JPH0391254A - Junction device - Google Patents

Junction device

Info

Publication number
JPH0391254A
JPH0391254A JP1227357A JP22735789A JPH0391254A JP H0391254 A JPH0391254 A JP H0391254A JP 1227357 A JP1227357 A JP 1227357A JP 22735789 A JP22735789 A JP 22735789A JP H0391254 A JPH0391254 A JP H0391254A
Authority
JP
Japan
Prior art keywords
pressure
chamber
solder layer
package
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1227357A
Other languages
Japanese (ja)
Inventor
Yuji Fujita
祐治 藤田
Masahide Tokuda
正秀 徳田
Yasuhide Matsumura
松村 泰秀
Yoshimasa Kondo
近藤 芳正
Takeshi Tajima
但馬 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1227357A priority Critical patent/JPH0391254A/en
Publication of JPH0391254A publication Critical patent/JPH0391254A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Abstract

PURPOSE:To elevate the reliability of air tight sealing by equipping a heating means, which fuses a junction material, and a pressure changing means, which changes the pressure of surrounding atmosphere and gives vibrative energy. CONSTITUTION:A lead-tin solder layer 107 is arranged between a cap 102 and a carrier board 101, and a valve 13 is shut to seal a chamber 11. Next, while keeping the solder layer 107 by the heating with a heater 12, a pressure bomb 17 and the chamber 11 are connected, and inert gas is sent into the chamber 11 until the initial pressure PO inside the chamber becomes PO+P by a pressure reducing value 16. At this time, the solder layer 107 shifts inward. Next, a solenoid valve 14 is changed over to connect a vacuum pump 15 with the chamber 11, and until the pressure returns to Po the exhaust by the vacuum pump 15 is continued. As a result, the solder layer 107 returns to the initial position. This step is repeated, and after vibrating the surface of the solder layer, the value 13 is shut off to stop the vibration of the pressure. After the heating by the heater is stopped to solidify the solder layer 107, a package 10 is taken out from the chamber 11. Hereby, airtight sealing high in reliability and productivity can be done easily to the package having narrow sealing face.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、構造体の接合装置に係り、特に封止面が狭小
なパッケージの気密封止に好適な接合装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bonding device for structures, and particularly to a bonding device suitable for hermetically sealing a package with a narrow sealing surface.

〔従来の技術〕[Conventional technology]

特開昭51−15973号公報に記載されているパッケ
ージ封止方法は、封止される面に下地金属膜を分割して
形成することにより封止材である半田膜の内部に生じる
ボイドを分割させて気密封止効果を高めている。また、
特開昭61−291.55号公報に記載されているパッ
ケージ封止方法は、封止され晶面に沿う蓋部に複数の貫
通孔を設けて半田膜内部に発生した気泡を放出させるこ
とにより気密封止効果を高めている。
The package sealing method described in Japanese Patent Application Laid-Open No. 51-15973 divides voids that occur inside the solder film that is the sealing material by forming a base metal film in parts on the surface to be sealed. This increases the hermetic sealing effect. Also,
The package sealing method described in Japanese Patent Application Laid-open No. 61-291.55 involves providing a plurality of through holes in the lid along the sealed crystal plane to release air bubbles generated inside the solder film. Improves hermetic sealing effect.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術に共通する問題点は、次に述べる(2) ように封止面の幅が狭小化する応用例で顕著に見られた
。すなわち、超高速計算機用の大規模集積は、−枚の配
線基板上に数多くの小型パッケージを近接させて搭載す
る高密度実装方式では、封止面の幅に相当するパッケー
ジ側壁の厚さがチップ間の配線長に加わるので電気信号
が遅れる原因となるからである。このような用途におい
て上記従来技術は、封止面あるいはこれに対面する蓋部
に複雑な加工を施さねばならないので、パッケージが小
型化してチップサイズに近づいてくるにつれ実現困難と
なった。
The problem common to the above-mentioned conventional techniques was particularly noticeable in application examples where the width of the sealing surface was narrowed, as described in (2) below. In other words, large-scale integration for ultra-high-speed computers requires a high-density mounting method in which many small packages are mounted close to each other on one wiring board. This is because it adds to the wiring length between them, causing a delay in electrical signals. In such applications, the above-mentioned conventional technology requires complicated processing on the sealing surface or the lid portion facing the sealing surface, which has become difficult to implement as packages become smaller and approach chip size.

本発明の目的は、上述のようなパッケージの小型化の要
請に対し、生産性及び信頼性に優れた気密封止を可能と
する接合装置を提供するものである。
An object of the present invention is to provide a bonding device that enables hermetic sealing with excellent productivity and reliability in response to the above-mentioned demand for downsizing of packages.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、半田膜を溶融する加熱器と、パッケージの
外部雰囲気に律動的な圧力変化を与えて(3) 溶融状態の半田膜を振動させる圧力変動手段とにより達
成される。
The above object is achieved by a heater that melts the solder film, and (3) a pressure variation means that vibrates the molten solder film by applying rhythmic pressure changes to the external atmosphere of the package.

〔作用〕[Effect]

外圧の律動的な変化に応じてパッケージ封正面の半田膜
が微小な振動を繰り返す。この振動エネルギーにより接
合面において表面酸化膜を破り、半田濡れ性が著しく高
められる。また、半田膜内部のボイドを分割することで
リークの経路が分断される。この結果、封止面が狭小な
パッケージにおいても十分良好な気密封止効果を実現で
きる。
The solder film on the front surface of the package repeats minute vibrations in response to rhythmic changes in external pressure. This vibrational energy breaks the surface oxide film on the bonding surface and significantly improves solder wettability. Further, by dividing the void inside the solder film, the leak path is divided. As a result, a sufficiently good hermetic sealing effect can be achieved even in a package with a narrow sealing surface.

〔実施例〕〔Example〕

以下図面により本発明を説明する。 The present invention will be explained below with reference to the drawings.

第1図(a)〜(d)は本発明による接合装置の一実施
例と接合工程を説明する図である。↓1はチャンバ、1
3はバルブ、14は電磁弁、15は真空ポンプ、16は
減圧弁、17は加圧ボンベである。パッケージ10は、
チャンバ11内のヒータエ2の上に配置される。101
はムライト製のキャリア基板、102はコバール製ある
いはアルミニウムナイトライド製のキャップ、103は
(4) lan角のシリコン大規模集積回路チップである。
FIGS. 1(a) to 1(d) are diagrams illustrating an embodiment of a bonding apparatus and a bonding process according to the present invention. ↓1 is chamber, 1
3 is a valve, 14 is a solenoid valve, 15 is a vacuum pump, 16 is a pressure reducing valve, and 17 is a pressurized cylinder. Package 10 is
It is placed above the heater 2 in the chamber 11. 101
1 is a carrier substrate made of mullite, 102 is a cap made of Kovar or aluminum nitride, and 103 is a (4) LAN square silicon large-scale integrated circuit chip.

チップ103は釦−スズ(鉛: 95wt、%)半田バ
ンプ104を介して予めキャリア基板101に接続して
おく。チップ103への駆動電流の印加並びに電気信号
の授受は、キャリア基板101に般けられたリード端子
(図示せず)を介して行なう。
The chip 103 is connected in advance to the carrier substrate 101 via button-tin (lead: 95 wt, %) solder bumps 104. Application of a drive current to the chip 103 and transmission and reception of electric signals are performed via lead terminals (not shown) disposed on the carrier substrate 101.

まず第1図(a)に示す工程では、鉛−スズ(鉛: 3
8wt、%)半田層107をキャップ102とキャリア
基板101の間に配置し、バルブ13を閉鎖してチャン
バ11を密閉した。ヒータ12により半田層107を加
熱溶融し、キャップ102表面の封止用メタライズ面1
05(表面層:金)及びキャリア基板101表面の封止
用メタライズ面106(表面層:金)と接合した、半田
層107は、予めメタライズ面105,106の一方あ
るいは両方に迎え半田する方法、または封止面の形状を
有する半田プリフォームを設置する方法などを用いて形
成した。第1図(a)に示す工程の完了時においては、
半田層107内部に(5) 発生するボイド(気泡)108や、メタライズ面105
.106と半田層107の界面に発生する微細なリーク
パスに関しては何ら対策を講じていない。このために従
来方法ではパッケージの気密不良が発生する。特にメタ
ライズ面105゜106の幅が0.5+nm以下に狭小
化するにつれてその発生頻度が増大することがリークテ
ストなどで確認できた。
First, in the process shown in FIG. 1(a), lead-tin (lead: 3
A solder layer 107 (8 wt, %) was placed between the cap 102 and the carrier substrate 101, and the valve 13 was closed to seal the chamber 11. The solder layer 107 is heated and melted by the heater 12, and the metallized surface 1 for sealing is formed on the surface of the cap 102.
05 (surface layer: gold) and the sealing metallized surface 106 (surface layer: gold) on the surface of the carrier substrate 101, the solder layer 107 is soldered to one or both of the metallized surfaces 105 and 106 in advance, Alternatively, it was formed using a method of installing a solder preform having the shape of a sealing surface. Upon completion of the process shown in Figure 1(a),
(5) Voids (bubbles) 108 generated inside the solder layer 107 and metallized surface 105
.. No measures have been taken for the fine leak paths that occur at the interface between the solder layer 106 and the solder layer 107. For this reason, in the conventional method, the package is not airtight. In particular, as the width of the metallized surface 105° 106 becomes narrower to 0.5+nm or less, it has been confirmed through a leak test that the frequency of occurrence increases.

第1図(b)(c)に示す工程では、ヒータ12による
加熱で半田層107を溶融状態に保ちながら、電磁弁1
4を切替えてチャンバ11内の圧力を変化させた。まず
、第1図(b)に示すように加圧ボンベ17とチャンバ
11を接続し、減圧弁工6で供給圧力を調節しながらチ
ャンバ内の初期圧力PoがPO+ΔP となるまで不活
性ガスをチャンバ11に送りこむ。この時半田層i07
はパッケージ10内部と外部の圧力差により内側へ移動
する。次に、第1図(c)に示すように電磁弁14を切
替えて真空ポンプ15とチャンバ11を接続し、圧力が
Poに戻るまで真空ポンプ(6) 15による排気を続ける。この結果半田層107は初め
の位置に戻る。第2図にそのチャンバ内圧力の変化を示
す。以下、上記のステップを第2図に示すように繰り返
し、半田層表面を振動させた。
In the steps shown in FIGS. 1(b) and 1(c), while the solder layer 107 is kept in a molten state by heating with the heater 12, the solenoid valve 1
4 was switched to change the pressure inside the chamber 11. First, as shown in FIG. 1(b), the pressurized cylinder 17 and the chamber 11 are connected, and while adjusting the supply pressure with the pressure reducing valve 6, an inert gas is supplied into the chamber until the initial pressure Po in the chamber becomes PO+ΔP. Send it to 11. This Santa layer i07
moves inward due to the pressure difference between the inside and outside of the package 10. Next, as shown in FIG. 1(c), the solenoid valve 14 is switched to connect the vacuum pump 15 and the chamber 11, and evacuation by the vacuum pump (6) 15 is continued until the pressure returns to Po. As a result, the solder layer 107 returns to its initial position. Figure 2 shows the change in chamber pressure. Thereafter, the above steps were repeated as shown in FIG. 2 to vibrate the surface of the solder layer.

ΔP=0.6 kgf/al、Δt1.Δt2〜100
m5e c、繰返し数100回の振動を加えた。最後に
第1図(d)に示すように、バルブ13を閉鎖して圧力
の振動を停止した。ヒータ12の加熱を停止して半田層
107を固化させた。その後チャンバ11からパッケー
ジ1oを取り出し、本発明による接合工程を完了した。
ΔP=0.6 kgf/al, Δt1. Δt2~100
m5e c and 100 repetitions of vibration were applied. Finally, as shown in FIG. 1(d), the valve 13 was closed to stop the pressure oscillation. Heating of the heater 12 was stopped to solidify the solder layer 107. Thereafter, the package 1o was taken out from the chamber 11, and the bonding process according to the present invention was completed.

本接合工程の終了後、メタライズ面105゜106と半
田層107の界面を軟X線によりamした結果、半田濡
れ性が高められたことを確認した。また、ヘリウムリー
クテストによりlXl0−’atm−cc/sec以下
の高気密性を確認した。以上の結果、本接合装置を用い
ることによりパッケージの気密性を著しく向上できた。
After the main bonding step was completed, the interface between the metallized surface 105° 106 and the solder layer 107 was scanned with soft X-rays, and it was confirmed that the solder wettability was improved. In addition, high airtightness of less than 1X10-'atm-cc/sec was confirmed by a helium leak test. As a result, the airtightness of the package was significantly improved by using this bonding apparatus.

第3図は本発明による接合装置の第2の実施例を示す断
面図である。本実施例では、チャンバ(7) 11内の圧力変化ΔPをセンサ19及び増幅器20を用
いて検知し、ΔPが過大な値とならないように制御回路
21を介して電磁弁14の切替え時間を制御した。この
結果、半田層107に過大な圧力が加わることによる半
田の飛散を未然に防止でき、パッケージ10の気密不良
や半田バンプ104の短絡を防ぐことが出来た。半田の
飛散を防ぐためのΔPの許容値は半田層107の厚さに
よって異なり、厚さd=0.4mmのときΔPは約0.
04kgf/−以下にする必要がある。
FIG. 3 is a sectional view showing a second embodiment of the bonding apparatus according to the present invention. In this embodiment, the pressure change ΔP in the chamber (7) 11 is detected using the sensor 19 and the amplifier 20, and the switching time of the solenoid valve 14 is controlled via the control circuit 21 so that ΔP does not become an excessive value. did. As a result, it was possible to prevent the solder from scattering due to excessive pressure being applied to the solder layer 107, and it was also possible to prevent the package 10 from becoming airtight and short circuiting the solder bumps 104. The allowable value of ΔP for preventing solder scattering varies depending on the thickness of the solder layer 107, and when the thickness d=0.4 mm, ΔP is approximately 0.
It is necessary to keep it below 04kgf/-.

の替わりに、ロータリー式切替弁201を用いた。A rotary type switching valve 201 was used instead.

モータ203を用いて回転体202の回転速度を増すこ
とで、第2図に示す圧力の立上り時間Δtl、立下がり
時間Δt2を短縮できる。電磁弁14を用いる方式では
Δ11.Δtz〜30m5ecが限界であるのに対し、
本方式によりΔt1.Δt2〜1m sec以下を可能
にした。Δti、Δt2を短縮すれば半田に加わる加速
度が増し、エネルギーを増(8) 大できるので、より効果的に振動エネルギーを加えるこ
とが出来た。
By increasing the rotational speed of the rotating body 202 using the motor 203, the pressure rise time Δtl and pressure fall time Δt2 shown in FIG. 2 can be shortened. In the method using the solenoid valve 14, Δ11. While the limit is Δtz~30m5ec,
With this method, Δt1. This enabled Δt2 to 1 msec or less. By shortening Δti and Δt2, the acceleration applied to the solder increases and the energy can be increased (8), making it possible to apply vibration energy more effectively.

第5図は本発明による接合装置の第4の実施例を示す断
面図である。本実施例では、チャンバ11内部の圧力を
変化させる手段として、ベローズ301を用いた。本方
式によれば、圧力変化ΔPはベローズ301の断面積と
カム302の移動量の積で決まるので、第3図に示した
センサ19及び増幅器20を用いなくて哲ΔPは過大な
値とはならず、溶融半田107の飛散を防止出来第6図
は本発明による接合装置の第5の実施例を示す断面図で
ある。本実施例では、チャンバ11内部の圧力を変化さ
せる手段に、シリンダ401及びピストン402を用い
た。本方式によれば、圧力変化ΔPはシリンダ401の
断面積とピストン402の移動量の積で決まるので、セ
ンサ19及び増幅器20を用いなくてもΔPは過大な値
とはならない。従って、本方式によっても接(9) 合装置をより簡易に実現できる。
FIG. 5 is a sectional view showing a fourth embodiment of the joining device according to the present invention. In this embodiment, a bellows 301 is used as a means for changing the pressure inside the chamber 11. According to this method, since the pressure change ΔP is determined by the product of the cross-sectional area of the bellows 301 and the amount of movement of the cam 302, the pressure change ΔP is determined by the product of the cross-sectional area of the bellows 301 and the amount of movement of the cam 302. FIG. 6 is a sectional view showing a fifth embodiment of the bonding apparatus according to the present invention. In this embodiment, a cylinder 401 and a piston 402 are used as means for changing the pressure inside the chamber 11. According to this method, since the pressure change ΔP is determined by the product of the cross-sectional area of the cylinder 401 and the amount of movement of the piston 402, ΔP does not become an excessive value even without using the sensor 19 and the amplifier 20. Therefore, this method also makes it possible to realize the coupling device (9) more easily.

以上述べた実施例は、封止面が狭小な小型パッケージで
も微細なリークパスやボイドをなくすことができるので
、信頼性に優れる気密性封止を容易に行なうことが出来
る。さらに、多数のパッケージを一括して゛気密封止処
理できるので生産性を著しく高める効果がある。なお本
実施例では、キャリア基板はアルミナセラミック、ガラ
スセラミックなどが、キざツブはこれらのセラミック材
や金属材などが、接合材は金−スズ系や金−シリコン系
の低融点半田あるいは銀ロウなど比較的融点の高い接合
材を用いることも可能である。すなわち1本実施例に示
した接合装置はパッケージの構成材料に拘らず効果を発
揮できる。さらに、本実施例において用いた不活性ガス
は乾燥窒素ガスを用いたが、その種類を特定する必要は
ない。
In the embodiments described above, minute leak paths and voids can be eliminated even in a small package with a narrow sealing surface, so that highly reliable hermetic sealing can be easily performed. Furthermore, since a large number of packages can be hermetically sealed at once, productivity can be significantly increased. In this example, the carrier substrate is made of alumina ceramic, glass ceramic, etc., the base plate is made of these ceramic materials or metal materials, and the bonding material is gold-tin based or gold-silicon based low melting point solder or silver solder. It is also possible to use a bonding material with a relatively high melting point, such as. That is, the bonding apparatus shown in this embodiment can exhibit its effects regardless of the material of the package. Furthermore, although dry nitrogen gas was used as the inert gas in this example, it is not necessary to specify the type.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、狭小な封止面を有するパッケージに対
して信頼性及び生産性の高い気密封止を容易に行なうこ
とが出来る。したがって、パック(10) −ジに封入された大規模集積回路間の信号伝播距離を短
縮した実装構造の実現が初めて可能となり、超高速計算
機などの応用において信号処理速度を大幅に高め、性能
向上に大きく寄与する。
According to the present invention, it is possible to easily perform hermetic sealing with high reliability and productivity on a package having a narrow sealing surface. Therefore, for the first time, it has become possible to realize a mounting structure that shortens the signal propagation distance between large-scale integrated circuits enclosed in packs (10) and 2. This greatly increases signal processing speed and improves performance in applications such as ultra-high-speed computers. greatly contributes to

接合工程を説明する図、第2図はチャンバ11内の圧力
変化を示す図、第3図は本発明による接合装置の第2の
実施例を示す断面図、第4図は本発明による接合装置の
第3の実施例を示す断面図、第5図は本命1す]による
接合装置の第4の実施例を示す断面図、第6図は本発明
による接合装置の第5の実施例を示す断面図である。
A diagram explaining the bonding process, FIG. 2 is a diagram showing pressure changes in the chamber 11, FIG. 3 is a sectional view showing a second embodiment of the bonding device according to the present invention, and FIG. 4 is a diagram showing the bonding device according to the present invention. FIG. 5 is a sectional view showing a fourth embodiment of the bonding device according to the present invention; FIG. 6 is a sectional view showing the fifth embodiment of the bonding device according to the present invention. FIG.

10・・・パッケージ、11・・・チャンバ、12・・
・ヒータ、13・・・バルブ、14・・・電磁弁、15
・・・真空ポンプ、16・・・減圧弁、17・・・加圧
ボンベ、101・・・キャリア基板、102・・・キャ
ップ、103・・・チップ、104・・・半田バンプ、
105・・・メタライズ面、106・・・メタライズ面
、107・・・半田層、108・・・ボイド、201・
・・ロータリー式切換え弁、(11) 202・・・回転体、 203・・・モータ、 301・・・ベロ ーズ、 302・・・カム、 401・・・シリンダ、 02 ・・・ピストン。
10...Package, 11...Chamber, 12...
・Heater, 13... Valve, 14... Solenoid valve, 15
... Vacuum pump, 16 ... Pressure reducing valve, 17 ... Pressure cylinder, 101 ... Carrier board, 102 ... Cap, 103 ... Chip, 104 ... Solder bump,
105...Metallized surface, 106...Metallized surface, 107...Solder layer, 108...Void, 201...
... Rotary type switching valve, (11) 202 ... Rotating body, 203 ... Motor, 301 ... Bellows, 302 ... Cam, 401 ... Cylinder, 02 ... Piston.

(12)(12)

Claims (1)

【特許請求の範囲】 1、接合材で接合される構造体の接合装置において、該
接合材を溶融する加熱手段と、取り巻く雰囲気の圧力を
変化させ振動エネルギーを与える圧力変動手段とを備え
ていることを特徴とする接合装置。 2、請求項第1項記載の接合装置において、上記圧力変
動手段が、上記接合材及び上記構造体を密閉する密閉容
器と、少なくとも一つの圧力源と、該密閉容器と該圧力
源を接続・遮断する圧力制御手段とを備えていることを
特徴とする接合装置。 3、請求項第2項記載の接合装置において、上記圧力制
御手段が、上記密閉容器内部の圧力を検出するセンサー
と、該センサーの出力値に応じて該圧力源を接続・遮断
することのできる制御回路とを備えていることを特徴と
する接合装置。 4、請求項第2項記載の接合装置において、上記圧力変
動手段が、該容器の容積を変動させる手段とを備えてい
ることを特徴とする接合装置。
[Scope of Claims] 1. A joining device for structures joined with a joining material, comprising a heating means for melting the joining material, and a pressure variation means for changing the pressure of the surrounding atmosphere and applying vibrational energy. A joining device characterized by: 2. The bonding apparatus according to claim 1, wherein the pressure variation means connects and connects a closed container that seals the bonding material and the structure, at least one pressure source, and the closed container and the pressure source. A bonding device characterized by comprising a pressure control means for shutting off the pressure. 3. The bonding apparatus according to claim 2, wherein the pressure control means is capable of connecting or disconnecting a sensor that detects the pressure inside the closed container and the pressure source according to an output value of the sensor. A joining device characterized by comprising a control circuit. 4. The bonding apparatus according to claim 2, wherein the pressure varying means includes means for varying the volume of the container.
JP1227357A 1989-09-04 1989-09-04 Junction device Pending JPH0391254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1227357A JPH0391254A (en) 1989-09-04 1989-09-04 Junction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1227357A JPH0391254A (en) 1989-09-04 1989-09-04 Junction device

Publications (1)

Publication Number Publication Date
JPH0391254A true JPH0391254A (en) 1991-04-16

Family

ID=16859533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227357A Pending JPH0391254A (en) 1989-09-04 1989-09-04 Junction device

Country Status (1)

Country Link
JP (1) JPH0391254A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235189A (en) * 1992-02-24 1993-09-10 Nec Corp Manufacture of semiconductor and device thereof
US5877079A (en) * 1996-12-02 1999-03-02 Fujitsu Limited Method for manufacturing a semiconductor device and a method for mounting a semiconductor device for eliminating a void
KR20000015593A (en) * 1998-08-31 2000-03-15 김규현 Curing method of liquid phase sealing material for semiconductor package
JP2007124595A (en) * 2005-10-31 2007-05-17 Kyocera Kinseki Corp Method of manufacturing piezoelectric device, lid body sealing apparatus for piezoelectric device
JP2017159331A (en) * 2016-03-10 2017-09-14 日本電気株式会社 Storage container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235189A (en) * 1992-02-24 1993-09-10 Nec Corp Manufacture of semiconductor and device thereof
US5877079A (en) * 1996-12-02 1999-03-02 Fujitsu Limited Method for manufacturing a semiconductor device and a method for mounting a semiconductor device for eliminating a void
KR20000015593A (en) * 1998-08-31 2000-03-15 김규현 Curing method of liquid phase sealing material for semiconductor package
JP2007124595A (en) * 2005-10-31 2007-05-17 Kyocera Kinseki Corp Method of manufacturing piezoelectric device, lid body sealing apparatus for piezoelectric device
JP2017159331A (en) * 2016-03-10 2017-09-14 日本電気株式会社 Storage container

Similar Documents

Publication Publication Date Title
CA1081411A (en) Method for hermetically sealing an electronic circuit package
KR100447851B1 (en) Wafer level Bonding method of flip-chip manner for semiconductor apparatus in lateral bonded type
US6903452B2 (en) Packaging microelectromechanical structures
US5323051A (en) Semiconductor wafer level package
US20030183920A1 (en) Hermetic electric component package
CA2322978A1 (en) Hermatic firewall for mems packaging in flip-chip bonded geometry
US20120115279A1 (en) Chip-scale semiconductor die packaging method
US7605467B2 (en) Package and electronic apparatus using the same
Schofield et al. Versatile vacuum packaging for experimental study of resonant MEMS
US6987033B2 (en) Method for making electronic devices including silicon and LTCC and devices produced thereby
JPS61276237A (en) Method for airtight sealing of semiconductor package and unit therefor
JP2003318229A (en) Packaging method and device thereof
JPH01278959A (en) Joining method for structure
JPH0391254A (en) Junction device
Boustedt et al. Flip chip as an enabler for MEMS packaging
JP2004282042A (en) Assembling method for semiconductor device
JP2004296724A (en) Substrate for packaging electronic part and method for manufacturing electronic device using the same
Wang Considerations for mems packaging
Marenco et al. Investigation of key technologies for system-in-package integration of inertial MEMS
JPH03187247A (en) Semiconductor integrated circuit device and fabrication thereof
JPH08213864A (en) Mount method of element chip
JPH10247706A (en) Ball grid array package
JP2003133452A (en) Manufacturing method of electronic equipment
JPH1012757A (en) Micropackage
JPH118334A (en) Intermediate of ball grid array package and its manufacture