JPH0393634A - Preparation of porous sintered product having open pores - Google Patents

Preparation of porous sintered product having open pores

Info

Publication number
JPH0393634A
JPH0393634A JP22449589A JP22449589A JPH0393634A JP H0393634 A JPH0393634 A JP H0393634A JP 22449589 A JP22449589 A JP 22449589A JP 22449589 A JP22449589 A JP 22449589A JP H0393634 A JPH0393634 A JP H0393634A
Authority
JP
Japan
Prior art keywords
carbonaceous material
mixture
sintered product
sintered
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22449589A
Other languages
Japanese (ja)
Other versions
JPH0623060B2 (en
Inventor
Kiyohisa Eguchi
江口 清久
Shigeru Honda
繁 本田
Taku Okamoto
卓 岡本
Hiroshi Nagasawa
長沢 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GOEI SHOJI KK
OKAMOTO TOKUSHU GLASS KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
GOEI SHOJI KK
OKAMOTO TOKUSHU GLASS KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GOEI SHOJI KK, OKAMOTO TOKUSHU GLASS KK, Agency of Industrial Science and Technology filed Critical GOEI SHOJI KK
Priority to JP1224495A priority Critical patent/JPH0623060B2/en
Publication of JPH0393634A publication Critical patent/JPH0393634A/en
Publication of JPH0623060B2 publication Critical patent/JPH0623060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To prepare a porous sintered product capable of being precisely controlled the sizes and shapes of opened pores thereof and useful as a catalyst carrier, etc., by sintering a mixture of a glass basic material powder and a carbonaceous material in a reducible atmosphere and subsequently burning the carbonaceous material in an oxidizable atmosphere. CONSTITUTION:Solid glass powder, a glass raw material for a sol-gel method, ceramic powder, etc., is mixed with a carbonaceous material, advantageously carbon such as graphite or a porous carbon such as charcoal or active carbon. When the solid glass powder is used, the carbonaceous material is usually mixed in a mixing ratio of 1-2500 pts.wt. per 50 pts.wt. of the basic material. The mixture is sintered under a reducible condition to prepare a sintered mixture wherein the carbonaceous material exists in the state mixed in the basic material. Although the carbonaceous material in the reduced sintered product can be sufficiently burnt in an oxidizable atmosphere, the reduced sintered product is held in the oxidizable atmosphere at a temperature not melting and changing the mixture to provide the porous sintered product.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は開放気孔を有する多孔質焼結体の製造方法に関
し、より詳細には開放気孔の大きさと形状を広範囲かつ
精密に制御することができる多孔質焼結体の製造方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a porous sintered body having open pores, and more specifically, to a method for manufacturing a porous sintered body having open pores, and more specifically, to a method for manufacturing a porous sintered body having open pores, and more specifically, a method for manufacturing a porous sintered body having open pores, and more specifically, a method for manufacturing a porous sintered body having open pores. The present invention relates to a method for manufacturing a porous sintered body.

〔従来の技術〕[Conventional technology]

従来、開放気孔を有する多孔質焼結体の製造方法として
は、例えば下記の(1)および(2)の方法が知られて
いる。
Conventionally, as a method for producing a porous sintered body having open pores, for example, methods (1) and (2) below are known.

(1)得られる多孔質焼結体の細孔径に合った粒度のガ
ラスを使用し、ガラス粒子同志が結合し、かつ粒子間の
孔がつぶれない程度の温度で焼成する方法。
(1) A method of using glass with a particle size that matches the pore diameter of the porous sintered body to be obtained, and firing at a temperature that allows the glass particles to bond with each other and not collapse the pores between the particles.

《2)ガラスまたはセラミックスの母材と、焼成温度で
は固体で、かつ水に可熔性の物質、好ましくは塩類との
混合物を焼威し、大気中または酸化性雰囲気中で焼結し
、焼結完了後に可熔性の物質を水で溶出して多孔体を製
造する方法。
[2] A mixture of a glass or ceramic base material and a substance that is solid at the firing temperature and is soluble in water, preferably salts, is sintered in the air or in an oxidizing atmosphere, and then sintered. A method of producing a porous body by dissolving the fusible substance with water after completion of solidification.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上記+1)の方法では、適正な焼威温度幅
が狭く、母材の性質によって焼威温度が大きく変化する
.気孔率の大きい物を製造することができない.気孔の
形状の自由度が少ないなどの欠点がある。
However, with method +1) above, the appropriate firing temperature range is narrow, and the firing temperature varies greatly depending on the properties of the base material. It is not possible to manufacture products with high porosity. There are drawbacks such as less freedom in the shape of the pores.

また上記(2)の方法では焼戒後に細孔が得られるので
、別途溶液による溶出処理が必要であり、このため設備
および工程が複雑となり、コストも高くなる欠点がある
In addition, in the method (2) above, since pores are obtained after burning, a separate elution treatment with a solution is required, which has the drawback of complicating the equipment and process and increasing costs.

更に可溶性物質が母材と反応する恐れがあるので、母材
の選択の幅が狭くなり、焼戒温度も制約される欠点があ
る。
Furthermore, since there is a possibility that the soluble substance may react with the base material, there is a drawback that the range of selection of the base material is narrowed and the firing temperature is also restricted.

本発明はかかる従来の欠点を解消し、開放気孔の大きさ
と形状を広範囲かつ精密に制御することができる多孔質
焼結体の製造方法を提供することを目的とする。
An object of the present invention is to eliminate such conventional drawbacks and provide a method for manufacturing a porous sintered body in which the size and shape of open pores can be precisely controlled over a wide range.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、本発明では、固体ガラス粉末
およびゾル・ゲル法用ガラス原料からなる群から選ばれ
た少なくとも1種の母材と炭素質材料とからなる原料混
合物を、還元性条件下で焼結して焼結混合物を製造し、
ついで該焼結混合物の形状を保持しながら該焼結混合物
を酸化性雰囲気内で加熱して前記炭素質材料を燃焼させ
ることを特徴とするものである.本発明においては、ま
ず、母材と炭素質材料を十分に混合して原料混合物を製
造する.ここで、母材としては固体ガラス粉末、ゾル・
ゲル法用ガラス原料が用いられ、これらは単一種でも良
いし、複数種を混合して使用することもできる。
In order to solve the above problems, in the present invention, a raw material mixture consisting of at least one base material selected from the group consisting of a solid glass powder and a glass raw material for sol-gel method and a carbonaceous material is prepared under reducing conditions. sintering to produce a sintered mixture;
The method is characterized in that the sintered mixture is then heated in an oxidizing atmosphere to burn the carbonaceous material while maintaining the shape of the sintered mixture. In the present invention, first, a base material and a carbonaceous material are thoroughly mixed to produce a raw material mixture. Here, the base material is solid glass powder, sol,
Glass raw materials for the gel method are used, and these may be used alone or in a mixture of multiple types.

固体ガラス粉末としては、ほとんどのガラス粉末を使用
することができる. ゾル・ゲル法用ガラス原料とは、乾燥または加熱するこ
とによってガラス状となるゾルまたはゲルを云い、例え
ばテトラエトキシシランSi(QC z H s ) 
4 、アルミニウムイソプロポキシド^1(QC 3 
H ? ) 3などの金属アルコキシドと酸をアルコー
ルに溶かした溶液に水を加え攪拌することによって得ら
れたゾルまたはゲルである. この金属アルコキシドから得られるゾルまたはゲルは、
400〜1000℃の温度下に加熱し、水分および気孔
を取り除くことによってガラス状となる。
Most glass powders can be used as solid glass powders. The glass raw material for the sol-gel method refers to a sol or gel that becomes glassy by drying or heating, such as tetraethoxysilane Si (QC z H s ).
4, aluminum isopropoxide ^1 (QC 3
H? ) It is a sol or gel obtained by adding water to a solution of a metal alkoxide such as 3 and an acid dissolved in alcohol and stirring. The sol or gel obtained from this metal alkoxide is
It becomes glassy by heating at a temperature of 400 to 1000°C to remove moisture and pores.

また本発明においては、母材として上記以外にセラミッ
クス粉末を選択の対象に含めることもできる.セラミン
クス粉末は特に限定されるものではなく、金属酸化物系
セラミックス、金属非酸化物系セラミックス等が使用さ
れる。
Furthermore, in the present invention, ceramic powders other than those mentioned above can also be selected as the base material. The ceramic powder is not particularly limited, and metal oxide ceramics, metal non-oxide ceramics, etc. are used.

炭素質材料としては、有利には黒鉛等の炭素、木炭、活
性炭等の多孔質炭素、セルロース、結晶性セルロース等
の有機物等の高温で炭化しえる物質が使用され、好まし
くは炭素、多孔質炭素である. 母材と炭素質材料との合比率は、使用する母材、炭素質
材料の種類によって異なり、本発明によって得られる多
孔質焼結体における気孔の大きさ、形状や焼結体全容積
に占める気孔の容積比率(気孔率〉を支配するものであ
るが、通常では母材として固体ガラス粉末を使用する場
合には、母材50重量部あたり炭素質材料1〜2500
重量部であり、例えば菌担体として用いる多孔質焼結体
の製造の場合には母材100重量部あたり炭素質材料5
〜200重量部である.また、母材がゾル・ゲル法用ガ
ラス原料の場合には、水分を除去した場合の重量と炭素
質材料の重量比率が100〜lと1〜100の間の範囲
である. なお、母材としてセラミックス粉末を使用する場合にも
、母材100重量部あたり炭素質材料5〜200重量部
である。
As the carbonaceous material, substances that can be carbonized at high temperatures are advantageously used, such as carbon such as graphite, porous carbon such as charcoal, activated carbon, organic substances such as cellulose and crystalline cellulose, and preferably carbon and porous carbon. It is. The combined ratio of the base material and the carbonaceous material varies depending on the type of base material and carbonaceous material used, and it depends on the size and shape of the pores in the porous sintered body obtained by the present invention and the proportion of the total volume of the sintered body. It controls the volume ratio of pores (porosity), but usually when solid glass powder is used as the base material, 1 to 2500 parts of carbonaceous material per 50 parts by weight of the base material.
For example, in the case of manufacturing a porous sintered body used as a bacterial carrier, 5 parts by weight of carbonaceous material per 100 parts by weight of the base material.
~200 parts by weight. Further, when the base material is a glass raw material for sol-gel method, the weight ratio of the weight after removing water to the carbonaceous material is in the range of 100 to 1 and 1 to 100. Note that even when ceramic powder is used as the base material, the amount of carbonaceous material is 5 to 200 parts by weight per 100 parts by weight of the base material.

母材の粒径は、得られる多孔質焼結体の気孔の径によっ
て支配されるが、通常、炭素質材料の3倍以下、好まし
くは1/3以下である。
The particle size of the base material is controlled by the pore size of the resulting porous sintered body, but is usually 3 times or less, preferably 1/3 or less, of the carbonaceous material.

一方、炭素質材料の粒径は通常1μ〜10n+sであっ
て得られる多孔質焼結体の気孔径と同一であり、この気
孔径の大きさに従って通常選択される。
On the other hand, the particle size of the carbonaceous material is usually 1 μ to 10 n+s, which is the same as the pore size of the resulting porous sintered body, and is usually selected according to the pore size.

この炭素質材の形状は、粉末状、球状、円筒体状、三角
錐状、表面に多数の突起を有する球体状等のいずれでも
良い. 原料混合物には、水等の湿潤剤を添加しても良く、また
、原料混合物の戒形時の形くずれを防止するための助材
、例えばカルボキシメチルセルロース、澱粉のり等を加
えたり、戒形時の粘度を増加させるための各種の増粘材
を添加することもできる. また、原料混合物は適宜目的とする形状に或形されるが
、戒形にはプレス、遠心、鋳込み、押し出し等の方法が
採用される。
The shape of this carbonaceous material may be powder, spherical, cylindrical, triangular pyramid, spherical with many protrusions on the surface, etc. A wetting agent such as water may be added to the raw material mixture, and auxiliary materials such as carboxymethyl cellulose, starch paste, etc. may be added to prevent the raw material mixture from deforming during shaping. Various thickening agents can also be added to increase the viscosity of the product. Further, the raw material mixture is appropriately shaped into a desired shape, and methods such as pressing, centrifugation, casting, extrusion, etc. are employed for shaping.

本発明においては、得られた原料混合物を適宜戒形の後
に還元性条件下で加熱、焼結、または加圧下に加熱、焼
結して、炭素質材料が未変化のままで焼結された母材中
に混入されている状態の焼結混合物を製造する。
In the present invention, the obtained raw material mixture is appropriately shaped and then heated and sintered under reducing conditions or heated and sintered under pressure, so that the carbonaceous material is sintered while remaining unchanged. A sintered mixture mixed in a base material is produced.

ここで、還元性条件下とは、炭素質材料を燃焼させずに
母材を焼結することができる状態を意味し、例えば窒素
、炭酸ガス等の非酸化性ガス雰囲気、ヘリウム、ネオン
等の不活性ガス雰囲気下、炭素、有機物等の還元性物質
で上記混合物を覆った状態、あるいは非酸化性ガスや不
活性ガスの雰囲気下で、かつ上記混合物を炭素等の還元
性物質で覆った状態が含まれる.焼結温度は使用する母
材材質によって大きく異なる。例えば母材としてソーダ
石灰ガラスを単独使用した場合には、500〜800℃
、セラ主ックス材料を使用した場合にはセラミックス材
料に通した温度を採用することが好ましい。
Here, the term "reducing conditions" refers to a state in which the base material can be sintered without burning the carbonaceous material, such as a non-oxidizing gas atmosphere such as nitrogen or carbon dioxide, or a non-oxidizing gas atmosphere such as helium or neon. A state where the above mixture is covered with a reducing substance such as carbon or an organic substance under an inert gas atmosphere, or a state where the above mixture is covered with a reducing substance such as carbon under an atmosphere of a non-oxidizing gas or an inert gas. is included. The sintering temperature varies greatly depending on the base material used. For example, when soda lime glass is used alone as the base material, the temperature is 500 to 800℃.
When a ceramic material is used, it is preferable to use the temperature that is passed through the ceramic material.

この焼結によって、炭素質材料は燃焼消滅することなく
、母材中に混入された状態になる.次いで本発明におい
ては、得られた焼結混合物を、この焼結混合物の形状を
保持しながら酸化性雰囲気下に加熱し、炭素質材料を酸
化燃焼させ、開放気孔を形威させる. 換言すれば、酸化性雰囲気下に炭素質材料を十分燃焼さ
せることができるが焼結混合物を溶融変形させることの
ない温度に保持する.酸化性雰囲気とは、空気、酸素ま
たは酸素富化空気の雰囲気を意味する. また、この温度は通常では400℃以上が望ましい. 炭素質材料の燃焼によって開放性気孔を有する多孔質焼
結体が得られる。
Due to this sintering, the carbonaceous material is mixed into the base material without being burned away. Next, in the present invention, the obtained sintered mixture is heated in an oxidizing atmosphere while maintaining the shape of the sintered mixture, thereby oxidizing and burning the carbonaceous material to form open pores. In other words, the carbonaceous material is maintained at a temperature that is sufficient to combust the carbonaceous material in an oxidizing atmosphere but does not cause the sintered mixture to melt and deform. Oxidizing atmosphere means an atmosphere of air, oxygen or oxygen-enriched air. In addition, this temperature is normally preferably 400°C or higher. A porous sintered body with open pores is obtained by combustion of the carbonaceous material.

得られた焼結体は、そのまま、または洗浄の後に製品と
なり、化学反応における触媒担持用または菌体付着用等
の用途がある。
The obtained sintered body is used as a product as it is or after cleaning, and has uses such as supporting catalysts in chemical reactions or attaching bacterial cells.

以下、本願発明の実施例を述べる. 〔実施例〕 実施例1〜3 下記第1表に示す配合割合でソーダ石灰ガラスと活性炭
を乾燥状態で攪拌混合した後に助材としてのCMC  
(カルボキシメチルセルロース)および湿潤材としての
蒸溜水を加えて混練し、直径1 〜1.5+eo+ ,
長さ2 〜5 nowの円筒状に威形した。この戒形体
を粒径250μm未満の活性炭中に埋め、密封した後に
650℃で2時間焼威した.得られた焼威混合物を活性
炭から取り出して大気中で550℃で12時間保持して
多孔性焼結体を製造した。
Examples of the present invention will be described below. [Example] Examples 1 to 3 After stirring and mixing soda-lime glass and activated carbon in a dry state at the mixing ratio shown in Table 1 below, CMC was added as an auxiliary material.
(carboxymethylcellulose) and distilled water as a wetting agent and knead to obtain a diameter of 1 to 1.5+eo+,
It has a cylindrical shape with a length of 2 to 5 now. This precept was buried in activated carbon with a particle size of less than 250 μm, sealed, and then incinerated at 650°C for 2 hours. The obtained firing mixture was taken out from the activated carbon and held at 550° C. for 12 hours in the atmosphere to produce a porous sintered body.

第1表 この焼結体中、 実施例3のものについて物性 を測定したところ下記の結果を得た. 真比重  2.5 見掛け比重  0.675 気孔率  73% なお、水鎮圧人法により測定したところ、細孔径100
μ一以下の気孔率は33%であった.よって、径100
μ一以上の気孔の気孔率は40%と推定されれる。
Table 1 Among these sintered bodies, the physical properties of Example 3 were measured and the following results were obtained. True specific gravity: 2.5 Apparent specific gravity: 0.675 Porosity: 73% Pore diameter: 100% when measured using the water suppression method
The porosity below μ1 was 33%. Therefore, the diameter is 100
The porosity of pores with a diameter of μ1 or more is estimated to be 40%.

実施例4 実施例3で得られた焼結体を用い、中温消化法によって
菌付着試験を行った。
Example 4 Using the sintered body obtained in Example 3, a bacterial adhesion test was conducted by a mesotemperature digestion method.

すなわち、37℃に保持したvSS濃度6 g/l,容
積負荷3 gTOc / 1・日の嫌気性消化槽中に焼
結体を投入し、下記日数の経過後に取り出し、洗浄して
菌付着量(重量増加量)を測定した。
That is, the sintered body was placed in an anaerobic digestion tank maintained at 37°C with a vSS concentration of 6 g/l and a volume load of 3 gTOc/1 day, and after the following number of days had elapsed, it was taken out, washed, and the amount of bacteria attached ( weight increase) was measured.

結果を下記に示す。The results are shown below.

10日後  35.9mg/g 20日後  37.8mg/g 35日後  40.9mg/g 50日後  44.6mg/g 上記方法で付着させた固定化菌を用いた嫌気性消化槽に
原水濃度500mgTOC/ 1 (グルコース、ペプ
トン系人工下水)を供給し、消化を行ったところ、第l
相消化(酸生t&)の}IRTは2時間〜3時間である
ことがわかった.これらの結果は浮遊菌完全混合型消化
槽に比べてHRTが1/2〜173程度で、優れた特性
を示した.〔発明の効果〕 以上述べたように本発明によれば、原料混合物が還元性
条件下で焼結されるので、炭素質材料を燃焼によって損
なうことなく、母材中に混入させることができる. 一般に炭素質材料は還元性条件下、高温での反応性が低
いので、母材の焼結温度がかなり高温の場合でも母材と
炭素質材料との反応を回避することができる. また、母材中に混入する可能性のある物質を炭素質材料
に限定することができるので、焼結後の母材の性質を殆
ど変えることがない.増粘材や助材が原料混合物中に混
入されていても、焼成中に炭化するので母材の性質に影
響を与えることが少ない。
After 10 days: 35.9 mg/g After 20 days: 37.8 mg/g After 35 days: 40.9 mg/g After 50 days: 44.6 mg/g The raw water concentration was 500 mg TOC/1 in an anaerobic digestion tank using the immobilized bacteria attached using the above method. (glucose, peptone-based artificial sewage) was supplied, and digestion was performed.
The IRT for phase digestion (acidic t&) was found to be 2 to 3 hours. These results showed that the HRT was about 1/2 to 173 compared to the suspended bacteria complete mixing type digester, indicating excellent characteristics. [Effects of the Invention] As described above, according to the present invention, since the raw material mixture is sintered under reducing conditions, the carbonaceous material can be mixed into the base material without being damaged by combustion. In general, carbonaceous materials have low reactivity under reducing conditions and at high temperatures, so it is possible to avoid reaction between the base material and the carbonaceous material even if the sintering temperature of the base material is quite high. Furthermore, since the substances that may be mixed into the base material can be limited to carbonaceous materials, the properties of the base material after sintering are hardly changed. Even if thickeners or auxiliary materials are mixed into the raw material mixture, they will carbonize during firing, so they will have little effect on the properties of the base material.

更にまた本発明においては、母材中に還元性雰囲気下で
炭素質材料が混入された後に焼結混合物の形状を保持し
ながら炭素質材料が酸化性雰囲気下で燃焼されるので、
開放気孔の形威による焼結混合物の収縮を伴う形状変化
を極力回避することができる. しかも気孔の形状や大きさは、炭素質材料の種類や添加
量によって基本的に支配されるが、炭素質材料は加工性
が良好であり、かつ種類も多いので選択の自由度が高く
、従って気孔の形状や大きさを広範囲かつ精密に制御す
ることができる. また、従来の方法のように焼結後に可溶性物質の溶出の
ような後処理を必要としないので、製造コストを容易に
低下させることができる。
Furthermore, in the present invention, after the carbonaceous material is mixed into the base material under a reducing atmosphere, the carbonaceous material is burned under an oxidizing atmosphere while maintaining the shape of the sintered mixture.
Changes in shape due to shrinkage of the sintered mixture due to the shape of open pores can be avoided as much as possible. Moreover, the shape and size of pores are basically controlled by the type and amount of carbonaceous material added, but carbonaceous materials have good workability and are available in many types, so there is a high degree of freedom in selection. Pore shape and size can be controlled over a wide range and precisely. Further, unlike conventional methods, post-processing such as elution of soluble substances is not required after sintering, so manufacturing costs can be easily reduced.

更に得られる多孔質焼結体を外径11〜数10−、内径
0.5〜数lOIIII、厚さ0.5〜数10III1
のリング状とすれば、触媒担体として使用するに際し、
カラムへの充填およびかさ密度のコントロールが容易と
なり、かつカラム内において十分な強度と均一性とを確
保することができる.工業技術院長の復代理人 岡本特殊硝子株式会社及び 互栄商事株式会社の代理人
Furthermore, the obtained porous sintered body has an outer diameter of 11 to several 10 mm, an inner diameter of 0.5 to several 10 mm, and a thickness of 0.5 to several 10 mm.
If it is ring-shaped, when used as a catalyst carrier,
It becomes easy to control column packing and bulk density, and it is possible to ensure sufficient strength and uniformity within the column. Agent for Okamoto Special Glass Co., Ltd. and Kōei Shoji Co., Ltd., sub-agents of the Director of the Agency of Industrial Science and Technology

Claims (1)

【特許請求の範囲】[Claims]  固体ガラス粉末およびゾル・ゲル法用ガラス原料から
なる群から選ばれた少なくとも1種の母材と炭素質材料
とからなる原料混合物を、還元性条件下で焼結して焼結
混合物を製造し、ついで該焼結混合物の形状を保持しな
がら該焼結混合物を酸化性雰囲気内で加熱して前記炭素
質材料を燃焼させることを特徴とする開放気孔を有する
多孔質焼結体の製造方法
A raw material mixture consisting of at least one base material selected from the group consisting of solid glass powder and glass raw materials for sol-gel method and a carbonaceous material is sintered under reducing conditions to produce a sintered mixture. , and then heating the sintered mixture in an oxidizing atmosphere to burn the carbonaceous material while maintaining the shape of the sintered mixture.
JP1224495A 1989-09-01 1989-09-01 Method for producing porous sintered body having open pores Expired - Fee Related JPH0623060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1224495A JPH0623060B2 (en) 1989-09-01 1989-09-01 Method for producing porous sintered body having open pores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1224495A JPH0623060B2 (en) 1989-09-01 1989-09-01 Method for producing porous sintered body having open pores

Publications (2)

Publication Number Publication Date
JPH0393634A true JPH0393634A (en) 1991-04-18
JPH0623060B2 JPH0623060B2 (en) 1994-03-30

Family

ID=16814692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1224495A Expired - Fee Related JPH0623060B2 (en) 1989-09-01 1989-09-01 Method for producing porous sintered body having open pores

Country Status (1)

Country Link
JP (1) JPH0623060B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172100A (en) * 1991-10-09 1993-07-09 Hitachi Ltd Centrifugal fan, fan of car air conditioner and car air conditioner equipped with centrifugal fan

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321211A (en) * 1976-08-11 1978-02-27 Tokushiyu Muki Zairiyou Kenkiy Complex of electrooconductive inorganic glass and method of manufacturing thereof
JPH01294545A (en) * 1988-05-20 1989-11-28 Nippon Telegr & Teleph Corp <Ntt> Method for forming glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321211A (en) * 1976-08-11 1978-02-27 Tokushiyu Muki Zairiyou Kenkiy Complex of electrooconductive inorganic glass and method of manufacturing thereof
JPH01294545A (en) * 1988-05-20 1989-11-28 Nippon Telegr & Teleph Corp <Ntt> Method for forming glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172100A (en) * 1991-10-09 1993-07-09 Hitachi Ltd Centrifugal fan, fan of car air conditioner and car air conditioner equipped with centrifugal fan

Also Published As

Publication number Publication date
JPH0623060B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
US6592787B2 (en) Porous articles and method for the manufacture thereof
CN102746022B (en) Preparation method for Al2O3 ceramic material having controllable bimodal porous structure
JPH06100381A (en) Porous mullite article resistive to heat shock and creep produced from topaz and method of producing the same
CN109279909B (en) Preparation method of high-strength boron carbide porous ceramic
CN108261928A (en) Pure silicon carbide ceramics membrane component and preparation method thereof
JPWO2012105478A1 (en) Silicon carbide-based material, honeycomb structure, and electrically heated catalyst carrier
FI90059C (en) A rigid ceramic piece and process for making a ceramic piece
WO1990004859A1 (en) Fabrication of dual porosity electrode structure
JPH02282442A (en) Aluminide structure
US3957685A (en) Process for producing catalyst supports or catalyst systems having open pores
JPH0393634A (en) Preparation of porous sintered product having open pores
CN1232472C (en) Process for preparing self-growing calcium phosphate crystal whisker strengthened porous bioceramic materials
CN105126887B (en) Catalyst support and its preparation method and application
JPS6191076A (en) Porous silicon carbide sintered body and manufacture
JPS61191575A (en) Porous silicon carbide sintered body and manufacture
JP2593740B2 (en) Method for producing mullite porous body
JP2672545B2 (en) Method for manufacturing silicon carbide honeycomb filter
CN104529448B (en) A kind of high porosity high osmosis Nb 2o 5ceramic membrane and preparation method thereof
JP2005067966A (en) Calcium phosphate ceramics porous material and its manufacturing method
JP2588276B2 (en) Silicon carbide porous sintered body and method for producing the same
JPS62287027A (en) Manufacture of porous cu-alloy sintered compact
JPH0672065B2 (en) Method for producing inorganic porous material
JP2010202475A (en) Treatment method of covering structure have three dimensional void shape with calcium phosphate compound and method of producing the structure
JP2011092808A (en) Adsorbent and method for manufacturing the same
CN114956857A (en) Preparation method of porous ceramic filter element material of heating plant type electronic cigarette filter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees