JPH04101010A - Exhaust fine particle eliminating device for diesel engine - Google Patents

Exhaust fine particle eliminating device for diesel engine

Info

Publication number
JPH04101010A
JPH04101010A JP2217357A JP21735790A JPH04101010A JP H04101010 A JPH04101010 A JP H04101010A JP 2217357 A JP2217357 A JP 2217357A JP 21735790 A JP21735790 A JP 21735790A JP H04101010 A JPH04101010 A JP H04101010A
Authority
JP
Japan
Prior art keywords
exhaust
passage
throttle
throttle valve
exhaust pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2217357A
Other languages
Japanese (ja)
Inventor
Masaaki Kashimoto
正章 樫本
Shigeru Sakurai
茂 櫻井
Yasuhiro Yuzuriha
楪 泰浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2217357A priority Critical patent/JPH04101010A/en
Priority to EP91102309A priority patent/EP0445567A1/en
Publication of JPH04101010A publication Critical patent/JPH04101010A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0235Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using exhaust gas throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/042Combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE:To avoid a half flameout condition of burning, while operating regeneration process without casing closing trouble of an exhaust valve, by adjusting a throttle rate of a throttle valve provided on an exhaust passage side so as to hold exhaust pressure at a constant rate on the upside stream side from the throttle valve provided on the exhaust passage side, at the time of regeneration of a filter. CONSTITUTION:On the basis of a regeneration command of a filter 7, electrification is carried out in a heater 8 by a controller 31 to heat air supplied from an intake passage 3 to an engine 1 through branch intake passage, so as to promote temperature increase of exhaust gas. A fuel injection pump 2 is controlled by the controller 31, so that the number of revolution of the engine 1 is set to a high idling number of revolution to increase an amount of exhaust gas supplied to an exhaust passage 6. A vacuum control valve 19 is driven by the controller 31 to make air suction force of a vacuum pump 22 act on respective air flow passages 20, 21. Namely, regenerating process is carried out by increasing exhaust pressure in the exhaust passage 6 by respective throttle valves 9, 10. When exhaust pressure is increased, for example, up to a level which exceeds the force of spring 28, the air flow passage 21 is shut out by an exhaust pressure control valve 26 so as to decrease the throttle amount of the throttle valve 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ディーゼルエンジンの排気ガス中に含まれて
いるカーボン等の可燃性排気微粒子を除去する装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for removing combustible exhaust particulates such as carbon contained in the exhaust gas of a diesel engine.

(従来の技術) エンジンの排気ガス、特にディーゼルエンジンの排気ガ
ス中にはカーボン等の可燃性排気微粒子(パティキュレ
ート)が含まれているので、この種のエンジンにおいて
は、通常排気通路にパーティキュレートフィルタを備え
て、該フィルタによって上記の排気微粒子を捕集し、外
部への排出を防止することが行われるが、その場合、捕
集による排気微粒子の堆積でフィルタに目詰まりを生じ
るので、定期的あるいは目詰まりを生じる虞れのある時
点で捕集した排気微粒子を除去し、フィルタを浄化ない
し再生することが必要となる。
(Prior art) Engine exhaust gas, especially diesel engine exhaust gas, contains combustible exhaust particulates (particulates) such as carbon. A filter is provided to collect the above-mentioned exhaust particulates and prevent them from being discharged to the outside. It is necessary to clean or regenerate the filter by removing the trapped exhaust particulates at a point where there is a risk of clogging or clogging.

そのため、たとえば実開昭61−173712号公報に
は、排気通路に設けているフィルタに対し可燃物を噴射
し、かつ排気ガスの温度を利用して該可燃物をフィルタ
に捕集している排気微粒子もろとも燃焼させることで、
フィルタの目詰まりを防止する再生処理技術が開示され
ている。
Therefore, for example, Japanese Utility Model Application Publication No. 61-173712 discloses an exhaust system in which combustible substances are injected into a filter provided in the exhaust passage, and the combustible substances are collected in the filter using the temperature of the exhaust gas. By burning all the fine particles,
A regeneration treatment technique is disclosed that prevents filter clogging.

この再生処理技術によれば、フィルタに捕集されている
排気微粒子の除去が可燃物の噴射と排気ガスの温度を利
用する燃焼で行えるので、大掛かりな手段を用いずにフ
ィルタの再生が可能となる。
According to this regeneration processing technology, exhaust particulates collected in the filter can be removed by injection of combustible material and combustion using the temperature of the exhaust gas, making it possible to regenerate the filter without using large-scale measures. Become.

(発明が解決しようとする課題) ところで、上記の排気ガスを利用した燃焼で排気微粒子
を除去する場合、その除去効率は、当然排気ガスの温度
が高いほど向上する。このため排気通路におけるフィル
タの下流側、および吸気通路に絞り弁を設け、上記のフ
ィルタの再生処理時にこれらの絞り弁により各通路を絞
ることで上記の排気ガスの圧力(以下、排圧と称する)
を高め、温度上昇を促すことが考えられる。また、この
方法によって排気ガスの温度を効果的に高めることがで
きたならば、前述の公報記載の可燃物の噴射をなくして
、排気ガスの熱のみによって排気微粒子の燃焼を可能と
できる。
(Problems to be Solved by the Invention) By the way, when exhaust particulates are removed by combustion using the above exhaust gas, the removal efficiency naturally improves as the temperature of the exhaust gas increases. For this reason, throttle valves are provided downstream of the filter in the exhaust passage and in the intake passage, and these throttle valves are used to throttle each passage during the above-mentioned filter regeneration process, thereby reducing the pressure of the exhaust gas (hereinafter referred to as exhaust pressure). )
It is conceivable that this could increase the temperature and encourage a rise in temperature. Furthermore, if the temperature of the exhaust gas can be effectively raised by this method, the injection of combustibles described in the above-mentioned publication can be eliminated, and exhaust particulates can be combusted only by the heat of the exhaust gas.

ところが、上記のように排気通路側および吸気通路側に
それぞれ絞り弁が設けられている構造において、フィル
タ再生処理時の各絞り弁の作動タイミングは、排気通路
側絞り弁を先行させて絞った場合、これによって排気通
路の排圧が一旦上昇しても、その後の吸気通路側の絞り
弁の作動によってエンジンの吸気量が減少し、かつその
分再び排圧が低下することになるから、排気通路側絞り
弁による絞り量は、再生処理のために要求される排圧値
にその後の吸気通路側絞り弁の作動による排圧低下分を
上乗せしたもので行わねばならず、排気通路側絞り弁の
絞り量が大きすぎて該排気通路側絞り弁の作動直後の排
圧が非常に高いものとなって、エンジンにおいては気筒
の排気バルブの閉弁動作に支障をきたすことになる。そ
こで吸気通路側の絞り弁を先に作動させることも考えら
れるが、それではエンジンの吸入空気量が不足し、燃焼
が半失火状態となる虞れがある。
However, in a structure in which throttle valves are provided on the exhaust passage side and intake passage side as described above, the operation timing of each throttle valve during filter regeneration processing is different from the case where the exhaust passage side throttle valve is throttled first. As a result, even if the exhaust pressure in the exhaust passage increases once, the intake air amount of the engine decreases due to the subsequent operation of the throttle valve on the intake passage side, and the exhaust pressure decreases again by that amount. The amount of throttling by the side throttle valve must be determined by adding the exhaust pressure drop due to the subsequent operation of the intake passage side throttle valve to the exhaust pressure value required for the regeneration process. If the amount of throttling is too large, the exhaust pressure immediately after the exhaust passage side throttle valve is activated becomes extremely high, which causes a problem in the closing operation of the exhaust valve of the cylinder in the engine. Therefore, it is conceivable to operate the throttle valve on the intake passage side first, but in this case, there is a risk that the intake air amount of the engine will be insufficient and the combustion will be in a half-misfire state.

そこで本発明は、吸気通路側絞り弁に先行して排気通路
側絞り弁を絞ることによって燃焼の半失火状態を避けな
がら、しかも排気バルブの閉弁障害をきたすことなく再
生処理が行えるディーゼルエンジンの排気微粒子除去装
置の提供を課題とする。
SUMMARY OF THE INVENTION Accordingly, the present invention aims to provide a diesel engine in which regeneration processing can be performed without causing any trouble in closing the exhaust valve while avoiding a half-misfire state of combustion by throttling the exhaust passage throttle valve before the intake passage throttle valve. The objective is to provide an exhaust particulate removal device.

(課題を解決するための手段) すなわち本発明は、排気通路に可燃性排気微粒子を捕集
するフィルタを備えているディーゼルエンジンの排気微
粒子除去装置において、上記フィルタの下流における排
気通路内と吸気通路内とにそれぞれ絞り弁が設けられる
と共に、フィルタ再生時に、排気通路側の絞り弁を絞り
方向に作動させたのち吸気通路側の絞り弁を絞り方向に
作動させる絞り弁駆動手段と、排気通路側絞り弁の上流
における排圧の大きさを検出して、該排圧がフィルタ再
生時において設定されている所定の圧力となるように該
絞り弁の絞り度を調整する排圧制御手段とが備えられて
いることを特徴とする。
(Means for Solving the Problems) That is, the present invention provides an exhaust particulate removal device for a diesel engine that is equipped with a filter for collecting combustible exhaust particulates in the exhaust passage. Throttle valve driving means is provided for operating the throttle valve on the exhaust passage side in the throttle direction, and then operates the throttle valve on the intake passage side in the throttle direction, during filter regeneration. Exhaust pressure control means detects the magnitude of exhaust pressure upstream of the throttle valve and adjusts the degree of throttling of the throttle valve so that the exhaust pressure reaches a predetermined pressure set during filter regeneration. It is characterized by being

(作   用) 上記の構成によれば、フィルタの再生時に、排気通路側
絞り弁よりも上流における排圧の大きさを検出して、こ
の排圧が一定となるように排気通路側絞り弁の絞り量を
調整する排圧制御手段が備えられているから、排気通路
側絞り弁を絞り方向に作動させることによって一旦所定
の値まで上昇した排圧が、その後の吸気通路側絞り弁の
絞り方向の作動によって再び低下しようとしても、上記
の排圧制御手段が排気通路側の絞り弁をさらに絞って、
排気通路内の排圧が所定値から低下するのを防ぐ。また
、排圧が所定の値からさらに上昇しようとした場合には
、排圧制御手段が排気通路側絞り弁の絞り量をちいさく
して排圧の上昇を防ぐ。このためフィルタ再生処理時に
おける排圧が一定し、該排圧の異常な高まりによるエン
ジンの排気バルブの閉弁動作の障害発生が避けられると
共に、排気通路の排圧を適切な値に高めることにより排
気ガスの温度が効果的に上昇し、該フィルタに捕集され
ている排気微粒子の燃焼が確実に行われる。
(Function) According to the above configuration, when the filter is regenerated, the magnitude of the exhaust pressure upstream of the exhaust passage side throttle valve is detected, and the exhaust passage side throttle valve is adjusted so that this exhaust pressure is constant. Since exhaust pressure control means for adjusting the amount of throttling is provided, the exhaust pressure that has once risen to a predetermined value by operating the exhaust passage throttle valve in the throttle direction is then adjusted in the throttle direction of the intake passage throttle valve. Even if the exhaust pressure attempts to decrease again due to the operation of
To prevent the exhaust pressure in the exhaust passage from decreasing from a predetermined value. Further, when the exhaust pressure is about to rise further from a predetermined value, the exhaust pressure control means reduces the throttle amount of the exhaust passage side throttle valve to prevent the exhaust pressure from rising. As a result, the exhaust pressure during filter regeneration processing is kept constant, and problems with the closing operation of the engine's exhaust valve due to an abnormal increase in exhaust pressure can be avoided, and the exhaust pressure in the exhaust passage can be increased to an appropriate value. The temperature of the exhaust gas is effectively increased, ensuring combustion of the exhaust particulates trapped in the filter.

(実 施 例) 以下、本発明の実施例を図面に基づき説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は4気筒デイゼルエンジン1の排気微粒子除去装
買を示し、該エンジン1は各気筒A〜Aの燃焼室に燃料
を送り込む燃料噴射ポンプ2を備えている。また1つの
吸気通路3から分岐された分岐吸気通路4〜4がそれぞ
れの気筒A〜Aの吸気ボートに連通され、各気筒のA〜
Aの排気ボートに連通されている分岐排気通路5〜5が
1つの排気通路6に集合されていると共に、この集合さ
れた排気通路6内にパティキュレートフィルタ(以下、
フィルタと略記する)7が装備されている。
FIG. 1 shows an exhaust particulate removal device for a four-cylinder diesel engine 1, and the engine 1 is equipped with a fuel injection pump 2 for feeding fuel into the combustion chambers of each cylinder A to A. Further, branch intake passages 4 to 4 branched from one intake passage 3 are communicated with the intake boats of the respective cylinders A to A.
The branch exhaust passages 5 to 5 communicating with the exhaust boat A are collected into one exhaust passage 6, and a particulate filter (hereinafter referred to as
(abbreviated as filter) 7 is equipped.

上記のフィルタ7は、多孔質材料でハニカム状に形成し
た多数の孔の両端を交互に閉塞することによって構成さ
れ、上流端が開口した孔7aから流入した排気ガスを隣
接孔間の隔壁7bを透過させて下流端が開口した孔7C
に流入させる構造を有し、排気ガスが上記隔壁7bを透
過する際に、該ガス中の比較的ちいさな可燃性排気微粒
子が該フィルタ7に捕集されるようになされている。
The above-mentioned filter 7 is constructed by alternately closing both ends of a large number of holes formed in a honeycomb shape with a porous material, and exhaust gas flowing in through holes 7a whose upstream ends are open is passed through partition walls 7b between adjacent holes. Hole 7C whose downstream end is open for transmission
When the exhaust gas passes through the partition wall 7b, relatively small combustible exhaust particles in the gas are collected by the filter 7.

一方、吸気通路3にはヒータ8が配設されると共に、こ
のヒータ8の上流位1に絞り弁9が設けられる。また排
気通路6では上記のフィルタ7よりも下流位置に絞り弁
10が設けられる。これらの絞り弁9.10はそれぞれ
支軸11.12を支点として回動して通路3.6の開度
を可変するものであって、支軸11.12に一体のレバ
ー13.14を、ダイヤフラム15.16に働くエア圧
でロッド17,18を押し引きして回動させることによ
り、絞り弁9.10を作動させる。
On the other hand, a heater 8 is provided in the intake passage 3, and a throttle valve 9 is provided upstream 1 of the heater 8. Further, in the exhaust passage 6, a throttle valve 10 is provided at a position downstream of the filter 7 described above. Each of these throttle valves 9.10 rotates around a support shaft 11.12 to vary the opening degree of the passage 3.6, and a lever 13.14 integrated with the support shaft 11.12 is connected to the throttle valve 9.10. The throttle valve 9.10 is actuated by pushing and pulling the rods 17, 18 and rotating them using air pressure acting on the diaphragm 15.16.

すなわち、吸気通路側のロッド17はダイヤフラム15
に接続され、このダイヤフラム15とバキューム制御バ
ルブ19とがエア流路20によって連通されると共に、
排気通路側めロッド18がダイヤフラム16に接続され
、かつ該ダイヤフラム16とバキューム制御バルブ19
とがエア流路21によって連通されている。このバキュ
ーム制御バルブ19はバキュームポンプ22が起動され
ている状態において、後述するコントローラの制御信号
によって切り換え駆動され、この切り換えによってバキ
ュームポンプ22を上記のエア流路20.21に連通さ
せたり、該連通を断ってエア流路20,21を大気に連
通させる。そしてバキュームポンプ22がエア流路20
.21に連通されると、エア吸引力がそれぞれのエア流
路20.21を介して各ダイヤフラム15,16に及び
、これらダイヤフラム15,16によってロッド17.
18が引っ張り駆動され、絞り弁9.10が吸気通路3
および排気通路6を絞る方向に回動される。また上記の
ようにエア吸引力がエア流路20.21に働いている状
態から、これらエア流路20.21を大気に連通させる
ことによってダイヤフラム15,16に働く負圧力が解
消され、各ロッド17.18が進動し、絞り弁9,10
が吸気通路3および排気通路6を開く方向に回動される
That is, the rod 17 on the intake passage side is connected to the diaphragm 15.
The diaphragm 15 and the vacuum control valve 19 are connected to each other through an air passage 20, and
An exhaust passage side female rod 18 is connected to the diaphragm 16, and the diaphragm 16 and the vacuum control valve 19 are connected to each other.
are communicated with each other by an air flow path 21. This vacuum control valve 19 is switched and driven by a control signal from a controller, which will be described later, when the vacuum pump 22 is activated, and this switching causes the vacuum pump 22 to communicate with the air passage 20, 21, and The air channels 20 and 21 are communicated with the atmosphere by cutting off the air flow. And the vacuum pump 22 is connected to the air flow path 20.
.. 21, the air suction force is applied to each diaphragm 15, 16 via the respective air flow path 20.21, and the diaphragm 15, 16 causes the rod 17.
18 is pulled and driven, and the throttle valves 9 and 10 are connected to the intake passage 3.
and is rotated in a direction to narrow the exhaust passage 6. Furthermore, since the air suction force is acting on the air passages 20.21 as described above, by communicating these air passages 20.21 with the atmosphere, the negative pressure acting on the diaphragms 15 and 16 is eliminated, and each rod 17.18 moves forward, throttle valves 9 and 10
is rotated in a direction to open the intake passage 3 and the exhaust passage 6.

また、吸気通路側のダイヤフラム15とバキューム制御
バルブ19とをつなぐ前記エア通路20に遅延バルブ2
3が介設される。このバルブ23は内部の隔壁にオリフ
ィス24を備え、前述のバキュームポンプ22によるエ
ア吸引力がエア流路20に働いた際、該エア流路20中
をダイヤフラム15側からポンプ22にむがって流れる
エアをオリフィス24によって絞って、エア流速を緩速
状態に保ち、ダイヤフラム15および絞り弁9の作動を
遅延させる。加えて遅延バルブ23には、上記のエア吸
引方向の力に対しては弁孔25aを閉じ、かつ大気圧が
作用した際に弁孔25aを開く一方向バルブ25が内蔵
されている。
Further, a delay valve 2 is provided in the air passage 20 that connects the diaphragm 15 on the intake passage side and the vacuum control valve 19.
3 is interposed. This valve 23 is provided with an orifice 24 in the internal partition wall, and when the air suction force from the vacuum pump 22 mentioned above acts on the air passage 20, the air is drawn from the diaphragm 15 side to the pump 22 through the air passage 20. The flowing air is throttled by the orifice 24 to keep the air flow rate slow and the operation of the diaphragm 15 and throttle valve 9 delayed. In addition, the delay valve 23 includes a one-way valve 25 that closes the valve hole 25a against the force in the air suction direction and opens the valve hole 25a when atmospheric pressure is applied.

さらに、排気通路6側のダイヤフラム16とバキューム
制御バルブ19とをつなぐエア流路21には排圧制御バ
ルブ26が介設される。そして、該排圧制御バルブ26
に、排気通路側絞り弁10よりも上流側における排気通
路6中の排圧を取り出すガス流路27が接続され、排圧
制御バルブ26内においてガス流路27で取り出しな排
圧とスプリング28のバネ力とが比較され、排圧がバネ
力を上回るときに、弁体29によってエア流路21を遮
断し、逆に下回るときにエア流路21を開放するように
構成されている。したがってスプリング28はフィルタ
再生処理時における排気通路6の基準排圧値を設定する
Furthermore, an exhaust pressure control valve 26 is interposed in the air passage 21 that connects the diaphragm 16 and the vacuum control valve 19 on the exhaust passage 6 side. And the exhaust pressure control valve 26
A gas flow path 27 for taking out the exhaust pressure in the exhaust passage 6 on the upstream side of the exhaust passage side throttle valve 10 is connected to the gas flow path 27 for taking out the exhaust pressure in the exhaust passage 6 in the exhaust pressure control valve 26 . The exhaust pressure is compared with the spring force, and when the exhaust pressure exceeds the spring force, the valve body 29 shuts off the air passage 21, and when the exhaust pressure falls below the spring force, the air passage 21 is opened. Therefore, the spring 28 sets the reference exhaust pressure value of the exhaust passage 6 during filter regeneration processing.

また、上記排圧制御バルブ26とダイヤフラム16との
間において、エア流路21aにオリフィス30が設けら
れる。
Further, an orifice 30 is provided in the air flow path 21a between the exhaust pressure control valve 26 and the diaphragm 16.

一方、フィルタ再生時の各種制御を行うコントローラ3
1が備えられる。そしてコントローラ31はフィルタフ
の再生が指令された場合に、前述のヒータ8に通電させ
、また前述のバキューム制御バルブ19を切り換え制御
すると共に、燃料噴射ポンプ2を制御してエンジン1を
ハイアイドル回転状態にすると共に、燃料噴射タイミン
グが進角とならないように制御する。
On the other hand, a controller 3 performs various controls during filter regeneration.
1 is provided. When the filter regeneration is commanded, the controller 31 energizes the heater 8 described above, switches and controls the vacuum control valve 19, and controls the fuel injection pump 2 to keep the engine 1 in a high idle rotation state. At the same time, the fuel injection timing is controlled so as not to advance.

次に、上記構成の動作を説明すると、エンジン1の通常
運転時においては、吸気通路3および排気通路6の各絞
り弁9.10は共に通路を全開させており、またヒータ
8に通電されていない。この状態でエンジン1から排出
された排気ガスは分岐排気通路5〜5から排気通路6へ
と流れ、フィルタ7を通過して排出され、その際に排気
ガス中のカーボン等の可燃性排気微粒子が該フィルタフ
に捕集される。
Next, the operation of the above configuration will be explained. During normal operation of the engine 1, the throttle valves 9 and 10 of the intake passage 3 and the exhaust passage 6 are both fully opened, and the heater 8 is not energized. do not have. In this state, the exhaust gas discharged from the engine 1 flows from the branch exhaust passages 5 to 5 to the exhaust passage 6, passes through the filter 7, and is discharged. It is collected by the filter.

上記フィルタフにおける排気微粒子の捕集量が次第に増
大して該フィルタが目詰まりを起こすような状態に近づ
くに伴い、フィルタ7の再生が指令される。この再生へ
の移行はこの実施例の場合、第2図に示す再生スイッチ
の手動操作で行うが、たとえばフィルタフの上流の排圧
の上昇を図示しないセンサで検出することで自動的に移
行させることも考えられる。
As the amount of exhaust particulates collected in the filter gradually increases and approaches a state where the filter becomes clogged, a command is issued to regenerate the filter 7. In this embodiment, the transition to regeneration is performed by manual operation of the regeneration switch shown in FIG. 2, but the transition can also be made automatically by, for example, detecting an increase in the exhaust pressure upstream of the filter with a sensor (not shown). can also be considered.

上記再生指令によってコントローラ31は直ちにヒータ
8に通電して吸気通路3から分岐吸気通路4〜4を通し
てエンジンlに供給するエアを加熱し、排気ガスの温度
上昇を助長する。また、コントローラ31は上記し−タ
8への通電から若干のタイムラグΔ1.をおいて燃料噴
射ポンプ2を制御し、エンジン1の回転数をハイアイド
ル回転数となるようにし、排気通路6への排気ガス量を
多くする。
In response to the regeneration command, the controller 31 immediately energizes the heater 8 to heat the air supplied to the engine 1 from the intake passage 3 through the branch intake passages 4 to 4, thereby promoting a rise in the temperature of the exhaust gas. Moreover, the controller 31 has a slight time lag Δ1. Then, the fuel injection pump 2 is controlled so that the rotational speed of the engine 1 becomes a high idle rotational speed, and the amount of exhaust gas to the exhaust passage 6 is increased.

次に、また若干のタイムラグΔt2をおいてコントロー
ラ31はバキューム制御バルブ19を駆動してバキュー
ムポンプ22のエア吸引力をそれぞれのエア流路20.
21に作用させる。このときには、排気通路側では該通
路6からガス流路27から排圧制御バルブ26に導く排
気ガスの排圧がスプリング28の力に打ち勝つほど高ま
っていないので、該バルブ26は開いており、上記エア
吸引力は直ちにエア流路21を通してダイヤフラム16
に働き、絞り弁10が排気通路6を絞るように作動する
Next, after a slight time lag Δt2, the controller 31 drives the vacuum control valve 19 to apply the air suction force of the vacuum pump 22 to each air flow path 20.
21. At this time, on the exhaust passage side, the exhaust pressure of the exhaust gas guided from the passage 6 to the gas flow passage 27 to the exhaust pressure control valve 26 has not increased enough to overcome the force of the spring 28, so the valve 26 is open, and as described above. The air suction force immediately passes through the air flow path 21 to the diaphragm 16.
The throttle valve 10 operates to throttle the exhaust passage 6.

しかし、吸気通路3側のエア流路20には遅延バルブ2
3が介設されていて、エア吸引力はオリフィス24を通
して働く結果、ダイヤフラム15からエア流路20に引
かれるエアの速度が排気通路側に比べて低下し、このた
め吸気通路側の絞り弁9の回動速度が遅くなり、排気通
路6に対して遅れて吸気通路3が絞られることになる。
However, the delay valve 2 is located in the air passage 20 on the side of the intake passage 3.
3 is interposed, and as a result of the air suction force acting through the orifice 24, the speed of the air drawn from the diaphragm 15 to the air passage 20 is lower than that on the exhaust passage side, so that the throttle valve 9 on the intake passage side The rotational speed of the intake passage 3 becomes slower, and the intake passage 3 is narrowed later than the exhaust passage 6.

ところで、上記のようにエンジン1の回転数をハイアイ
ドルまで高めると、エンジン1の燃焼室に対する燃料の
噴射タイミングを速く(進角)して、燃料が燃焼室内で
完全燃焼しやすいように制御するのが菅通であるが、こ
こでは絞り弁9.10の作動から若干のタイムラグΔt
、をおいて燃料噴射タイミングが進角にならないように
制御をかける。このように燃料噴射タイミングを通常の
ハイアイドル回転状態のときよりも遅らすようにすれば
、燃料が該燃焼室内で完全燃焼せず、排気バルブの開弁
に伴って流出した分岐排気通路5〜5内においても燃焼
する、いわゆる後燃えが発生し、分岐排気通路5〜5か
ら排気通路6に流れる排気ガスの温度が高まる。
By the way, when the rotation speed of the engine 1 is increased to high idle as described above, the timing of fuel injection into the combustion chamber of the engine 1 is accelerated (advanced) to control the fuel so that it is easy to completely burn the fuel in the combustion chamber. This is Sugadori, but here there is a slight time lag Δt from the operation of the throttle valve 9.10.
, the fuel injection timing is controlled so that it does not advance. If the fuel injection timing is delayed compared to the normal high idle rotation state in this way, the fuel will not be completely combusted in the combustion chamber, and the branch exhaust passages 5 to 5 from which the fuel will flow out when the exhaust valve opens will be prevented. So-called afterburning, in which combustion also occurs within the exhaust gas, occurs, and the temperature of the exhaust gas flowing from the branch exhaust passages 5 to 5 to the exhaust passage 6 increases.

以上の制御によって、エンジンlにヒータ8によって暖
められたエアが供給されることと、エンジン1がハイア
イドル回転状態で運転されると共に、燃料噴射タイミン
グが遅くなることによって、排気通路6にはより多くの
、かつ温度の高い排気ガスが送り出される。さらに吸気
通路3および排気通路6が絞られることによって排気通
路6の排圧が上昇し、この排圧上昇で排気通路6内の排
気ガスの温度がさらに高められる。そのため、この排気
ガスがフィルタ7を通過するに伴い該フィルタに捕集さ
れている排気微粒子が熱と圧力とによって効果的に燃焼
され、この状態がタイマ等によって一定時間を継続され
ることによって排気微粒子が完全にフィルタ32から除
去され、該フィルタ32が浄化ないし再生される。
As a result of the above control, the air warmed by the heater 8 is supplied to the engine 1, the engine 1 is operated in a high idling state, and the fuel injection timing is delayed, so that the exhaust passage 6 is filled with more air. A large amount of high temperature exhaust gas is sent out. Further, by narrowing the intake passage 3 and the exhaust passage 6, the exhaust pressure in the exhaust passage 6 increases, and this increase in exhaust pressure further increases the temperature of the exhaust gas in the exhaust passage 6. Therefore, as this exhaust gas passes through the filter 7, the exhaust particulates collected by the filter are effectively combusted by heat and pressure, and when this state is continued for a certain period of time by a timer etc., the exhaust gas is Particulates are completely removed from the filter 32 and the filter 32 is purified or regenerated.

ところで、上記再生処理は絞り弁9.10によって排気
通路6の排圧を高めて行うから、排気通路6の排圧が上
昇しすぎると、エンジン1の排気バルブの作動に悪影響
を与えることになる。しかし排圧が排圧制御バルブ26
におけるスプリング28に打ち勝つ値まで上昇すると、
該排圧制御バルブ26によりエア流路21が遮断されて
エア吸引力がダイヤフラム16に働かなくなり、絞り弁
10の絞り量がちいさくなって、排気ガスの排出が促さ
れるので、すみやかに絞り弁10の上流側の排圧が低下
し、上記の悪影響の発生が抑止される。また逆に排圧が
低下し始めるとスプリング28の働きで排圧制御バルブ
26が再びエア流路21を開放して絞り弁10の絞り量
を大きくする。このため排圧はスプリング28の力に対
応する値にほぼ一定して保たれることになって、上記の
再生処理が効果的に行われる。なお、エア流路21には
排圧制御バルブ26とダイヤフラム16との間の流路2
1a部分にオリフィス30を設けて、排圧制御バルブ2
6のON −OFFに対するダイヤフラム16ならびに
絞り弁10の応答を遅くするので、絞り弁10のハンチ
ングを防止できる。したがって、このオリフィス30は
チャンバに置き換えることもできる。
By the way, since the above regeneration process is performed by increasing the exhaust pressure in the exhaust passage 6 using the throttle valve 9.10, if the exhaust pressure in the exhaust passage 6 increases too much, it will adversely affect the operation of the exhaust valve of the engine 1. . However, the exhaust pressure is
When it rises to a value that overcomes the spring 28 at
The air flow path 21 is blocked by the exhaust pressure control valve 26, so that no air suction force acts on the diaphragm 16, and the throttle amount of the throttle valve 10 becomes small, promoting exhaust gas discharge. The exhaust pressure on the upstream side of the engine is reduced, and the occurrence of the above-mentioned adverse effects is suppressed. On the other hand, when the exhaust pressure starts to decrease, the exhaust pressure control valve 26 opens the air passage 21 again by the action of the spring 28 and increases the throttle amount of the throttle valve 10. Therefore, the exhaust pressure is kept substantially constant at a value corresponding to the force of the spring 28, and the above regeneration process is effectively performed. Note that the air flow path 21 includes a flow path 2 between the exhaust pressure control valve 26 and the diaphragm 16.
An orifice 30 is provided in the part 1a, and the exhaust pressure control valve 2
Since the response of the diaphragm 16 and the throttle valve 10 to the ON-OFF of the throttle valve 6 is delayed, hunting of the throttle valve 10 can be prevented. Therefore, this orifice 30 can also be replaced by a chamber.

そして、上記一定の再生処理時間tが経過すると、バキ
ューム制御バルブ19が各エア流路20.21を大気開
放させる。これにより遅延バルブ23においては流入す
る大気圧によって一方向弁25が弁孔25aを開放し、
ダイヤフラム15が大気にすみやかに連通される。また
排圧制御バルブ26を通してダイヤフラム16もすみや
かに大気に連通される。このため吸気通路側および排気
通路側の絞り弁9,10がほぼ同時に復動することにな
る。
Then, when the above-described predetermined regeneration processing time t has elapsed, the vacuum control valve 19 opens each air passage 20.21 to the atmosphere. As a result, in the delay valve 23, the one-way valve 25 opens the valve hole 25a due to the inflowing atmospheric pressure,
The diaphragm 15 is immediately communicated with the atmosphere. The diaphragm 16 is also immediately communicated with the atmosphere through the exhaust pressure control valve 26. Therefore, the throttle valves 9 and 10 on the intake passage side and the exhaust passage side move back almost simultaneously.

このように、排気通路6における絞り弁10よりも上流
側の排圧を検出し、この排圧値とスプリング28によっ
て設定された排圧値とを比較し、排圧が設定された排圧
値に維持されるように制御してフィルタ7の再生処理を
施すので、排気通路6内の排圧が所定の値に保たれるこ
とになってエンジン1への悪影響が避けられる。また、
排圧を適切な値に高めるので、排気ガスの温度が効果的
に上昇し、フィルタフに捕集されている排気微粒子の除
去が確実となる。
In this way, the exhaust pressure on the upstream side of the throttle valve 10 in the exhaust passage 6 is detected, this exhaust pressure value is compared with the exhaust pressure value set by the spring 28, and the exhaust pressure is determined at the set exhaust pressure value. Since the filter 7 is regenerated by controlling the exhaust pressure to be maintained at a predetermined value, the exhaust pressure in the exhaust passage 6 is maintained at a predetermined value, and an adverse effect on the engine 1 is avoided. Also,
Since the exhaust pressure is raised to an appropriate value, the temperature of the exhaust gas is effectively raised, and the removal of exhaust particulates trapped in the filter is ensured.

なお、上記フィルタフの再生処理が効果的に行われてい
るか否かを把握するため、排気通路6のフィルタ7を挟
む上流と下流とに熱電対のような温度センサ32.32
を設け、これらのセンサ32.32による検出温度によ
って捕集微粒子の燃焼状態を判断するようにしてもよい
In addition, in order to ascertain whether or not the above-mentioned filter filter regeneration process is being carried out effectively, temperature sensors 32, 32 such as thermocouples are installed at the upstream and downstream sides of the filter 7 in the exhaust passage 6.
may be provided, and the combustion state of the collected particulates may be determined based on the temperature detected by these sensors 32 and 32.

(発明の効果) 以上の説明によって明らかなように、本発明によれば、
フィルタの再生時、排気通路側絞り弁を絞り方向に作動
させることによって一旦所定の値まで上昇した排圧が、
その後の吸気通路側絞り弁の絞り方向の作動によって再
び低下しようとしても、排圧制御手段が排気通路側の絞
り弁をさらに絞って、排気通路内の排圧が所定値から低
下するのを防ぐ、また、排圧が所定の値からさらに上昇
しようとした場合には、排圧制御手段が排気通路側絞り
弁の絞り量をちいさくして排圧の上昇を防ぐ、このなめ
フィルタ再生処理時における排圧が一定し、該排圧の異
常な高まりによるエンジンの障害発生が避けられる。ま
た、排気通路の排圧を適切な値に高めることにより排気
ガスの温度が効果的に上昇し、フィルタに捕集されてい
る微粒子の燃焼が確実に行われて、フィルタの浄化ない
し再生能力が向上する。
(Effects of the Invention) As is clear from the above explanation, according to the present invention,
When the filter is regenerated, the exhaust pressure, once raised to a predetermined value, is
Even if the exhaust pressure in the exhaust passage is attempted to decrease again due to the subsequent operation of the throttle valve on the intake passage side in the throttle direction, the exhaust pressure control means further throttles the throttle valve on the exhaust passage side to prevent the exhaust pressure in the exhaust passage from decreasing from a predetermined value. In addition, when the exhaust pressure is about to rise further from a predetermined value, the exhaust pressure control means reduces the throttle amount of the exhaust passage side throttle valve to prevent the exhaust pressure from rising. The exhaust pressure is kept constant, and engine failure due to an abnormal increase in the exhaust pressure can be avoided. In addition, by increasing the exhaust pressure in the exhaust passage to an appropriate value, the temperature of the exhaust gas is effectively raised, ensuring that the particulates trapped in the filter are combusted, and the purification or regeneration ability of the filter is improved. improves.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明にかかるディーゼルエンジンの排気微粒子
除去装置の実施例を示すもので、第1図は全体の概略構
成図、第2図はフィルタ再生処理時のタイミングチャー
トである。 l・・・ディーゼルエンジン、3・・・吸気通路、6・
・・排気通路、7・・・フィルタ、9.10・・・絞り
弁、19,22.23・・・絞り弁駆動手段(19はバ
キューム制御バルブ、22はバキュームポンプ)、26
・・・排圧制御手段(排圧制御バルブ)。
The drawings show an embodiment of the exhaust particulate removal device for a diesel engine according to the present invention, and FIG. 1 is a schematic diagram of the overall configuration, and FIG. 2 is a timing chart during filter regeneration processing. l...Diesel engine, 3...Intake passage, 6.
... Exhaust passage, 7... Filter, 9.10... Throttle valve, 19, 22. 23... Throttle valve driving means (19 is a vacuum control valve, 22 is a vacuum pump), 26
...Exhaust pressure control means (exhaust pressure control valve).

Claims (1)

【特許請求の範囲】[Claims] (1)排気通路に可燃性排気微粒子を捕集するフィルタ
を備えているディーゼルエンジンの排気微粒子除去装置
であって、上記フィルタの下流における排気通路内と吸
気通路内とにそれぞれ絞り弁が設けられると共に、フィ
ルタ再生時に、排気通路側の絞り弁を絞り方向に作動さ
せたのち吸気通路側の絞り弁を絞り方向に作動させる絞
り弁駆動手段と、排気通路側絞り弁の上流における排圧
の大きさを検出して、該排圧がフィルタ再生時において
設定されている所定の圧力となるように該絞り弁の絞り
度を調整する排圧制御手段とが備えられていることを特
徴とするディーゼルエンジンの排気微粒子除去装置。
(1) An exhaust particulate removal device for a diesel engine equipped with a filter for collecting combustible exhaust particulates in the exhaust passage, wherein throttle valves are provided in the exhaust passage and the intake passage downstream of the filter, respectively. In addition, during filter regeneration, a throttle valve driving means operates a throttle valve on the exhaust passage side in a throttle direction and then operates a throttle valve on the intake passage side in a throttle direction, and a large exhaust pressure upstream of the exhaust passage side throttle valve. and exhaust pressure control means that detects the exhaust pressure and adjusts the degree of throttling of the throttle valve so that the exhaust pressure reaches a predetermined pressure set during filter regeneration. Engine exhaust particulate removal device.
JP2217357A 1990-02-22 1990-08-17 Exhaust fine particle eliminating device for diesel engine Pending JPH04101010A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2217357A JPH04101010A (en) 1990-08-17 1990-08-17 Exhaust fine particle eliminating device for diesel engine
EP91102309A EP0445567A1 (en) 1990-02-22 1991-02-19 Exhaust gas cleaning system for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2217357A JPH04101010A (en) 1990-08-17 1990-08-17 Exhaust fine particle eliminating device for diesel engine

Publications (1)

Publication Number Publication Date
JPH04101010A true JPH04101010A (en) 1992-04-02

Family

ID=16702909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2217357A Pending JPH04101010A (en) 1990-02-22 1990-08-17 Exhaust fine particle eliminating device for diesel engine

Country Status (1)

Country Link
JP (1) JPH04101010A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517112U (en) * 1991-01-04 1993-03-05 日産デイーゼル工業株式会社 Parti-cure rate trap filter playback device
WO2007063378A3 (en) * 2005-12-02 2007-09-27 Toyota Motor Co Ltd Control system for internal combustion engine, and control method for internal combustion engine
JP2008281004A (en) * 2007-05-10 2008-11-20 Deere & Co Particle filter regeneration system for internal combustion engine
WO2009017566A1 (en) * 2007-07-31 2009-02-05 Caterpillar Inc. Engine system, operating method and control strategy for aftertreatment thermal management
CN102156048A (en) * 2011-04-20 2011-08-17 潍柴动力股份有限公司 Device for detecting engine exhaust back pressure as well as particle catch regeneration control system and method
US8042326B2 (en) 2007-08-17 2011-10-25 GM Global Technology Operations LLC Intake air heater for assisting DPF regeneration
CN104712436A (en) * 2015-01-26 2015-06-17 上海交通大学 Sliding type rotary adjustment system
CN104791056A (en) * 2015-03-21 2015-07-22 北京工业大学 Catalytic device for reducing cold starting emission through vacuum-phase-change heat preservation and control method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517112U (en) * 1991-01-04 1993-03-05 日産デイーゼル工業株式会社 Parti-cure rate trap filter playback device
WO2007063378A3 (en) * 2005-12-02 2007-09-27 Toyota Motor Co Ltd Control system for internal combustion engine, and control method for internal combustion engine
JP2008281004A (en) * 2007-05-10 2008-11-20 Deere & Co Particle filter regeneration system for internal combustion engine
WO2009017566A1 (en) * 2007-07-31 2009-02-05 Caterpillar Inc. Engine system, operating method and control strategy for aftertreatment thermal management
US8024919B2 (en) 2007-07-31 2011-09-27 Caterpillar Inc. Engine system, operating method and control strategy for aftertreatment thermal management
US8042326B2 (en) 2007-08-17 2011-10-25 GM Global Technology Operations LLC Intake air heater for assisting DPF regeneration
CN102156048A (en) * 2011-04-20 2011-08-17 潍柴动力股份有限公司 Device for detecting engine exhaust back pressure as well as particle catch regeneration control system and method
CN104712436A (en) * 2015-01-26 2015-06-17 上海交通大学 Sliding type rotary adjustment system
CN104791056A (en) * 2015-03-21 2015-07-22 北京工业大学 Catalytic device for reducing cold starting emission through vacuum-phase-change heat preservation and control method

Similar Documents

Publication Publication Date Title
US7237379B2 (en) Regeneration of diesel particulate filter
JPH04101010A (en) Exhaust fine particle eliminating device for diesel engine
JPH056007B2 (en)
JPH0511205B2 (en)
JP3374779B2 (en) Exhaust gas purification device for internal combustion engine
JPH0710014Y2 (en) Exhaust gas purification device for a diesel engine
JPS6079114A (en) Device for processing microparticles in exhaust gas of internal-combustion engine
JP2913777B2 (en) Engine exhaust purification device
JPS632004B2 (en)
JPS62210212A (en) Exhaust gas particulate removing device for internal combustion engine
JPH034735Y2 (en)
JPH04358714A (en) Exhaust purifying device for engine
JPS63988Y2 (en)
JPH0429846B2 (en)
JP2878113B2 (en) Backwashing particulate collection equipment
JPH09209844A (en) Exhaust emission control device
JPH0515892B2 (en)
JP4044836B2 (en) Exhaust gas purification device for internal combustion engine
JPS58140432A (en) Number of cylinder control engine
JPH0530962B2 (en)
JPS58162712A (en) Purifying device of exhaust fine particles for diesel engine
JPH01182517A (en) Exhaust emission control device for diesel engine
JPS6325293Y2 (en)
JPH0550566B2 (en)
JP2621583B2 (en) Engine exhaust purification device