way, in the above explanation, the embodiment related to the multi-joint transport device shown in FIG. Any type of multi-joint transport device can be used as long as it is equipped with a sliding part that is a source of dust generation.

[発明の効果コ 以上説明してきたように、本発明の第1の特徴によれば
、ダスト発生源となり得る伝動機構にカバーを設けてい
るので、摺動部から発生したダストの飛散を最少限度に
抑えることができ、その結果真空処理室内及び被処理物
のダストによる汚染を少なくして、歩留まりを向上させ
ることができる。
[Effects of the Invention] As explained above, according to the first feature of the present invention, since a cover is provided on the transmission mechanism that can be a source of dust generation, scattering of dust generated from sliding parts can be minimized. As a result, contamination by dust inside the vacuum processing chamber and the objects to be processed can be reduced, and the yield can be improved.

また本発明の別の特徴によれば、ダスト発生源となり得
る摺動部を備えた伝動機構や軸受の代わりに非接触型の
磁気歯車や磁気軸受を使用しているので、ダスト発生源
を実質的になくすことができ、それによりダストの影響
が避けられ、真空プロセスの歩留まりを更に向上させる
ことができる。
According to another feature of the present invention, non-contact magnetic gears and magnetic bearings are used instead of transmission mechanisms and bearings with sliding parts that can be sources of dust, so that the sources of dust can be virtually eliminated. Therefore, the influence of dust can be avoided, and the yield of the vacuum process can be further improved.

更に摺動によるガスの発生かないため、より低い雰囲気
圧力で使用することができるようになる。
Furthermore, since no gas is generated due to sliding, it can be used at lower atmospheric pressures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明か実施されることになる多関節搬送装置
の一例を示す概略斜視図、第2図及び第3図は、本発明
を第1図の装置の従動アームと搬送台との部分に実施し
た例を示す概略底面図及び環路線断面図、第4図は本発
明を第1図の装置の同軸駆動軸と駆動モータとの間の伝
動機構に実施した例を示す概略部分断面図、第5図は本
発明を第1図の装置の従動アームと搬送台との部分に実
施した別の例を示す概略部分図、第6図は第5図の実施
例の変形を示す概略部分拡大図、第7図は第5図の実施
例の別の変形を示す概略部分拡大図、第8図は第5図の
実施例の更に別の変形を示す概略拡大部分側面図、第9
図は本発明を第1図の装置の同軸駆動軸の軸受部に実施
した例を示す概略拡大部分断面斜視図である。 図   中 1:同軸駆動軸 2:中実軸 3:中空軸 4、上部軸受 6.7:伝動機構 12.13:従動アーム ■4.15:伝動機構 19.21:カバー 24.25:磁気歯車 26.27:回動輪 28.29:磁気軸受 第1図 第2図 第3図 第4閑 第9図 第5図 第6図 第7図 第8図
FIG. 1 is a schematic perspective view showing an example of a multi-joint transfer device in which the present invention will be implemented, and FIGS. FIG. 4 is a schematic partial cross-sectional view showing an example in which the present invention is implemented in a transmission mechanism between a coaxial drive shaft and a drive motor of the device shown in FIG. 5 is a schematic partial view showing another example in which the present invention is implemented in the driven arm and conveyance table portion of the device shown in FIG. 1, and FIG. 6 is a schematic partial view showing a modification of the embodiment shown in FIG. 5. FIG. 7 is a schematic enlarged partial view showing another modification of the embodiment shown in FIG. 5; FIG. 8 is a schematic enlarged partial side view showing still another modification of the embodiment shown in FIG. 5;
1 is a schematic enlarged partial cross-sectional perspective view showing an example in which the present invention is implemented in a bearing portion of a coaxial drive shaft of the apparatus shown in FIG. 1. FIG. Figure Middle 1: Coaxial drive shaft 2: Solid shaft 3: Hollow shaft 4, upper bearing 6.7: Transmission mechanism 12.13: Followed arm ■4.15: Transmission mechanism 19.21: Cover 24.25: Magnetic gear 26.27: Rotating wheel 28.29: Magnetic bearing Fig. 1 Fig. 2 Fig. 3 Fig. 4 Blank Fig. 9 Fig. 5 Fig. 6 Fig. 7 Fig. 8

Claims (1)

【特許請求の範囲】 1、別個の駆動源に伝動機構を介して結合された同軸駆
動軸にそれぞれ一端を回動自在に装着した一対の駆動ア
ームの他端にそれぞれ一対の従動アームの一端を相互に
回動自在に取り付け、従動アームの他端には伝動機構を
介して搬送台を直進、旋回可能に取り付けた真空中にお
ける多関節搬送装置において、一対の従動アームと搬送
台との間に設けた伝動機構にカバーを設けたことを特徴
とする真空中における多関節搬送装置。 2、別個の駆動源に伝動機構を介して結合された同軸駆
動軸にそれぞれ一端を回動自在に装着した一対の駆動ア
ームの他端にそれぞれ一対の従動アームの一端を相互に
回動自在に取り付け、従動アームの他端には伝動機構を
介して搬送台を直進、旋回可能に取り付けた真空中にお
ける多関節搬送装置において、各駆動源と同軸駆動軸と
の間に設けた各伝動機構をカバーで覆ったことを特徴と
する真空中における多関節搬送装置。 3、別個の駆動源に伝動機構を介して結合された同軸駆
動軸にそれぞれ一端を回動自在に装着した一対の駆動ア
ームの他端にそれぞれ一対の従動アームの一端を相互に
回動自在に取り付け、従動アームの他端には伝動機構を
介して搬送台を直進、旋回可能に取り付けた真空中にお
ける多関節搬送装置において、一対の従動アームと搬送
台との間に設けた伝動機構を磁気歯車で構成したことを
特徴とする真空中における多関節搬送装置。 4、別個の駆動源に伝動機構を介して結合された同軸駆
動軸にそれぞれ一端を回動自在に装着した一対の駆動ア
ームの他端にそれぞれ一対の従動アームの一端を相互に
回動自在に取り付け、従動アームの他端には伝動機構を
介して搬送台を直進、旋回可能に取り付けた真空中にお
ける多関節搬送装置において、同軸駆動軸の軸受を反発
型受動磁気軸受で構成したことを特徴とする真空中にお
ける多関節搬送装置。
[Claims] 1. One end of a pair of drive arms is rotatably attached to a coaxial drive shaft connected to a separate drive source via a transmission mechanism, and one end of a pair of driven arms is connected to the other end of each drive arm. In a multi-joint transfer device in a vacuum, in which the driven arms are attached to each other so that they can rotate freely, and the conveyance table is attached to the other end of the driven arm via a transmission mechanism so that it can move straight and rotate, there is a A multi-joint transfer device in vacuum, characterized in that a cover is provided on the provided transmission mechanism. 2. One end of each drive arm is rotatably attached to a coaxial drive shaft connected to a separate drive source via a transmission mechanism, and one end of each of the pair of driven arms is rotatably attached to the other end of each drive arm. In a multi-joint transfer device in vacuum, in which a transfer platform is attached to the other end of the driven arm via a transmission mechanism so that it can move straight and rotate, each transmission mechanism installed between each drive source and the coaxial drive shaft is installed. A multi-joint transfer device in a vacuum characterized by being covered with a cover. 3. One end of each drive arm is rotatably attached to a coaxial drive shaft connected to a separate drive source via a transmission mechanism, and one end of each of the pair of driven arms is rotatably attached to the other end of each drive arm. At the other end of the driven arm, a transmission mechanism is attached to the other end of the driven arm so that it can move straight and rotate in a multi-joint conveyor system in vacuum. A multi-joint transfer device in vacuum characterized by being composed of gears. 4. One end of each drive arm is rotatably attached to a coaxial drive shaft connected to a separate drive source via a transmission mechanism, and one end of a pair of driven arms is rotatably attached to the other end of each drive arm. A multi-joint transfer device in a vacuum in which a transfer platform is attached to the other end of the driven arm via a transmission mechanism so that it can move straight and rotate, is characterized in that the bearing of the coaxial drive shaft is configured with a repulsion type passive magnetic bearing. Multi-joint transfer device in vacuum.
JP24255790A 1990-09-14 1990-09-14 Articulated conveyor device in vacuum Pending JPH04122589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24255790A JPH04122589A (en) 1990-09-14 1990-09-14 Articulated conveyor device in vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24255790A JPH04122589A (en) 1990-09-14 1990-09-14 Articulated conveyor device in vacuum

Publications (1)

Publication Number Publication Date
JPH04122589A true JPH04122589A (en) 1992-04-23

Family

ID=17090870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24255790A Pending JPH04122589A (en) 1990-09-14 1990-09-14 Articulated conveyor device in vacuum

Country Status (1)

Country Link
JP (1) JPH04122589A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014555A1 (en) * 1993-11-22 1995-06-01 Sony Corporation Multi-joint arm type carrying device
WO1997021525A1 (en) * 1995-12-15 1997-06-19 Brooks Automation Inc. Wide wrist articulated arm transfer device
WO2000030173A1 (en) * 1998-11-17 2000-05-25 Tokyo Electron Limited Conveyor system
JP2012006143A (en) * 2011-08-23 2012-01-12 Ulvac Japan Ltd Substrate conveying robot
JP2012228737A (en) * 2011-04-25 2012-11-22 Minebea Co Ltd Coolant ejection device
JP2017024152A (en) * 2015-07-28 2017-02-02 東京エレクトロン株式会社 Attitude maintenance mechanism of holding part

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014555A1 (en) * 1993-11-22 1995-06-01 Sony Corporation Multi-joint arm type carrying device
GB2298934A (en) * 1993-11-22 1996-09-18 Sony Corp Multi-joint arm type carrying device
US5725352A (en) * 1993-11-22 1998-03-10 Sony Corporation Multi-articulate arm type transport device
GB2298934B (en) * 1993-11-22 1998-03-25 Sony Corp Multi-articulate arm type transport device
WO1997021525A1 (en) * 1995-12-15 1997-06-19 Brooks Automation Inc. Wide wrist articulated arm transfer device
US5743704A (en) * 1995-12-15 1998-04-28 Brooks Automation, Inc. Wide wrist articulated arm transfer device
WO2000030173A1 (en) * 1998-11-17 2000-05-25 Tokyo Electron Limited Conveyor system
JP2012228737A (en) * 2011-04-25 2012-11-22 Minebea Co Ltd Coolant ejection device
JP2012006143A (en) * 2011-08-23 2012-01-12 Ulvac Japan Ltd Substrate conveying robot
JP2017024152A (en) * 2015-07-28 2017-02-02 東京エレクトロン株式会社 Attitude maintenance mechanism of holding part
TWI694907B (en) * 2015-07-28 2020-06-01 日商東京威力科創股份有限公司 Posture maintaining mechanism of holding part

Similar Documents

Publication Publication Date Title
US20200001451A1 (en) Unequal link scara arm
US5227708A (en) Two-axis magnetically coupled robot
TWI577513B (en) Magnetic rotational hardstop for robot
JP5004052B2 (en) Method for reciprocating a workpiece through an ion beam
JP3030667B2 (en) Transfer device
EP0423608B1 (en) Two-axis magnetically coupled robot
JP4784872B2 (en) Reciprocating drive for scanning a workpiece
KR101434811B1 (en) Rotation range restriction mechanism for rotating body, and industrial robot
US5975834A (en) Two-armed transfer robot
US5209699A (en) Magnetic drive device
KR0168697B1 (en) Industrial robot
JPH07335173A (en) Scanning and tilting device for ion implantation machine
JPH04122589A (en) Articulated conveyor device in vacuum
JP4545996B2 (en) Robot hand drive
JP4817480B2 (en) Ion implanter
JP2002066976A (en) Vacuum robot for carrying substrate
JPS629635A (en) Rotary drying device for semiconductor wafer
JP2919065B2 (en) Transfer device
JPH0623687A (en) Robot
JPS63296235A (en) Wafer transfer device
JP2005236218A (en) Transfer robot for semiconductor wafer, and treatment apparatus equipped with it
JPH03281183A (en) Articulated conveying device
JPH11254378A (en) Substrate handling robot
JPH07241787A (en) Balancer for industrial robot
JPH04264749A (en) Wafer transfer robot