JPH04116437A - Differential pressure measuring apparatus with flange - Google Patents

Differential pressure measuring apparatus with flange

Info

Publication number
JPH04116437A
JPH04116437A JP23807790A JP23807790A JPH04116437A JP H04116437 A JPH04116437 A JP H04116437A JP 23807790 A JP23807790 A JP 23807790A JP 23807790 A JP23807790 A JP 23807790A JP H04116437 A JPH04116437 A JP H04116437A
Authority
JP
Japan
Prior art keywords
differential pressure
central
connecting body
cylinder
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23807790A
Other languages
Japanese (ja)
Inventor
Hironobu Yao
博信 矢尾
Tadanori Yuhara
湯原 忠徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP23807790A priority Critical patent/JPH04116437A/en
Publication of JPH04116437A publication Critical patent/JPH04116437A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an apparatus capable of measuring the differential pressure even when one fluid related to the differential pressure is at high temperature by providing a radiation means for a coupling body of a flange and a differential pressure detector. CONSTITUTION:A coupling body 10 formed of material with high thermal conductivity passes through a central hole 11 having a liquid sealed in the central part thereof. One pressure P1 is transmitted to a differential pressure detector 1 via the central hole 11. The coupling body is provided with a spiral flow- through hole 12 for a refrigerant liquid around the central hole 11. While a refrigerant liquid enters from an opening of the flow-through hole 12 and flows while turning in the periphery of the central hole 11, the liquid absorbs the heat of a liquid to be measured at high temperature and then flows outside. Accordingly, even when the liquid to be measured is of high temperature, proper measurement is achieved.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、差圧の一方の圧力を受けるシールダイヤフ
ラム付きのフランジと、差圧の他方の圧力が導入される
差圧検出器とを連結し、内部に一方の圧力の差圧検出器
への伝達用封入液が充填される連結体を有する装置であ
って、とくに一方の圧力に係る流体が高温のときでも測
定可能なように、連結体に放熱手段を設けたフランジ付
き差圧測定装置に関する。
This invention connects a flange with a seal diaphragm that receives one pressure of the differential pressure and a differential pressure detector into which the other pressure of the differential pressure is introduced, and internally connects one pressure to the differential pressure detector. This invention relates to a flange-equipped differential pressure measuring device, which has a connecting body filled with a sealed fluid for transmission, and in particular has a heat dissipation means in the connecting body so that measurement can be performed even when the fluid related to one pressure is at a high temperature. .

【従来の技術】 従来例について、その断面図である第8図を参照しなが
ら説明する。この従来例は、主にタンク内の水位を、そ
の底部における圧力に基づいて測定する。すなわら、一
方の圧力をタンク底部での圧力とし、他方の圧力を大気
圧として、この各圧力の差つまり差圧によってタンクの
水位を求めるものである。 第8図において、差圧検出器1の主部の左右に、それぞ
れOリング2を介して各カバー3.4が取りイ」ジノら
れる。左側のカバー3と、連結管60と、基台6とが一
体的に溶接され、この基台6には、フランジ5と、シー
ルダイヤフラム、 7とがン容接、またはネジ止めされ
る。シールクイA・フラム7に接する基台6の凹部空間
と、連結管60の中空部と、差圧検出器1の主部の左端
面側に係るカバ3の内部空間とには、圧力伝達媒体とし
ての封入液8が充填される。なお、フランジ5ば、装置
全体を図示してないタンクの底部外壁に取り付けるため
に用いられる。 一方の圧力、たとえばタンク底部での、貯蔵液の水位に
基づく圧力は、シールダイヤフラム7の外面に作用し、
封入液8を介して差圧検出器1の主部の左端面に伝達さ
れる。他方の圧力、たとえば大気圧は、右側のカバー4
の導圧孔から導入されて直接、差圧検出器1の主部の右
端面に作用する。この一方、他方の各圧力の差、つまり
差圧が差圧検出器1によって測定される。
2. Description of the Related Art A conventional example will be described with reference to FIG. 8, which is a sectional view thereof. This conventional example mainly measures the water level in the tank based on the pressure at its bottom. That is, one pressure is the pressure at the bottom of the tank and the other pressure is atmospheric pressure, and the water level in the tank is determined from the difference between these pressures, that is, the differential pressure. In FIG. 8, covers 3.4 are removed on the left and right sides of the main portion of the differential pressure detector 1 via O-rings 2, respectively. The left cover 3, the connecting pipe 60, and the base 6 are integrally welded, and the flange 5 and the seal diaphragm 7 are connected to the base 6 with a gun or screws. The recessed space of the base 6 in contact with the seal pulley A/flamm 7, the hollow part of the connecting pipe 60, and the internal space of the cover 3 on the left end side of the main part of the differential pressure detector 1 are filled with a pressure transmission medium. Filled liquid 8 is filled. The flange 5 is used to attach the entire device to the bottom outer wall of a tank (not shown). One pressure, for example the pressure based on the level of the stored liquid at the bottom of the tank, acts on the outer surface of the sealing diaphragm 7,
It is transmitted to the left end surface of the main part of the differential pressure detector 1 via the sealed liquid 8. The other pressure, for example atmospheric pressure, is placed on the right cover 4.
It is introduced from the pressure guiding hole and directly acts on the right end surface of the main part of the differential pressure detector 1. The difference between the one pressure and the other pressure, that is, the differential pressure is measured by the differential pressure detector 1.

【発明が解決しようとする課題】[Problem to be solved by the invention]

以上説明したような従来の技術では、第8図において、
シールダイヤフラム8の外面と接する流体が高温の場合
には、フランジ5、基台6はもちろん、封入液8も高温
になり、その結果、差圧検出器1も高温度に加熱される
。差圧検出器1が高温になると、適正な差圧検出がてき
なくだけでなく、極端な場合には破壊に至るおそれもあ
る。 この発明の課題は、従来の技術かもつ以上の問題点を解
消し、差圧の一方の圧力に係る流体が高温のときでも測
定可能なフランジ付き差圧測定装置を提供することにあ
る。
In the conventional technology as explained above, in FIG.
When the fluid in contact with the outer surface of the seal diaphragm 8 is at a high temperature, not only the flange 5 and the base 6 but also the sealed liquid 8 become high temperature, and as a result, the differential pressure detector 1 is also heated to a high temperature. If the differential pressure detector 1 becomes hot, not only will it not be able to properly detect the differential pressure, but in extreme cases it may even be destroyed. An object of the present invention is to provide a flanged differential pressure measuring device that solves the above-mentioned problems of the prior art and is capable of measuring even when the fluid related to one pressure of the differential pressure is at a high temperature.

【課題を解決するだめの手段】[Means to solve the problem]

この課題を解決するために、請求項1に係るフランジ付
き差圧測定装置は、 差圧の一方の圧力を受けるシールダイヤフラム付きのフ
ランジと、前記差圧の他方の圧力が導入される差圧検出
器とを連結し、内部に前記一方の圧力の前記差圧検出器
への伝達用封入液が充填される連結体を有する装置にお
いて、 前記連結体は、放熱手段を備える。 請求項2に係るフランシイ」き差圧測定装置は、請求項
1に記載の装置において、 連結体は、封入液の充填空間と隔離され、かつこれを包
囲する形で形成される冷却液貫流用孔を(Iihえる。 請求項3に係るフランジ付き差圧測定装置は、請求項]
に記載の装置において、 連結体は、封入液が充填される中心筒体と、その外周面
にこれと直交する形で一体的に設けられる板状放熱フィ
ンとを備える。 請求項4に係るフランシイ」き差圧測定装置は、請求項
1に記載の装置において、 連結体は、封入液が充填される中心筒体と、その外周面
と直交する板状放熱フィンの中心部を貫通ずる形でこの
放熱フィンと一体的に形成されるフイン付き筒部とを備
え、 このフィン付き筒部ば、その軸線を含む平面で分割され
、前記中心筒体の外周面と面接触する形で着脱可能に構
成される。 請求項5に係るフランジ付き差圧測定装置は、請求項1
に記載の装置において、 連結体は、封入液が充填される中心筒体と、その外周面
からその軸線を含む方向に放射状に突出する形で一体的
に設けられる板状放熱フィンとを備える。 請求項6に係るフランシイ」き差圧測定装置は、請求項
1に記載の装置において、 連結体は、封入液が充填される中心筒体と、その外周面
からその軸線を含む方向に放射状に突出する板状放熱フ
ィンの中心部に位置し、この放熱フィンと一体的に形成
されるフィン付き筒部とを備え、 このフィン付き筒部は、その軸線を含む平面で分割され
、前記中心筒体の外周面と面接触する形で着脱可能に構
成される。 請求項7に係るフランジ付き差圧測定装置は、請求項4
または6に記載の装置において、連結体は、中心筒体と
フィン付き筒部との接触面間に、熱伝導率の大きいペー
スト状物質が塗布充填される。
In order to solve this problem, the flanged differential pressure measuring device according to claim 1 includes: a flange with a seal diaphragm that receives one side of the differential pressure, and a differential pressure sensor into which the other pressure of the differential pressure is introduced. In the device, the connecting body is connected to a pressure sensor and is filled with a sealed liquid for transmitting the one pressure to the differential pressure detector, wherein the connecting body includes a heat radiation means. The Franchy differential pressure measuring device according to claim 2 is the device according to claim 1, in which the connecting body is isolated from the filled space of the sealed liquid and is formed in a shape surrounding it. The flanged differential pressure measuring device according to claim 3 is provided with a hole (Iih).
In the device described in , the connecting body includes a central cylindrical body filled with a sealed liquid, and plate-shaped heat dissipating fins integrally provided on the outer circumferential surface of the central cylindrical body in a manner perpendicular to the central cylindrical body. The Franchy differential pressure measuring device according to claim 4 is the device according to claim 1, in which the connecting body connects the central cylinder filled with the sealed liquid and the center of the plate-shaped radiation fin orthogonal to the outer circumferential surface of the central cylinder. a finned cylinder part that is integrally formed with the heat dissipation fins so as to pass through the central cylinder part, and the finned cylinder part is divided by a plane including the axis thereof, and is in surface contact with the outer circumferential surface of the central cylinder body. It is configured to be detachable. The flanged differential pressure measuring device according to claim 5 is the flanged differential pressure measuring device according to claim 1.
In the device described in , the connecting body includes a central cylindrical body filled with a sealed liquid, and plate-shaped heat dissipating fins that are integrally provided to protrude radially from the outer circumferential surface of the central cylindrical body in a direction including the axis of the central cylindrical body. A Francie differential pressure measuring device according to claim 6 is the device according to claim 1, in which the connecting body extends radially from the outer circumferential surface of the central cylindrical body in a direction including the axis thereof. A finned cylinder part is located at the center of the protruding plate-shaped heat dissipation fin and is formed integrally with the heat dissipation fin, and the finned cylinder part is divided by a plane including its axis, and the center cylinder It is configured to be detachable and make surface contact with the outer circumferential surface of the body. The flanged differential pressure measuring device according to claim 7 is the flanged differential pressure measuring device according to claim 4.
Alternatively, in the apparatus described in 6, in the connecting body, a paste-like substance having high thermal conductivity is applied and filled between the contact surfaces of the central cylinder and the finned cylinder.

【作用】[Effect]

請求項1に係るフランジ付き差圧測定装置では、差圧の
一方の圧力に係る流体が高温のとき、連結体の放熱手段
によって放熱、冷却される。 請求項2に係るフランジ付き差圧測定装置では、差圧の
一方の圧力に係る高温の流体が、連結体の冷却液貫流用
孔を流れる冷却液によって、放熱冷却される。 請求項3に係るフランジ付き差圧測定装置では、差圧の
一方の圧力に係る高温の流体が、板状放熱フィンによっ
て、放熱、冷却され、とくに連結体の軸線が水平に設置
されるときに放熱が有効に働く。 請求項4に係るフランジ付き差圧測定装置では、差圧の
一方の圧力に係る高温の流体が、板状放熱フィンによっ
て、放熱、冷却されるとともに、フィン付き筒体は、中
心筒体に対して着脱可能であり、とくに連結体の軸線が
水平に設置されるときに放熱が有効に働く。 請求項5に係るフランジ付き差圧測定装置では、差圧の
一方の圧力に係る高温の流体が、板状放熱フィンによっ
て放熱、冷却され、とくに連結体の軸線が垂直に設置さ
れるときに放熱、冷却が有効に働く。 請求項6に係るフランジ付き差圧測定装置では、差圧の
一方の圧力に係る高温の流体が、板状放熱フィンによっ
て、放熱、冷却されるとともに、フィン付き筒体は、中
心筒体に対して着脱可能であり、とくに連結体の軸線が
垂直に設置されるときに放熱が有効に働く。 請求項7に係るフランジ付き差圧測定装置では、差圧の
一方の圧力に係る高温の流体が、板状放熱フィンによっ
て放熱、冷却されるとともに、フィン付き筒体は、中心
筒体に対して着脱可能であり、しかも中心筒体とフィン
付き筒部との接触面間に塗布、充填された、熱伝導率の
大きいペースト状物質により、放熱効果が支援される。
In the flanged differential pressure measuring device according to the first aspect, when the fluid related to one pressure of the differential pressure is at a high temperature, heat is radiated and cooled by the heat radiating means of the connecting body. In the flanged differential pressure measuring device according to the second aspect, the high temperature fluid related to one pressure of the differential pressure is thermally cooled by the coolant flowing through the coolant flow hole of the connecting body. In the flanged differential pressure measuring device according to claim 3, the high temperature fluid related to one pressure of the differential pressure is radiated and cooled by the plate-shaped radiation fin, especially when the axis of the connecting body is installed horizontally. Heat radiation works effectively. In the flanged differential pressure measuring device according to claim 4, the high-temperature fluid related to one pressure of the differential pressure is radiated and cooled by the plate-shaped radiation fins, and the finned cylinder has a high temperature with respect to the central cylinder. It can be attached and detached, and heat radiation works particularly effectively when the axis of the coupling body is installed horizontally. In the flanged differential pressure measuring device according to claim 5, the high-temperature fluid related to one pressure of the differential pressure is radiated and cooled by the plate-shaped radiation fins, and especially when the axis of the connecting body is installed vertically, the high temperature fluid is radiated and cooled. , cooling works effectively. In the flanged differential pressure measuring device according to claim 6, the high-temperature fluid related to one pressure of the differential pressure is radiated and cooled by the plate-shaped radiation fins, and the finned cylinder is disposed in a direction relative to the central cylinder. It can be attached and detached, and heat dissipation works particularly effectively when the axis of the coupling body is installed vertically. In the flanged differential pressure measuring device according to claim 7, the high-temperature fluid related to one pressure of the differential pressure is radiated and cooled by the plate-shaped radiation fins, and the finned cylinder is disposed at a high temperature with respect to the central cylinder. The heat dissipation effect is supported by a paste-like substance which is removable and has a high thermal conductivity and is applied and filled between the contact surfaces of the central cylinder and the finned cylinder.

【実施例】【Example】

本発明に係るフランジ付き差圧測定装置の第1の実施例
について、その断面図である第1図を参照しながら説明
する。この第1実施例は、請求項2に係る差圧測定装置
に対応する。第1図において、従来例における連結管6
0(第8図参照)に代えて、熱伝導率の高い材料の連結
体10が用いられる。したがって、その他の部材で従来
例におけるのと同じ部材には、同一符号を付けてあり、
説明を省略する。 この連結体10には、その中心部に封入液が充填される
中心孔11が貫通し、これを通して一方の圧力P1が差
圧検出器1に伝達される。また、連結体10には、中心
孔11を囲んで螺旋状に冷却液用貫流孔12か設けられ
る。 冷却液が、この貫流孔12の左側の開口部から矢印方向
に流入し、中心孔11の周囲を旋回するように流れる間
に高温の測定流体の熱を吸収し、右側の開口部から矢印
方向に流出する。すなわち、液冷方式である。 第2の実施例について、その主要部材の断面図である第
2図を参1)qシながら説明する。この第2実施例は、
請求項3に係る装置に対応し、空冷方式の差圧測定装置
である。第2図において、第1実施例における連結体1
0に代えて連結体20が用いられ、これは中心円筒21
および放熱フィン22からなる。放熱フィン22は円板
状をなし、中心円筒21とその軸線方向と直角に多段に
一体的に形成される。 第2実施例の適用例を第6図に示す。第6凹欠では、タ
ンク70の底部の外周面に、第2実施例が、その連結体
20の軸線を水平にして、フランジ5によって取り付け
られる。第6図のように、連結体20の放熱フィン22
の両面が垂直に位置することで、放熱フィン22からの
放熱が効率よくおこなわれる。 第3の実施例について、その主要部材の断面図である第
3図を参照しながら説明する。この第3実施例は、請求
項5に係る装置に対応する、空冷方式の差圧測定装置で
ある。第3図において、第2実施例における連結体20
に代えて連結体30が用いられ、これは中心円筒31お
よび放熱フィン32からなる。この放熱フィン32は、
中心円筒31の外周面からその軸線を含む方向に放射状
に突出する板で、中心円筒31と−・体重に形成される
。 第3実施例の適用例を第7図に示す。第7図にでは、タ
ンク80の底部の外周面から水平方向に伸びる中空突出
部に、第3実施例が、その連結体30の軸線を垂直にし
て、フランジ5によって取り付けられる。第7図のよう
に、連結体30の放熱フィン320両面が垂直に位置す
ることで、放熱フィン32からの放熱が効率よくおこな
われることになる。 第4の実施例について、その主要部材の断面図である第
4図を参照しながら説明する。第4図は第4実施例の連
結体に関し、同V (a)はその側断面図、同図(b)
はその平面図である。第4実施例は、請求項4に係る装
置に対応する、空冷方式の差圧測定装置である。第4図
(a)において、第2実施例における連結体20に代え
て連結体40が用いられる。連結体40は、中心円筒1
1と、2分割可能なフィン付き筒部42とからなる。 中心円筒41ば、第2実施例の中心円筒21とほぼ同じ
形状をなし、両側の各端部で図示してないカバー3.基
台6(第1図参照)と溶接される。 フィン付き筒部42ば、中心の円筒部に、第2実施例と
同様に円板状フィンが多段に設けられる形をとるととも
に、軸線を含む平面によって2分割されてなり、かつそ
の各部分が、中心円筒41を挟む形で各フランジ43に
よってネジで再結合可能である(第4図(b)参照)。 この分割構造によって、部品の共通化ないし標準化が図
れる。すなわち、ある標準的な中心円筒41に対して、
フィン付き筒部を、準備されている放熱能力の異なる各
種のフィン付き筒部のうちから適宜、選択して取り付け
ることができる。 第5の実施例について、その主要部材の断面図である第
5図を参照しながら説明する。第5図は第5実施例の連
結体に関し、同図(a)はその側断面図、同1k (b
)はその平面図である。第5実施例は、請求項7に係る
装置に対応する、空冷方式の差圧測定装置である。第5
図(a)において、第3実施例における連結体30に代
えて連結体50が用いられる。連結体50は、中心円筒
51と、2分割可能なフィン付き筒部52と、両者間に
塗布、充填される破線表示した放熱用シリコーン9とか
らなる。 中心円筒51は、第3実施例の中心円筒31とほぼ同じ
形状をなし、両側の各端部で図示してないカバー3.基
台6(第1図参照)と溶接される。 フィン付き筒部52は、中心の円筒部に、第3実施例と
同様に板状フィンが放射状に設けられる形をとるととも
に、軸線を含む平面によって2分割されてなり、かつそ
の各部分が、中心円筒51を挾む形でフランジ53によ
ってネジで再結合可能である(第5図(b)参照)。し
かも、破線表示のように、両者間に塗布、充填される放
熱用シリコ−] 3 ン9は、熱伝導率と粘度とが大きいから、両者間の熱伝
導を支援する、つまり放熱効果を向上させるとともに、
両者間から流出しないで長期間保持されて放熱効果が持
続する。さらに、この2分割構造によって、第4実施例
と同様に、部品の共通化ないし標準化が図れる。
A first embodiment of a flanged differential pressure measuring device according to the present invention will be described with reference to FIG. 1, which is a sectional view thereof. This first embodiment corresponds to the differential pressure measuring device according to claim 2. In FIG. 1, the connecting pipe 6 in the conventional example
0 (see FIG. 8), a connecting body 10 made of a material with high thermal conductivity is used. Therefore, other members that are the same as those in the conventional example are given the same reference numerals.
The explanation will be omitted. The connecting body 10 has a central hole 11 in its center filled with a sealed liquid, through which one pressure P1 is transmitted to the differential pressure detector 1. Further, the connecting body 10 is provided with a cooling liquid through-hole 12 spirally surrounding the center hole 11 . The cooling liquid flows in the direction of the arrow from the opening on the left side of the through-hole 12, absorbs the heat of the high-temperature measurement fluid while flowing around the center hole 11, and flows in the direction of the arrow from the opening on the right side. leaks into In other words, it is a liquid cooling system. The second embodiment will be described with reference to FIG. 2, which is a sectional view of its main components. This second embodiment is
Corresponding to the device according to claim 3, the present invention is an air-cooled differential pressure measuring device. In FIG. 2, the connecting body 1 in the first embodiment
0 is replaced by a connecting body 20, which has a central cylinder 21
and radiation fins 22. The radiation fins 22 have a disc shape and are integrally formed with the central cylinder 21 in multiple stages perpendicular to the axial direction thereof. An example of application of the second embodiment is shown in FIG. In the sixth recess, the second embodiment is attached to the outer circumferential surface of the bottom of the tank 70 by the flange 5 with the axis of the connecting body 20 horizontal. As shown in FIG.
By locating both sides vertically, heat can be efficiently radiated from the radiation fins 22. The third embodiment will be described with reference to FIG. 3, which is a sectional view of its main components. This third embodiment is an air-cooled differential pressure measuring device corresponding to the device according to claim 5. In FIG. 3, the connecting body 20 in the second embodiment
Instead, a connecting body 30 is used, which consists of a central cylinder 31 and radiation fins 32. This radiation fin 32 is
It is a plate that projects radially from the outer circumferential surface of the center cylinder 31 in a direction including its axis, and is formed to have a weight equal to that of the center cylinder 31. An application example of the third embodiment is shown in FIG. In FIG. 7, the third embodiment is attached by a flange 5 to a hollow protrusion extending horizontally from the outer peripheral surface of the bottom of a tank 80, with the axis of the connecting body 30 being vertical. As shown in FIG. 7, by locating both sides of the radiation fins 320 of the coupling body 30 vertically, heat can be efficiently radiated from the radiation fins 32. The fourth embodiment will be described with reference to FIG. 4, which is a sectional view of its main components. Figure 4 relates to the connecting body of the fourth embodiment, where V (a) is a side sectional view thereof, and Figure (b) is a side sectional view thereof.
is its plan view. The fourth embodiment is an air-cooled differential pressure measuring device corresponding to the device according to claim 4. In FIG. 4(a), a connecting body 40 is used in place of the connecting body 20 in the second embodiment. The connecting body 40 has a central cylinder 1
1 and a finned cylinder portion 42 that can be divided into two. The central cylinder 41 has almost the same shape as the central cylinder 21 of the second embodiment, and has covers 3 (not shown) at each end on both sides. It is welded to the base 6 (see Figure 1). The finned cylindrical portion 42 has a central cylindrical portion provided with disc-shaped fins in multiple stages as in the second embodiment, and is divided into two by a plane including the axis, and each portion is divided into two parts by a plane including the axis. , can be recombined with screws by each flange 43 with the central cylinder 41 sandwiched therebetween (see FIG. 4(b)). This divided structure allows commonization or standardization of parts. That is, for a certain standard central cylinder 41,
The finned cylindrical portion can be appropriately selected and attached from among various prepared finned cylindrical portions having different heat dissipation capacities. The fifth embodiment will be described with reference to FIG. 5, which is a sectional view of its main components. FIG. 5 relates to a connecting body of the fifth embodiment, and FIG. 5(a) is a side sectional view thereof, and FIG.
) is its plan view. The fifth embodiment is an air-cooled differential pressure measuring device corresponding to the device according to claim 7. Fifth
In Figure (a), a connecting body 50 is used in place of the connecting body 30 in the third embodiment. The connecting body 50 consists of a central cylinder 51, a finned cylinder part 52 that can be divided into two parts, and a heat dissipating silicone 9 shown by a broken line that is applied and filled between the two parts. The central cylinder 51 has almost the same shape as the central cylinder 31 of the third embodiment, and has covers 3. It is welded to the base 6 (see Figure 1). The finned cylindrical part 52 has a shape in which plate-like fins are radially provided on a central cylindrical part, as in the third embodiment, and is divided into two by a plane including the axis, and each part is They can be recombined with screws using flanges 53 that sandwich the central cylinder 51 (see FIG. 5(b)). Moreover, as shown by the broken line, the heat dissipating silicone 9 applied and filled between the two has high thermal conductivity and viscosity, so it supports heat conduction between the two, that is, improves the heat dissipation effect. Along with letting
The heat dissipation effect is sustained because it is retained for a long time without flowing out from between the two. Furthermore, this two-part structure allows commonization or standardization of parts, similar to the fourth embodiment.

【発明の効果】【Effect of the invention】

各請求項に係る差圧測定装置では共通に、差圧の一方の
圧力に係る液体が高温のときでも、その高温流体が、板
状放熱フィンによって放熱、冷却されるから、適正な差
圧測定が可能になる。 とくに請求項2に係る差圧測定装置では、連結体の冷却
液貫流用孔を流れる冷却液によって、放熱、冷却される
から、連結体ひいては装置の小形化が図れる。 とくに請求項3に係る差圧測定装置では、円板状放熱フ
ィンによって放熱、冷却されるから、構造的に簡単にな
り、かつ連結体の軸線が水平に設置されるときに放熱が
有効に働く。 とくに請求項4に係る差圧測定装置では、円板状放熱フ
ィンによって放熱、冷却され、またフィン付き筒体は、
中心筒体に対して着脱可能であるから、構造的に簡単に
なるとともに、部材の共通化が図れるとともに、連結体
の軸線が水平に設置されるときに放熱が有効に働く。 とくに請求項5に係る差圧測定装置では、板状放熱フィ
ンによって放熱、冷却されるから、構造的に簡単になり
、かつ連結体の軸線が垂直に設置されるときに放熱が有
効に働く。 とくに請求項6に係る差圧測定装置では、板状放熱フィ
ンによって放熱、冷却され、またフィン付き筒体は、中
心筒体に対して着脱可能であるから、構造的に簡単にな
るとともに、部材の共通化が図れるとともに、連結体の
軸線が垂直に設置されるときに放熱が有効に働く。 とくに請求項7に係る差圧測定装置では、放熱フィンに
よって放熱、冷却され、フィン付き筒体は、中心筒体に
対して着脱可能であるから、構造的に簡単になり、部材
の共通化が図れるとともに、中心筒体とフィン付き筒部
との接触面間に塗布充填された、熱伝導率と粘度との大
きい液状物によって、放熱効果が長時間支援される。
The differential pressure measuring device according to each claim has a common feature that even when the liquid related to one pressure of the differential pressure is high temperature, the high temperature fluid is radiated and cooled by the plate-shaped radiation fins, so that proper differential pressure measurement can be performed. becomes possible. In particular, in the differential pressure measuring device according to the second aspect, heat is radiated and cooled by the coolant flowing through the coolant flow holes in the coupling body, so that the coupling body and thus the device can be downsized. In particular, in the differential pressure measuring device according to claim 3, heat is radiated and cooled by the disc-shaped radiation fins, so the structure is simple, and the heat radiation works effectively when the axis of the connecting body is installed horizontally. . In particular, in the differential pressure measuring device according to claim 4, heat is radiated and cooled by the disc-shaped radiation fins, and the finned cylinder body is
Since it is removable from the central cylinder, it is structurally simple, the members can be shared, and heat radiation is effective when the axis of the connecting body is installed horizontally. In particular, in the differential pressure measuring device according to claim 5, heat is radiated and cooled by the plate-shaped radiation fins, so the structure is simple and the heat radiation works effectively when the axis of the connecting body is installed vertically. In particular, in the differential pressure measuring device according to claim 6, heat is radiated and cooled by the plate-shaped radiation fins, and the finned cylinder is detachable from the central cylinder, so the structure is simple and the number of members is reduced. In addition, when the axis of the connecting body is installed perpendicularly, heat radiation works effectively. In particular, in the differential pressure measuring device according to claim 7, heat is radiated and cooled by the radiation fins, and the finned cylinder is detachable from the central cylinder, so the structure is simple and the parts can be shared. In addition, the heat dissipation effect is supported for a long time by the liquid substance with high thermal conductivity and viscosity that is applied and filled between the contact surfaces of the central cylinder and the finned cylinder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1実施例の断面図、 第2図は第2実施例の主要部材の断面図、第3図は第3
実施例の主要部材の断面図、第4図は第4実施例の主要
部材に関し、同図(a)はその側断面図、同図(b)は
その平面図、第5図は第5実施例の主要部材に関し、同
図(a)はその側断面図、同図(b)はその平面図、第
6図は第2実施例の適用例と示すオ真A′図・第7図は
第3実施例の適用例8 K−14μ9z・第8図は従来
例の断面図である。 符号説明 1:差圧検出器、2:0リング、3,4:カバー5:フ
ランジ、6:基台、 7:シールダイヤフラム、8:封入液、9:放熱用シリ
コーン、 10.20,30,40. 5o:連結体、11:中心
孔、12:貫流孔、 21゜ 22゜ 42゜ 31.41,51:中心円筒、 42::放熱フィン、 52:フィン付き筒部、 53:フランジ、70,80:タンク。 (c’l) 第4図 (a) (b) 拓5図
Fig. 1 is a sectional view of the first embodiment, Fig. 2 is a sectional view of main components of the second embodiment, and Fig. 3 is a sectional view of the third embodiment.
FIG. 4 is a sectional view of the main components of the fourth embodiment, FIG. 4A is a side sectional view thereof, FIG. 5B is a plan view thereof, and FIG. Regarding the main components of the example, Fig. 6(a) is a side sectional view, Fig. 6(b) is a plan view, and Fig. 6 is an application example of the second embodiment. Application example 8 of the third embodiment K-14μ9z FIG. 8 is a sectional view of a conventional example. Symbol explanation 1: Differential pressure detector, 2: 0 ring, 3, 4: Cover 5: Flange, 6: Base, 7: Seal diaphragm, 8: Filled liquid, 9: Silicone for heat dissipation, 10.20, 30, 40. 5o: Connecting body, 11: Center hole, 12: Through hole, 21゜22゜42゜31.41, 51: Center cylinder, 42:: Radiation fin, 52: Cylindrical part with fins, 53: Flange, 70, 80 :tank. (c'l) Figure 4 (a) (b) Figure 5

Claims (1)

【特許請求の範囲】 1)差圧の一方の圧力を受けるシールダイヤフラム付き
のフランジと、前記差圧の他方の圧力が導入される差圧
検出器とを連結し、内部に前記一方の圧力の前記差圧検
出器への伝達用封入液が充填される連結体を有する装置
において、 前記連結体は、放熱手段を備えることを特徴とするフラ
ンジ付き差圧測定装置。 2)請求項1に記載の装置において、連結体は、封入液
の充填空間と隔離されかつこれを包囲する形で形成され
る冷却液貫流用孔を備えることを特徴とするフランジ付
き差圧測定装置。 3)請求項1に記載の装置において、連結体は、封入液
が充填される中心筒体と、その外周面にこれと直交する
形で一体的に設けられる板状放熱フィンとを備えること
を特徴とするフランジ付き差圧測定装置。 4)請求項1に記載の装置において、連結体は、封入液
が充填される中心筒体と、その外周面と直交する板状放
熱フィンの中心部を貫通する形でこの放熱フィンと一体
的に形成されるフィン付き筒部とを備え、このフィン付
き筒部は、その軸線を含む平面で分割され、前記中心筒
体の外周面と面接触する形で着脱可能に構成されること
を特徴とするフランジ付き差圧測定装置。 5)請求項1に記載の装置において、連結体は、封入液
が充填される中心筒体と、その外周面からその軸線を含
む方向に放射状に突出する形で一体的に設けられる板状
放熱フィンとを備えることを特徴とするフランジ付き差
圧測定装置。 6)請求項1に記載の装置において、連結体は、封入液
が充填される中心筒体と、その外周面からその軸線を含
む方向に放射状に突出する板状放熱フィンの中心部に位
置しこの放熱フィンと一体的に形成されるフィン付き筒
部とを備え、このフィン付き筒部は、その軸線を含む平
面で分割され、前記中心筒体の外周面と面接触する形で
着脱可能に構成されることを特徴とするフランジ付き差
圧測定装置。 7)請求項4または6に記載の装置において、連結体は
、中心筒体とフィン付き筒部との接触面間に、熱伝導率
の大きいペースト状物質が塗布、充填されることを特徴
とするフランジ付き差圧装置装置。
[Claims] 1) A flange with a seal diaphragm that receives one of the differential pressures is connected to a differential pressure detector into which the other pressure of the differential pressure is introduced, A flanged differential pressure measuring device, wherein the device includes a connecting body filled with a sealed liquid for transmitting to the differential pressure detector, wherein the connecting body includes a heat radiation means. 2) The flanged differential pressure measurement device according to claim 1, wherein the connecting body is provided with a coolant flow hole formed in a manner that is isolated from and surrounds the filled space of the sealed liquid. Device. 3) In the device according to claim 1, the connecting body includes a central cylindrical body filled with the sealed liquid and a plate-shaped heat dissipating fin integrally provided on the outer peripheral surface of the central cylindrical body in a manner orthogonal to the central cylindrical body. Features: Differential pressure measuring device with flange. 4) In the device according to claim 1, the connecting body is integral with the central cylinder filled with the sealed liquid and extends through the central part of the plate-shaped radiation fin that is orthogonal to the outer peripheral surface of the central cylinder. and a finned cylindrical portion formed in the central cylindrical body, and the finned cylindrical portion is divided by a plane including the axis of the finned cylindrical portion, and is detachably configured to be in surface contact with the outer circumferential surface of the central cylindrical body. Differential pressure measuring device with flange. 5) In the device according to claim 1, the connecting body is a plate-shaped heat dissipating body that is integrally provided with the central cylinder filled with the sealed liquid and radially protruding from the outer circumferential surface of the central cylinder in a direction including the axis thereof. A flange-equipped differential pressure measuring device characterized by comprising a fin. 6) In the device according to claim 1, the connecting body is located at the center of the central cylinder filled with the sealed liquid and the plate-shaped radiation fins that protrude radially from the outer peripheral surface of the central cylinder in a direction including the axis thereof. A finned cylinder part is formed integrally with the heat dissipation fin, and the finned cylinder part is divided by a plane including the axis thereof, and is removably attached in a form that makes surface contact with the outer peripheral surface of the central cylinder body. A flanged differential pressure measuring device characterized by comprising: 7) In the device according to claim 4 or 6, the connecting body is characterized in that a paste-like substance with high thermal conductivity is applied and filled between the contact surfaces of the central cylinder and the finned cylinder. Differential pressure device with flanges.
JP23807790A 1990-09-07 1990-09-07 Differential pressure measuring apparatus with flange Pending JPH04116437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23807790A JPH04116437A (en) 1990-09-07 1990-09-07 Differential pressure measuring apparatus with flange

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23807790A JPH04116437A (en) 1990-09-07 1990-09-07 Differential pressure measuring apparatus with flange

Publications (1)

Publication Number Publication Date
JPH04116437A true JPH04116437A (en) 1992-04-16

Family

ID=17024816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23807790A Pending JPH04116437A (en) 1990-09-07 1990-09-07 Differential pressure measuring apparatus with flange

Country Status (1)

Country Link
JP (1) JPH04116437A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047954A1 (en) * 1996-06-13 1997-12-18 Rosemount Inc. Apparatus for coupling a transmitter to process fluid
US7464604B2 (en) 2006-10-04 2008-12-16 Denso Corporation Pressure sensor and attaching mechanism thereof
JP2009530640A (en) * 2006-03-23 2009-08-27 ローズマウント インコーポレイテッド High temperature pressure transmitter assembly
JP2009264945A (en) * 2008-04-25 2009-11-12 Denso Corp Pressure sensor
JP2010019469A (en) * 2008-07-09 2010-01-28 Daiichi Sogo Kikaku:Kk Method for mounting heat sink in heater
JP2015522808A (en) * 2012-06-06 2015-08-06 ディーテリヒ・スタンダード・インコーポレーテッド Process fluid flow transmitter with finned coplanar process fluid flange
KR20180110596A (en) * 2017-03-29 2018-10-10 가부시키가이샤 호리바 에스텍 Pressure sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047954A1 (en) * 1996-06-13 1997-12-18 Rosemount Inc. Apparatus for coupling a transmitter to process fluid
US5920016A (en) * 1996-06-13 1999-07-06 Rosemount Inc. Apparatus for coupling a transmitter to process fluid
JP2009530640A (en) * 2006-03-23 2009-08-27 ローズマウント インコーポレイテッド High temperature pressure transmitter assembly
US7464604B2 (en) 2006-10-04 2008-12-16 Denso Corporation Pressure sensor and attaching mechanism thereof
JP2009264945A (en) * 2008-04-25 2009-11-12 Denso Corp Pressure sensor
JP2010019469A (en) * 2008-07-09 2010-01-28 Daiichi Sogo Kikaku:Kk Method for mounting heat sink in heater
JP2015522808A (en) * 2012-06-06 2015-08-06 ディーテリヒ・スタンダード・インコーポレーテッド Process fluid flow transmitter with finned coplanar process fluid flange
KR20180110596A (en) * 2017-03-29 2018-10-10 가부시키가이샤 호리바 에스텍 Pressure sensor
JP2018169226A (en) * 2017-03-29 2018-11-01 株式会社堀場エステック Pressure sensor
TWI778034B (en) * 2017-03-29 2022-09-21 日商堀場Stec股份有限公司 Pressure sensor

Similar Documents

Publication Publication Date Title
JPH0632089Y2 (en) Computer tomography
JPH05121611A (en) Device and method of cooling electronic part
US6125635A (en) Temperature adjusting device
JPH10220909A (en) Fluid temperature control device
JPH04116437A (en) Differential pressure measuring apparatus with flange
CN114446833B (en) Bearing device and semiconductor process equipment
GB2356044A (en) A pipe cooler and temperature control apparatus
JPS63123993A (en) Heat pipe type heat exchanger
JPS6321114B2 (en)
US5440930A (en) Ultrasonic measuring assembly and means for attaching same to a vessel
CN112578257B (en) Temperature control testing device and testing equipment
GB2333397A (en) Thermoelectric temperature control of corrosive fluids
JP7433407B2 (en) Heat dissipation structure and inspection device
CN216247745U (en) X-ray analyzer and heat dissipation device
JPH08193766A (en) Pharmaceutical fluid temperature adjusting heat exchanger
CN214150355U (en) Constant temperature device and barrier constant temperature test system
JP2005066383A (en) Temperature-regulating device for object to be cooled and heated
JPH05121608A (en) Conductive cooling structure
CN214100227U (en) Laser light source heat abstractor
CN216953755U (en) Cooling module and test equipment
JPH09330907A (en) Heat exchanger for regulating temperature of liquid
CN218120244U (en) Cooling module, cooling system and sample analyzer
CN217934557U (en) Temperature controllable laser
JPH0233978Y2 (en)
WO2019100530A1 (en) Gas constant temperature device and detection system