JPH0397297A - Multilayered copper-plated laminated board and its manufacture - Google Patents

Multilayered copper-plated laminated board and its manufacture

Info

Publication number
JPH0397297A
JPH0397297A JP23523889A JP23523889A JPH0397297A JP H0397297 A JPH0397297 A JP H0397297A JP 23523889 A JP23523889 A JP 23523889A JP 23523889 A JP23523889 A JP 23523889A JP H0397297 A JPH0397297 A JP H0397297A
Authority
JP
Japan
Prior art keywords
base material
prepreg
sheets
inner layer
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23523889A
Other languages
Japanese (ja)
Inventor
Kazuo Okubo
和夫 大久保
Katsunori Ariji
有路 克則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Toshiba Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Corp filed Critical Toshiba Chemical Corp
Priority to JP23523889A priority Critical patent/JPH0397297A/en
Publication of JPH0397297A publication Critical patent/JPH0397297A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To obtain a multilayered copper-plated laminated board which has a small coefficient of contraction and no difference in coefficient of contraction between the longitudinal and transversal directions and is improved in dimensional accuracy and stability after work by alternately piling up internal layer sheets and prepreg sheets in a state where the orientation of the base material of the internal layer sheets is made orthogonal to that of the base material of the prepreg sheets. CONSTITUTION:Internal layer sheets 4 and 8 and prepreg sheets 1 and 7 are alternately piled up in a state where the orientation of the base material of the plates 4 and 8 is made orthogonal to that of the base material of the sheets 1 and 7. When a laminated board is manufactured is such way, the ratio of the coefficient of contraction in the longitudinal direction of the board to that in the transversal direction can be reduced to 1 as much as possible and, at the same time, the absolute values of the coefficients can be reduced. In addition, when the orientation of the base material of the prepreg sheets 1 and 7 is made parallel to the long side of the board rather than the short side, the abovementioned effect can be exerted more efficiently. Moreover, when the laminated board is heated at 150 deg.C for more than one hour before circuits are formed on the internal layer sheets 4 and 8, a multilayered copper-plated laminated board which is small in coefficient of contraction and excellent in dimensional stability can be obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、寸法精度に優れた、特に薄物に有効な多層′
lj4張積層板およびその製造方法に関する.(従来の
技術) 近年、多層プリント板は、その利用が産業エレクトロニ
クス分野から民生分野へ拡がるとともに、民生指向に件
なって軽薄短小化、低コスト化が進められ、その結果、
薄物(総板厚0.8lI1以下)の多層銅張積層板の需
要が多くなってきた。 薄物の多層鋼張積層板に使用さ
れるガラスクロスには、板厚を薄くするために216タ
イプ(厚さ100μI)が使用されるが、この場合には
特に多層銅張積層板の寸法安定性に問題がある. (発明が解決しようとする課題) 一般に、ガラスクロス基材積層板に使用されるガラスク
ロスは、第4図に示したように、長尺のガラスクロス2
0が巻心21にロール状に巻かれており、ガラスクロス
の長手に沿った方向(基材縦方向)22と基材横方向2
3とでは、クロス自体の打ち込み本数《1インチ当りの
糸数)、織機のテンションが異なっている。 また、長
尺のガラスクロスに樹脂を含浸・乾燥してプリプレグと
する加工機においても、基材縦方向には加工機のテンシ
ョンがより強く加わる. そのため、プリブレグを積層
加工したのちの積層板の基材縦方向22の加熱収縮率は
、基材横方向23の加熱収縮率よりも著しく大きい。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention provides a multilayer film with excellent dimensional accuracy, which is particularly effective for thin objects.
This article relates to a lj4-strung laminate and its manufacturing method. (Prior art) In recent years, the use of multilayer printed circuit boards has expanded from the industrial electronics field to the consumer sector.
Demand for thin (total thickness 0.8lI1 or less) multilayer copper-clad laminates has increased. The 216 type (thickness: 100μI) is used for glass cloth used in thin multilayer steel clad laminates in order to reduce the thickness, but in this case, the dimensional stability of multilayer copper clad laminates is particularly important. There is a problem. (Problem to be Solved by the Invention) Generally, the glass cloth used for the glass cloth base material laminate is a long glass cloth 2 as shown in FIG.
0 is wound in a roll shape around a winding core 21, and the direction along the length of the glass cloth (vertical direction of the base material) 22 and the horizontal direction of the base material 2
3 differs in the number of threads (number of threads per inch) of the cloth itself and the tension of the loom. In addition, even in processing machines that impregnate and dry long glass cloth with resin to produce prepreg, the processing machine applies stronger tension in the longitudinal direction of the substrate. Therefore, after the pre-regs are laminated, the heat shrinkage rate of the laminate in the longitudinal direction 22 of the base material is significantly larger than the heat shrinkage rate of the laminate in the transverse direction 23 of the base material.

多層銅張積層板(標準板厚1.61)においても同様で
あって、第5図(a )のように、積層板長辺方向に基
材縦方向26の内層板25と基材縦方向26のブリプレ
グ24とをそろえて使用したり、第5図(b )のよう
に、積層板短辺方向に基材縦方向29の内層板28と基
材縦方向29のプリブレグ27を方向性とをそろえて使
用すると、基材縦方向26.29の収縮率が大きくなり
、それと直交する基材横方向の収縮率との間に大きな差
が出て寸法変化のアンバランスが生じる。
The same applies to multilayer copper-clad laminates (standard thickness 1.61), as shown in FIG. 26 of the pre-pregs 24 are aligned, or as shown in FIG. If they are used together, the shrinkage rate in the longitudinal direction 26.29 of the base material will increase, and a large difference will appear between the shrinkage rate in the transverse direction of the base material, which is perpendicular to this, resulting in an imbalance in dimensional changes.

この要因は、前記したとおり、ガラスクロス自体の打ち
込み本数、a機のテンション等であるが、なかでも、ガ
ラスクロスの打ち込み本数が収縮率に与える最も大きな
要因で、これを改善することにより収縮率を小さくする
ことができると考えられている. ところが、ガラスク
ロス打ち込み本数は、規格の制限があって変更すること
はできない。
As mentioned above, the factors for this are the number of strands of the glass cloth itself, the tension of machine a, etc. Among them, the number of strands of glass cloth that is pierced is the most important factor affecting the shrinkage rate, and by improving this, the shrinkage rate It is believed that it is possible to reduce the However, the number of glass cloths to be implanted cannot be changed due to standard restrictions.

また、薄物の多層銅張積層板の製造方法も、上記標準板
厚1.6nnの製造体制をそのまま踏襲しているおり、
特に高寸法精度についての検討がされていない。 その
ため、薄物の多層銅張積層板の製造時や部品実装時にお
いて基板の収縮量や縦横方向の収縮量の差などに問題と
なる欠点があった。
In addition, the manufacturing method for thin multilayer copper-clad laminates follows the same manufacturing system for the standard board thickness of 1.6 nn as described above.
In particular, no consideration has been given to high dimensional accuracy. Therefore, there are drawbacks such as the amount of shrinkage of the board and the difference in the amount of shrinkage in the vertical and horizontal directions when manufacturing a thin multilayer copper-clad laminate or when mounting components.

(発明が解決しようとする課題) 本発明は、上記の事情に鑑みてなされたもので、収縮率
が小さくしかも縦・横方向による収縮率の差がなく、加
工後の寸法精度、寸法安定性に優れ、かつ標準板厚の製
造体制でつくれる薄物の多層銅張積層板およびその製造
方法を提供しようとするものである. また、基材を加工した各段階のプリプレグ、内層板にお
いても、使用された基材の方向性をプリプレグの方向性
、内層板の方向性とそれぞれ定義する. [発明の構成] (課題を解決するための手段) 本発明者らは、上記の目的を達成しようと鋭意研究を重
ねた結果、ブリブレグと内層板の方向性、ブリプレグの
長辺と短辺の方向性、組み合わせ方法の検討を行い上記
目的を達成できることを見いだし本発明を完成させたも
のである。 すなわち、本発明は、 多層銅張積層板において、内層板の基材方向性とプリプ
レグの基材方向性とを直交させ積層してなることを特徴
とする多N銅張積層板である。 そして、多層8張積層
板において予め内層板を150℃以上にベーキングし、
その内層板の基材方向性とプリプレグとの基材方向性を
直交させて積層一体に形或することを特徴とする多層銅
張積層板の製造方法である. 本発明に用いるプリプレグとしては、ガラスクロスに熱
硬化性樹脂例えばエボキシ樹脂、ポリイミド樹脂及びこ
れらの変性樹脂を含浸乾燥したものを用いる。 ガラス
クロスとしては、特に制限はないが比較的薄いもの、例
えば216タイプ等が望ましい. 本発明に用いる内層板としては、常法によって製造され
るものが広く使用できる. 回路形成を施す以前に15
0℃以上の温度で1時間以上ベーキングをすれば寸法安
定性に一層の効果がある。
(Problems to be Solved by the Invention) The present invention has been made in view of the above circumstances, and has a small shrinkage rate, no difference in shrinkage rate in the vertical and horizontal directions, and high dimensional accuracy and dimensional stability after processing. The purpose of this invention is to provide a thin multilayer copper-clad laminate that has excellent properties and can be manufactured using a standard thickness manufacturing system, and a method for manufacturing the same. Furthermore, for the prepreg and inner layer plate at each stage of processing the base material, the directionality of the base material used is defined as the directionality of the prepreg and the directionality of the inner layer plate, respectively. [Structure of the Invention] (Means for Solving the Problems) As a result of intensive research aimed at achieving the above object, the present inventors have determined the directionality of the brypreg and the inner layer plate, and the long and short sides of the brypreg. After studying the directionality and combination methods, it was discovered that the above object could be achieved, and the present invention was completed. That is, the present invention is a multi-N copper-clad laminate characterized by being laminated with the base material directionality of the inner layer board and the base material directionality of the prepreg perpendicular to each other. Then, in advance, the inner layer of the multilayer 8-layer laminate is baked to a temperature of 150°C or higher,
This is a method for manufacturing a multilayer copper-clad laminate, which is characterized in that the orientation of the base material of the inner laminate is perpendicular to the orientation of the base material of the prepreg, and the laminate is integrally formed. The prepreg used in the present invention is a glass cloth impregnated with a thermosetting resin such as an epoxy resin, a polyimide resin, or a modified resin thereof and dried. There are no particular restrictions on the glass cloth, but a relatively thin one, such as the 216 type, is preferable. As the inner layer plate used in the present invention, those manufactured by conventional methods can be widely used. 15 before circuit formation
Baking for 1 hour or more at a temperature of 0° C. or higher has a further effect on dimensional stability.

次に本発明を図面を用いて説明する. 第1図は、本発明の多層銅張積層板の内層板とブリブレ
グの組み合わせ積層方法を示す説明図である。 第1図
(a)は、内層板長辺が基材横方向、つまり基材方向性
4を示す内層板2の両開に、プリブレグ長辺が基材縦方
向、つまり基材方向性3を示すプリプレグ1を、内層板
2の基材方向性4とプリプレグの基材方向性3とが直交
するように積層してある。 また第1図(b)は、内層
板長辺が基材縦方向、つまり基材方向性8を示す内層板
6の両開に、ブリブレグ長辺が基材横方向、つまり基材
方向性7を示すプリブレグ5を、内層板6の基材方向性
8とプリグレグ5の基材方向性7が直交するように積層
してある. 内層板とプリグレグの基材方向性を直交さ
せることによって基材樅方向に大きい収縮率を基材横方
向の小さい収縮率で抑制し、多層積層板全体としての収
縮率を小さくするものである. すなわち、多層積層板
の長辺方向の収縮率と短辺方向の収縮率の比を1に近づ
けることによって寸法安定性に優れたものとなり、かつ
収縮率の絶対値を小さくすることができる。 内層板と
プリプレグの基材方向性を直交させて積層する方法とし
て、上記しなとおり、ブリプレグを基材縦方向の長辺を
利用する(第1図(a))ものとブリブレグの基材横方
向の短辺を利用する(第1図(b))ものとがあり、い
ずれの積層方法でもよいがブリブレグ基材縦方向の長辺
を利用する方が寸法安定性により効果がある.内層板と
ブリプレグの基材方向性を直交させてM層することによ
って寸法安定性を優れたものとすることができるが、更
に内層板を予め150゜C以上で、かつ1時間以上ベー
キングしておくと、更に寸法精度の優れたものが得られ
る. このべ一キングも回路形成を行う前にベーキング
を行うと内層回路の収縮を防止でき収縮率の改善に一層
効果がある. 第2図は、本発明の多層g:J張積層板の層構造を示す
断面図である, 予めベーキングを行い回路形威した内
層板10の表裏に内層板10の基材方向性と直交するよ
うにブリブレグ11を積層し、更にその両開に銅箔を重
ね合わせて常法によって加熱加圧一体にして多層銅張積
層板を製造したものである。 第2図において、4層の
多層銅張積層板について説明したが、この思想・考え方
は薄物ばかりでなく、6〜14層程度のものにも適用す
ることかできる, (作用) 内層板の基材方向性とプリグレグの基材方向性とを直交
させるように積層することによって、多層板の縦と横と
収縮率の比をできる限り 1に近づけ、かつ収縮率の絶
対値を小さくすることができる, また、直交する場合
プリプレグの基材方向性を短辺に適用するより基材方向
性を長辺に適用すると、より一層効果があり、更に内層
板の回路形成以前に150℃以上に、かつ1時間以上加
熱することによって、収縮率が小さく、かつ寸法安定性
に優れた多層銅張積層板とすることができる.(実施例
) 次に本発明を実施例によって説明する。
Next, the present invention will be explained using drawings. FIG. 1 is an explanatory diagram showing a method of laminating a combination of an inner layer plate and a blob leg of a multilayer copper-clad laminate according to the present invention. In Fig. 1(a), the long side of the inner layer plate 2 is opened in the horizontal direction of the base material, that is, the base material directionality is 4, and the long side of the pre-reg is in the longitudinal direction of the base material, that is, the base material directionality is 3. The shown prepregs 1 are laminated so that the base material directionality 4 of the inner layer board 2 and the base material directionality 3 of the prepregs are orthogonal. Further, in FIG. 1(b), the long side of the inner layer plate 6 is in the vertical direction of the base material, that is, the base material directionality is 8, and the long side of the brev leg is in the horizontal direction of the base material, that is, the base material directionality is 7. The pre-regs 5 showing the above are laminated so that the base material directionality 8 of the inner layer plate 6 and the base material directionality 7 of the pre-regs 5 are orthogonal. By orthogonalizing the directionality of the base material of the inner layer and pre-greg, the large shrinkage rate in the base material direction is suppressed by a small shrinkage rate in the base material lateral direction, thereby reducing the shrinkage rate of the multilayer laminate as a whole. That is, by making the ratio of the shrinkage rate in the long side direction and the shrinkage rate in the short side direction of the multilayer laminate close to 1, it is possible to obtain excellent dimensional stability and to reduce the absolute value of the shrinkage rate. As described above, two methods of laminating the inner layer board and the prepreg with the base material direction perpendicular to each other are one that utilizes the long side of the base material in the longitudinal direction of the prepreg (Fig. 1 (a)), and the other that uses the long side of the base material of the prepreg (Fig. 1 (a)). There is a method that utilizes the short side in the vertical direction (Fig. 1 (b)), and although any lamination method may be used, it is more effective for dimensional stability to use the long side in the vertical direction of the blibreg base material. Excellent dimensional stability can be achieved by layering M layers with the orientation of the base material of the inner layer board and Bripreg perpendicular to each other. If you leave it for a long time, you can obtain a product with even better dimensional accuracy. Baking before forming the circuit prevents shrinkage of the inner layer circuit and is even more effective in improving the shrinkage rate. FIG. 2 is a cross-sectional view showing the layer structure of the multilayer G:J-strung laminate of the present invention. A multi-layer copper-clad laminate was produced by laminating the brev legs 11 as shown in FIG. In Fig. 2, we have explained a four-layer multilayer copper-clad laminate, but this concept can be applied not only to thin materials but also to materials with about 6 to 14 layers. By laminating so that the directionality of the material and the directionality of the base material of the pregreg are perpendicular, it is possible to make the ratio of the length, width, and shrinkage rate of the multilayer board as close to 1 as possible, and to reduce the absolute value of the shrinkage rate. In addition, in the case of orthogonal alignment, it is more effective to apply the base material directionality to the long side of the prepreg rather than to the short side. By heating for 1 hour or more, a multilayer copper-clad laminate with low shrinkage and excellent dimensional stability can be obtained. (Example) Next, the present invention will be explained by referring to an example.

[内層板の製造] ピン間1本の信号回路とアース電源回路の組み合わせか
らなる内層パターンを有する次の内層板を製造した。
[Manufacture of inner layer board] The following inner layer board having an inner layer pattern consisting of a combination of one signal circuit between pins and a ground power supply circuit was manufactured.

内層板■:160℃x1hrベーキング 短辺が基材縦
方向 内層板■:160゜C X lhrベーキング 長辺が
基材縦方向 内層板◎:短辺が基材縦方向性 内層板O:長辺が基材縦方向性 [プリプレグの製造] 216タイグ(厚さ 100μI1)のガラスクロスに
エボキシ樹脂を含浸乾燥したV!j脂量53重量%、ゲ
ルタイム120秒の次のプリプレグを製造した。
Inner layer board ■: 160°C x 1hr baking Short side is the base Vertical inner layer board ■: 160°C X lhr baking Long side is the base Vertical inner layer board ◎: Short side is the base Longitudinal inner layer board O: Long side is the longitudinal direction of the base material [Manufacture of prepreg] V! is made by impregnating and drying epoxy resin into a glass cloth of 216 Taigu (thickness 100μI1). The following prepreg with a fat content of 53% by weight and a gel time of 120 seconds was produced.

プリプレグ(a):長辺が基材縦方向 ブリプレグ(b):短辺が基材縦方向 実施例 1 内層板■の表裏にプリブレグ(a)を各1枚重ね合わせ
、更にその両側に厚さ18μ鼾の銅箔を積層し、120
’Cで1時間次いで175℃で1時間の加熱で、10 
〜40kg/ cl2の圧力、10 Torrの減圧の
条件で加熱加圧成形し、30分間冷却して4層の多層銅
張積層板を製造した, 実施例 2 実施例1に於いて内層板のの代わりに内層板■を、プリ
ブレグ(a)の代わりにプリプレグ(b)を用いた以外
はすべて実施例1と同一にして4層の多層銅張積層板を
製造した。
Prepreg (a): The long side is the base material longitudinal direction Bripreg (b): The short side is the base material longitudinal direction Example 1 One prepreg (a) is superimposed on the front and back of the inner layer board ■, and the thickness is further applied on both sides. Laminated with 18μ copper foil, 120
'C for 1 hour and then 175°C for 1 hour.
Example 2 A four-layer multilayer copper clad laminate was manufactured by heating and press forming under conditions of a pressure of ~40 kg/cl2 and a reduced pressure of 10 Torr, and cooling for 30 minutes. A four-layer multilayer copper-clad laminate was manufactured in the same manner as in Example 1 except that the inner layer board (1) was used instead and the prepreg (b) was used instead of the prepreg (a).

実施例 3 実施例1に於いて内層板のの代わりに内層板◎を用いた
以外はずべて実施例1と同一にして4層の多層銅張積層
板を製造した。
Example 3 A four-layer multilayer copper-clad laminate was manufactured in the same manner as in Example 1 except that the inner layer board ◎ was used instead of the inner layer board in Example 1.

比較例 1 内層板■の表裏にプリブレグfa)を各1枚重ね合わせ
、更にその両開に厚さ18μ謹の銅箔を積層し、実施例
1と同一の条件で加熱加圧成形して4層の多層別張積層
板を製造した, 比較例 2 比較例1に於いて内層板[F]の代わりに内層板のを、
プリプレグ(a)の代わりにプリプレグ(b)を用いた
以外はすべて比較例1と同一にして4層の多層銅張積層
板を製造した. 比較例 3 内層板Oの表裏にプリプレグ(a)を各1枚重ね合わせ
、更にその両側に厚さ18μmの銅箔を積層し、比較例
1と同一にして4層の多層鋼張積層板を製造した。
Comparative Example 1 One pre-reg fa) was superimposed on each of the front and back sides of the inner layer board (■), and a copper foil with a thickness of 18 μm was laminated on both sides, and heat and pressure molded under the same conditions as in Example 1. Comparative Example 2 In Comparative Example 1, the inner layer plate [F] was replaced with the inner layer plate [F].
A four-layer multilayer copper-clad laminate was manufactured in the same manner as in Comparative Example 1 except that prepreg (b) was used instead of prepreg (a). Comparative Example 3 A 4-layer multilayer steel laminate was made in the same manner as Comparative Example 1 by laminating one sheet of prepreg (a) on the front and back sides of the inner layer plate O, and further laminating copper foil with a thickness of 18 μm on both sides. Manufactured.

実施例1〜3及び比較例1〜3で製造した多層w1張積
層板について、耐湿耐熱性、反り、寸法変化率、耐半田
性、引剥し強さ等について試験を行ったのでその結果を
第1表に示した. 本発明は寸法変化率に優れており、
その効果を確認することができた。
The multilayer W1-strung laminates manufactured in Examples 1 to 3 and Comparative Examples 1 to 3 were tested for moisture resistance, warpage, dimensional change rate, solder resistance, peel strength, etc. It is shown in Table 1. The present invention has excellent dimensional change rate,
We were able to confirm the effect.

多層銅張VtN板の試験方法は次のようにして行った. 耐湿耐熱性:多層銅張積層板の外層銅箔をエッチング除
去し、50 X 50111角に切断後、JIS−(,
−6481の吸湿処理及び煮沸処理したものを、260
℃の半田浴に10秒間浮かべた後、その外観を評価した
. 評価レベルを次のとおりとした. ◎・・・変化なし ○・・・わずかにミーズリング発生 △・・・ミーズリング発生 ×・・・5■φ未満のデラミネーション発生××・・・
5+tnφ以上のデラミネーション発生反り:多層銅張
積層板を200x 2501mlNの大きさに切断し (a )エッチングして外層jFI箔を除去しJjiL
乾したもの (b )  (a >を更に130゜Cで1時間加熱処
理した後 これらの状態における平置サンプルの反りを測定 した
The multilayer copper-clad VtN board was tested as follows. Humidity and heat resistance: After removing the outer copper foil of the multilayer copper-clad laminate by etching and cutting it into 50 x 50111 squares, JIS-(,
-6481 after moisture absorption treatment and boiling treatment, 260
After floating in a solder bath at ℃ for 10 seconds, its appearance was evaluated. The evaluation levels were as follows. ◎...No change ○...Slight measling occurrence △...Measling occurrence ×...Delamination less than 5■φ ××...
Warpage caused by delamination of 5 + tnφ or more: Cut the multilayer copper clad laminate into a size of 200 x 2501 mlN (a) and remove the outer layer jFI foil by etching.
The dried sample (b) (a) was further heat-treated at 130°C for 1 hour, and the warpage of the flat sample in these conditions was measured.

寸法変化率:第3図は多層鋼張積層板の寸法変化率の測
定方法の説明図である6 基準点Oから横方向の基準点
A,縦方向の基準点Bを設け、次の各状態の横方向(0
−A)、縦方向(0−B)の基準間寸法を3次元測定器
で測定し、マスクフィルムの原寸法がらの変化率を%で
表示した. (イ)回路形成〈黒化処理)後の基準間寸法(口)二次
成形f& (マークを座ぐった後)の基準間寸法 [発明の効果] 以上の説明及び第l表から明らかなように、本発明の多
層銅張積層板の製造方法及び多層銅張積層板によれば収
縮率が小さく縦・横方向の収縮率の差がなく、寸法安定
性に優れており、後加工のコ1゛法のバラツキも少なく
、マスクフイルムのスケールファクターの設定も容易で
実用的に有用なものである。
Dimensional change rate: Figure 3 is an explanatory diagram of the method for measuring the dimensional change rate of a multilayer steel clad laminate.6 From the reference point O, set a horizontal reference point A and a vertical reference point B, and measure the following conditions. horizontal direction (0
-A), the dimension between the standards in the longitudinal direction (0-B) was measured using a three-dimensional measuring device, and the rate of change from the original dimension of the mask film was expressed in %. (a) Dimension between references after circuit formation (blackening treatment) (opening) Dimension between references after secondary forming f & (after countersinking marks) [Effects of the invention] As is clear from the above explanation and Table 1. According to the method for producing a multilayer copper-clad laminate and the multilayer copper-clad laminate of the present invention, the shrinkage rate is small, there is no difference in the shrinkage rate in the vertical and horizontal directions, and the dimensional stability is excellent, and post-processing is easy. There is little variation in the method, and the scale factor of the mask film can be easily set, making it practically useful.

【図面の簡単な説明】[Brief explanation of drawings]

第■図は、本発明に係る多層別張積層板の内層板とブリ
プレグとの積層組み合わせ方法を示す説明図、第2図は
本発明の多層銅張積層板の層構或を示ず説明図、第3図
は多層銅張積層板の寸法変化率を測定する方法を示す説
明図、第4図は刃ラスクL7スの冑−ル状態を示す見取
図、第5図は従来の多層別弘積層板の内層板とプリプレ
グとの積層組み合わせ方法を示す説明図である。 1.7,11,24.27・・・プリブレグ、 4,8
.10,25.28・・・内層板、 12・・・外層銅
箔、 20・・・ガラスクロス. Ca> (b) 12
Fig. 2 is an explanatory diagram showing a method of laminating and combining the inner laminate of the multilayer separately clad laminate according to the present invention and the Bripreg, and Fig. 2 is an explanatory diagram showing the layer structure of the multilayer copper clad laminate of the present invention. , Fig. 3 is an explanatory diagram showing a method for measuring the dimensional change rate of a multilayer copper-clad laminate, Fig. 4 is a sketch showing the state of the armor of the blade rusk L7, and Fig. 5 is a diagram showing a conventional multilayer separate laminate. FIG. 3 is an explanatory diagram showing a method of laminating and combining the inner layer of the plate and the prepreg. 1.7,11,24.27...prebreg, 4,8
.. 10,25.28...Inner layer board, 12...Outer layer copper foil, 20...Glass cloth. Ca> (b) 12

Claims (1)

【特許請求の範囲】 1 ガラスクロス基材の内層板とガラスクロス基材のプ
リプレグとからなる多層銅張積層板において、内層板の
基材方向性とプリプレグの基材方向性とを直交させ積層
してなることを特徴とする多層銅張積層板。 2 多層銅張積層板を製造するにあたり、予め内層板を
150℃以上にベーキングしたのち、内層板の基材方向
性とプリプレグの基材方向性とを直交させて積層一体に
成形することを特徴とする多層銅張積層板の製造方法。
[Scope of Claims] 1. In a multilayer copper-clad laminate consisting of an inner layer plate made of a glass cloth base material and a prepreg made of a glass cloth base material, the substrate directionality of the inner layer plate and the base material directionality of the prepreg are perpendicular to each other. A multilayer copper-clad laminate characterized by: 2. In manufacturing a multilayer copper-clad laminate, the inner laminate is baked to a temperature of 150°C or higher in advance, and then the inner laminate is molded into an integral laminate with the orientation of the base material of the inner laminate perpendicular to that of the prepreg. A method for manufacturing a multilayer copper-clad laminate.
JP23523889A 1989-09-11 1989-09-11 Multilayered copper-plated laminated board and its manufacture Pending JPH0397297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23523889A JPH0397297A (en) 1989-09-11 1989-09-11 Multilayered copper-plated laminated board and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23523889A JPH0397297A (en) 1989-09-11 1989-09-11 Multilayered copper-plated laminated board and its manufacture

Publications (1)

Publication Number Publication Date
JPH0397297A true JPH0397297A (en) 1991-04-23

Family

ID=16983125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23523889A Pending JPH0397297A (en) 1989-09-11 1989-09-11 Multilayered copper-plated laminated board and its manufacture

Country Status (1)

Country Link
JP (1) JPH0397297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109390315A (en) * 2017-08-14 2019-02-26 三星电子株式会社 Circuit board and the semiconductor packages for using it

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110362A (en) * 1974-07-15 1976-01-27 Matsushita Electric Works Ltd TASOINSATSUHAISENBANNO SEIZOHOHO
JPS52138668A (en) * 1975-11-14 1977-11-18 Matsushita Electric Works Ltd Method of producing multilayer printed circuit board
JPS54163359A (en) * 1978-06-16 1979-12-25 Hitachi Ltd Method of producing multiilayer printed circuit board
JPS54163360A (en) * 1978-06-16 1979-12-25 Hitachi Ltd Method of producing multiilayer printed circuit board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110362A (en) * 1974-07-15 1976-01-27 Matsushita Electric Works Ltd TASOINSATSUHAISENBANNO SEIZOHOHO
JPS52138668A (en) * 1975-11-14 1977-11-18 Matsushita Electric Works Ltd Method of producing multilayer printed circuit board
JPS54163359A (en) * 1978-06-16 1979-12-25 Hitachi Ltd Method of producing multiilayer printed circuit board
JPS54163360A (en) * 1978-06-16 1979-12-25 Hitachi Ltd Method of producing multiilayer printed circuit board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109390315A (en) * 2017-08-14 2019-02-26 三星电子株式会社 Circuit board and the semiconductor packages for using it
JP2019036710A (en) * 2017-08-14 2019-03-07 三星電子株式会社Samsung Electronics Co.,Ltd. Circuit board and semiconductor package using the same
CN109390315B (en) * 2017-08-14 2024-03-08 三星电子株式会社 Circuit board and semiconductor package using the same

Similar Documents

Publication Publication Date Title
US20100000771A1 (en) Copper-clad laminate, printed-wiring boards, multilayer printed-wiring boards, and method for manufacturing the same
JPH0397297A (en) Multilayered copper-plated laminated board and its manufacture
JPH03227B2 (en)
CN206654878U (en) Prepregs for circuit substrates, laminates and printed circuit boards containing them
JPH0424997A (en) Manufacture of multilayer printed board
JPH0424986A (en) Manufacture of electric laminate
JPH04223113A (en) Manufacture of laminated sheet
JPS60950A (en) Manufacture of laminated board
JPH02187332A (en) Manufacture of laminated sheet
JPH0423887B2 (en)
JPS5846078B2 (en) Method for manufacturing multilayer printed wiring board
JPH07117174A (en) Metal-foiled laminated plate and manufacture thereof
JPH0424985A (en) Manufacture of electric laminate
JPS62292428A (en) Copper-lined laminated board
JP2713024B2 (en) Manufacturing method of multilayer metal foil-clad laminate
JPH02258337A (en) Manufacture of laminate for printed circuit
JPS6347135A (en) Multilayer printed wiring board
JPH11268181A (en) Copper-clad laminate
JPS59109350A (en) Laminated board
JPH04180688A (en) Manufacture of metal-clad laminated board whose dimensional stability is excellent
JPH04164612A (en) Manufacture of laminate
JPS62212134A (en) Preparation of multilayer laminated board
JPH06389B2 (en) Single-sided metal foil-clad composite laminate
JPH01165629A (en) Production of prepreg for laminate
JPH06914A (en) Manufacture of single-faced copper-clad laminated sheet