JPH0389922A - Separation of dissolving volatile substance from volatile substance dissolving solution by distillation - Google Patents

Separation of dissolving volatile substance from volatile substance dissolving solution by distillation

Info

Publication number
JPH0389922A
JPH0389922A JP1226395A JP22639589A JPH0389922A JP H0389922 A JPH0389922 A JP H0389922A JP 1226395 A JP1226395 A JP 1226395A JP 22639589 A JP22639589 A JP 22639589A JP H0389922 A JPH0389922 A JP H0389922A
Authority
JP
Japan
Prior art keywords
liquid
membrane
raw material
gas
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1226395A
Other languages
Japanese (ja)
Inventor
Takashi Samuta
隆 佐無田
Takeo Ota
太田 剛雄
Hiroshi Saeki
宏 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAX ADM AGENCY
National Tax Administration Agency
Original Assignee
TAX ADM AGENCY
National Tax Administration Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAX ADM AGENCY, National Tax Administration Agency filed Critical TAX ADM AGENCY
Priority to JP1226395A priority Critical patent/JPH0389922A/en
Publication of JPH0389922A publication Critical patent/JPH0389922A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separate a dissolving volatile substance efficiently by bringing a raw solution in which the volatile substance dissolves into contact with one side of a hydrophobic porous membrane having continuous fine pores and bringing an aqoueous solution for recovery at lower temperature than the raw material into contact with the other side of the membrane. CONSTITUTION:In the case where an ethanol-containing aqueous solution as a raw material and distilled water are respectively brought into contact with one side of a hydrophobic porous membrane and with the other side, gaseous layers 4, 6 are formed on the surface of the hydrophobic porous membrane and gas-liquid interfaces 3, 7 exist outer side of the layers. When the raw material 1 flows, a liquid boundary membrane exists in the liquid side and ethanol molecules move in the boundary membrane due to diffusion. When a gas and a liquid are not in the equilibrium state in the gas-liquid interface 3, ethanol and water are evaporated according to the gas- liquid equilibrium theory and move in the gas on the surface of the membrane and in the membrane owing to gas diffusion. As an apparatus, one by which the raw material solution and an absorption liquid are respectively brought into contact with one side and the other of a hydrophobic flat membrane is preferable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明の方法は常温、常圧において原料に熱変化を起こ
すことなく、含アルコール水性液からそのアルコール濃
度より高い濃度の留液を回収することかできるので、酒
類製造工程において、発酵中の醪からアルコールを連続
して回収し、例えは清酒製造において上槽直前に醪に戻
し原料用アルコールを使用せず新しいタイプの清酒を製
造する、発酵中の醪に連続して基質を供給しつつ本方法
により連続してアルコールを回収すると、一定量の醪か
ら多量のエキス分を含まないアルコール水溶液を生産す
ることができるので、原料用アルコールの生産において
廃水処理の負担が軽減される。
[Detailed Description of the Invention] (Industrial Application Field) The method of the present invention recovers a distillate with a higher alcohol concentration from an alcohol-containing aqueous solution at room temperature and pressure without causing any thermal change in the raw material. Therefore, in the liquor manufacturing process, alcohol is continuously recovered from the fermenting moromi and, for example, in sake manufacturing, it is returned to the moromi just before the upper tank to produce a new type of sake without using raw alcohol. If alcohol is continuously recovered using this method while continuously supplying the substrate to the fermenting moromi, it is possible to produce an alcohol aqueous solution that does not contain a large amount of extract from a fixed amount of the moromi, so it is possible to produce aqueous alcohol solution that does not contain a large amount of extract. The burden of wastewater treatment in production is reduced.

また本方法によりアルコールの蒸留を3回繰り返すと1
5vo1%のアルコール水溶液を約48vO1%まで濃
縮できることから燃料用アルコールの生産に接触させ、
原料液中のことができる。
Moreover, if the distillation of alcohol is repeated three times using this method, 1
Since it is possible to concentrate a 5 VO 1% alcohol aqueous solution to approximately 48 VO 1%, it is used in the production of fuel alcohol.
It can be in the raw material liquid.

本発明の方法によれば含アルコール水性液から簡便にア
ルコールを除去することができるから、ワイン、ビール
または清酒のような蒸留酒からアルコールを除去して低
アルコール酒またはノンアルコール飲料の製造に接触さ
せ、原料液中のことができる。
According to the method of the present invention, alcohol can be easily removed from an alcohol-containing aqueous liquid, and therefore alcohol can be removed from distilled spirits such as wine, beer, or sake to produce low-alcohol alcoholic beverages or non-alcoholic beverages. It can be used in the raw material liquid.

パン酵母の培養と酵母菌体の生産を目的とする場合、酵
母の増殖に伴いアルコールが増加して酵母に生理的な悪
影響を及ぼし、菌体増殖速度が低下し、アルコール濃度
が高くなると酵母は死滅すつことかでき、酵母の培養密
度を増加することかできる。
When the purpose is to culture baker's yeast and produce yeast cells, alcohol increases as the yeast grows, which has a negative physiological effect on the yeast, slows down the cell growth rate, and increases the alcohol concentration. It can kill yeast and increase the culture density of yeast.

したがって、本発明の方法は飲料・酒類製造、微生物菌
体生産及び工業用アルコール製造に利用できる。
Therefore, the method of the present invention can be used for beverage/alcohol production, microbial cell production, and industrial alcohol production.

なお、本発明の方法は、アルコールのみでなく低分子の
エステル、ケトン及びアルデヒド等水后性で揮発性の各
種物質の濃縮または除去に接触させ、原料液中のことが
できる。
The method of the present invention can be used to concentrate or remove not only alcohol but also various hydric and volatile substances such as low-molecular esters, ketones, and aldehydes in the raw material liquid.

(従来技術及び問題点) アルコール発酵において、酵母が生産するアルコールは
酵母の生理に悪影響を与え、アルコールが18〜20v
o1%に達すると酵母の発酵能か低下するため、発酵中
の醪からアルコールを回収する種々の試みがなされてき
た。醪からアルコルを回収する方法は、蒸留法と膜分離
法に大別される。蒸留法としては醪にガスを吹き込んで
アルコールを蒸発させる方法、酸液を抜き出しフラゾき
込む方法はガス流速を大きくとれず実用的ではナイ。フ
ラッシュ蒸発を接触させ、原料液中の方l去としては特
公昭63= 8753等があるが、装置が大型となるう
えに蒸留装置へ酸液を送る場合の醪での固液分離が困難
であり、装置全体の雑菌汚染対策が困難である。真空蒸
留法は有力な方法ではあるが装置全体を耐圧構造にする
必要があること、発酵に伴う炭酸ガスを絶えず排出する
必要があること、真空状態では冷却の熱効率が悪く冷却
機の温度を−20〜−30℃とする必要がある等の欠点
がある。
(Prior art and problems) In alcoholic fermentation, the alcohol produced by yeast has an adverse effect on the physiology of yeast, and alcohol
Since the fermentation ability of yeast decreases when the concentration of alcohol reaches 1%, various attempts have been made to recover alcohol from the fermenting moromi. Methods for recovering alcohol from moromi are broadly divided into distillation methods and membrane separation methods. Distillation methods include blowing gas into the moromi to evaporate the alcohol, and extracting the acid solution and pouring it in, which do not allow for a high gas flow rate and are not practical. There is a Japanese Patent Publication No. 63=8753 that uses flash evaporation to remove the raw material liquid, but the equipment is large and it is difficult to separate solid and liquid in the moromi when sending the acid solution to the distillation equipment. Therefore, it is difficult to prevent bacterial contamination of the entire device. Although the vacuum distillation method is an effective method, it requires the entire equipment to be of pressure-resistant structure, it is necessary to constantly exhaust the carbon dioxide gas associated with fermentation, and the thermal efficiency of cooling is poor in a vacuum state, causing the temperature of the cooler to drop to - There are drawbacks such as the need for a temperature of 20 to -30°C.

最近膜による分離技術が進歩し、精密ろ過、限外ろ過及
び逆浸透法等の膜の細孔径の大小を接触させ、原料液中
の分離法が食品の分離等に広く用いられているが、これ
らの物理的な方法は発酵液等から揮発性物質だけを分離
することはできず、またアルコールを濃縮することはで
きない。
Recently, separation technology using membranes has progressed, and separation methods in raw material liquids, such as microfiltration, ultrafiltration, and reverse osmosis, in which membranes with large and small pore sizes are brought into contact, are widely used for food separation. These physical methods cannot separate only volatile substances from fermentation liquor, etc., and cannot concentrate alcohol.

一方相変化を伴う膜分離法としてパーベーパレーシン法
及び膜蒸留法がある。パーベーパレーに保持されている
液体中を拡散により透過するもので、溶解−拡散一蒸発
一凝縮というモデルで表される。膜蒸留はパーベーパレ
ーション法の特殊な場合であり、疎水性多孔質膜を用い
、揮発性成分は蒸気の状態で膜を透過するもので、蒸発
−拡散−凝縮というモデルで表される。膜に溶解して拡
散するパーベーパレーション法より気体で拡散する膜蒸
留の方が大きな透過速度が得られる。しかし、現在膜蒸
留と呼ばれている方法は、原料液体−膜一気体という構
成であり、回収側は減圧にするか、または窒素等の不活
性なカスを循環し、蒸気を含む気体を冷却して揮発性物
質を回収するものであって冷却効率が悪く、留液を効率
よく回収するためには冷却器の温度を一30℃以下にす
るなど、冷却器の温度を非常に低くする必要がある。
On the other hand, membrane separation methods involving phase change include pervaporasin method and membrane distillation method. It permeates through the liquid held in the pervapor array by diffusion, and is expressed by a model of dissolution-diffusion-evaporation-condensation. Membrane distillation is a special case of the pervaporation method, in which a hydrophobic porous membrane is used, and volatile components pass through the membrane in the form of vapor, and is expressed by the evaporation-diffusion-condensation model. Membrane distillation, which uses gas to diffuse, provides a higher permeation rate than the pervaporation method, which uses gas to diffuse. However, the method currently called membrane distillation has a composition of raw material liquid - membrane - gas, and the recovery side is depressurized or inert gas such as nitrogen is circulated to cool the gas containing vapor. The cooling efficiency is poor because volatile substances are recovered by distillation, and in order to efficiently recover the distillate, the temperature of the condenser must be kept very low, such as keeping the temperature of the condenser below -30℃. There is.

原料液−疎水性多孔質膜一吸収液型の装置を使用する方
法としては、揮発性溶存水溶液からその然ガスかん水か
ら溶存ヨウ素を採取する、下水・廃水から溶存アンモニ
アを除去する、工業用水から溶存酸素を除去するなど、
単に水に溶存している揮発性物質を分離することたけを
目的としていること、揮発性物質吸収液としては(1)
目的揮発性物質とよく反応して、その揮発性物質の化学
種を変えると同時にその生成物をよく溶解しうること、
(2)その溶解補集した目的揮発性物質を取り出す方法
が有利であることなどを勘案して、例えばヨウ素の回収
プロセスでは水酸化ナトリウム水溶液などのアルカリ水
溶液を、またアンモニアの回収(または除去)プロセス
ではリン酸水溶液など酸性水溶液を用いると良いとして
いることから、特公昭54−39833はガス吸収理論
に基づき水に溶存している揮発性物質を多孔質膜を隔て
て化学的に反応する液体を用い、化学種を変えて吸収す
る方法であって、低温の水を用いて蒸留理論に基づき揮
発性物質を濃縮するという方法ではない。
Methods using raw material liquid - hydrophobic porous membrane - absorption liquid type equipment include collecting dissolved iodine from volatile dissolved aqueous solutions, natural gas brine, removing dissolved ammonia from sewage and wastewater, and removing dissolved ammonia from industrial water. removing dissolved oxygen, etc.
The purpose is simply to separate volatile substances dissolved in water, and as a volatile substance absorption liquid (1)
Reacts well with the target volatile substance, changing the chemical species of the volatile substance and at the same time being able to dissolve the product well;
(2) Considering that it is advantageous to take out the target volatile substance that has been dissolved and collected, for example, in the iodine recovery process, an alkaline aqueous solution such as an aqueous sodium hydroxide solution is used, and ammonia recovery (or removal) Since it is recommended to use an acidic aqueous solution such as a phosphoric acid aqueous solution in the process, Japanese Patent Publication No. 54-39833 proposed a liquid that chemically reacts with volatile substances dissolved in water through a porous membrane based on gas absorption theory. This is a method of absorbing different chemical species using water, and is not a method of concentrating volatile substances based on distillation theory using low-temperature water.

アルコールを濃縮して回収または除去する簡便で有効な
方法はない。
There is no simple and effective method to concentrate and recover or remove alcohol.

(問題を解決するための手段) 本発明者らは、発酵中の醪のような含アルコル水性液を
加熱することなく酵母か生きたままの常温においても可
能なアルコール蒸留方法として膜蒸留に着目し鋭意研究
を進めたところ、従来の膜蒸留に用いられている原料液
体−疎水性多孔質膜一気体という構成ではなく、原料液
体−疎水性多孔質膜−吸収液体という構成で、吸収液体
の温度を原料液体より低くすることにより常温において
も簡単な装置でアルコールを濃縮することかできること
を知ったのである。
(Means for Solving the Problem) The present inventors focused on membrane distillation as an alcohol distillation method that can be used at room temperature while yeast remains alive without heating an alcohol-containing aqueous liquid such as moromi during fermentation. As a result of intensive research, we discovered that the structure of raw material liquid, hydrophobic porous membrane, and absorbing liquid was used instead of the conventional structure of raw material liquid, hydrophobic porous membrane, and gas, which is used in conventional membrane distillation. He learned that alcohol could be concentrated using a simple device even at room temperature by lowering the temperature of the raw material liquid.

疎水性多孔質膜の片側に原料の含エタノール水性液、他
方の面に蒸留水を接触させる場合、二重境膜説を採用す
ると第1図のようなモデルが考えられる。疎水性多孔質
膜の表面には気体の層4.6が形成され、その外側には
気液の界面3.7が存在する。原料1が原動する場合、
液側には演壇り移動する。気液界面3において気液が平
衡でない場合、エタノール及び水は気液平衡理論に従っ
て蒸発し、膜表面及び膜材内の気体中をガス拡散により
移動する。吸収液側の気液界面7において、エタノール
に関して平衡でなければ平衡に達するまでエタノールは
溶解し、エタノール分子は液境膜8を拡散により吸収液
本体9の方へ移動する。
When a hydrophobic porous membrane is brought into contact with an ethanol-containing aqueous solution as a raw material and distilled water on the other side, a model as shown in Figure 1 can be considered if the double layer theory is adopted. A gas layer 4.6 is formed on the surface of the hydrophobic porous membrane, and a gas-liquid interface 3.7 exists outside of the gas layer 4.6. When raw material 1 is the driving force,
Move the podium to the liquid side. When the gas and liquid are not in equilibrium at the gas-liquid interface 3, ethanol and water evaporate according to the theory of gas-liquid equilibrium and move through the membrane surface and the gas within the membrane material by gas diffusion. At the gas-liquid interface 7 on the absorption liquid side, if equilibrium is not established with respect to ethanol, the ethanol is dissolved until equilibrium is reached, and the ethanol molecules move through the liquid film 8 toward the absorption liquid main body 9 by diffusion.

したがって、膜の両側の表面に保持されている気体中の
エタノールの蒸気圧が異なる場合は、全体として蒸発−
吸収(凝縮)という現象が起き、蒸留が行われたことに
なる。
Therefore, if the vapor pressure of the ethanol in the gas held on both surfaces of the membrane is different, the overall evaporation -
A phenomenon called absorption (condensation) occurred, and distillation took place.

エタノールの膜透過速度は膜の両側の気体中のエタノー
ルの濃度差に比例し、膜の厚さに反比例すると考えられ
る。エタノールの膜透過速度をQ(mol ・cm ’
 −5ee−’) 、膜の厚さL(cm)、原料及び吸
収液側の膜表面の気体中の蒸気圧をそれぞれPl、P2
 (Pa) 、温度をTI、T2 (K)、気体定数を
R(cnLPa−に−1・mol ’) 、比例定数を
KCcrl/5ec)とするとQは第1式で表すことが
できる。
The membrane permeation rate of ethanol is considered to be proportional to the difference in concentration of ethanol in the gas on both sides of the membrane, and inversely proportional to the thickness of the membrane. The membrane permeation rate of ethanol is Q (mol ・cm'
-5ee-'), the membrane thickness L (cm), and the vapor pressure in the gas on the membrane surface on the raw material and absorption liquid side, Pl and P2, respectively.
(Pa), the temperature is TI, T2 (K), the gas constant is R (cnLPa-1·mol'), and the proportionality constant is KCcrl/5ec), then Q can be expressed by the first equation.

方の面に水を長時間接触させると、T1とT2か等しい
ときはP、、 P2か等しくなり、第1式の右辺はセロ
となってそれ以」−にはエタノールは移動せず、吸収液
中のエタノール濃度を原料以上とすることはできない。
When water is brought into contact with one side for a long time, when T1 and T2 are equal, P, P2 are equal, and the right side of the first equation becomes zero, and from then on, ethanol does not move and is absorbed. The ethanol concentration in the liquid cannot be higher than that of the raw material.

しかし、吸収液の塩度を原料l皮の温度より低くすると
、T2か小さくなる率よりP2の小さくなる率が大きい
ため、PI/TlよりP2/T2か小さくなり、吸収液
中のエタノール濃度は原料中のそれより高いところで平
衡となる。つまりエタノルを濃縮することができる。
However, when the salinity of the absorption liquid is lowered below the temperature of the raw material skin, the rate at which P2 decreases is greater than the rate at which T2 decreases, so P2/T2 becomes smaller than PI/Tl, and the ethanol concentration in the absorption liquid decreases. Equilibrium occurs at a higher level in the raw material. In other words, ethanol can be concentrated.

なお、本発明の方l去に用いる装置としては疎水性多孔
質の平膜を隔てて原料液と吸収液を接触させる方法、攪
拌槽内にチューブ状に形成した疎水性多孔質体を設け、
攪拌槽内に原料液、チューブ内にアルコール回収用の水
性液を流す方法、及び多管式熱交換器型の装置いずれを
用いてもよいか、第1図のモデルから推定できるように
、膜の両側にl夜境膜か存在することから、例えば発酵
タンクなど、膜の両側の液体を流動させることが望まし
い。膜の細孔径はアルコールの透過速度にはほとんど影
響しないが液もれしないことが肝要で特にピンホールに
注意する必要がある。本発明の方法は膜の両側に温度差
があるため膜は断熱性に優れていることが望ましい。疎
水性多孔質膜は膜内に気体を保持しているため断熱性に
優れているが、ある程度の厚さは必要で0.5〜2mm
程度の厚さがあることが望ましい。膜の材質としては疎
水性が強く、米等の基質に対し非、粘着性で目詰まりし
にくいポリテロラフルオロエチレン(PTFE )樹脂
が優れている。
In addition, the apparatus used for the removal of the present invention includes a method in which the raw material liquid and the absorption liquid are brought into contact with each other through a hydrophobic porous flat membrane, a method in which a hydrophobic porous body formed in a tube shape is provided in a stirring tank,
As can be deduced from the model in Figure 1, it is possible to determine whether a method of flowing the raw material liquid into a stirring tank and an aqueous liquid for alcohol recovery into tubes, or whether a shell-and-tube heat exchanger type device can be used. Since there are membranes on both sides of the membrane, it is desirable to flow the liquid on both sides of the membrane, for example in a fermentation tank. Although the pore size of the membrane has little effect on the permeation rate of alcohol, it is important that there is no leakage, and special attention must be paid to pinholes. In the method of the present invention, since there is a temperature difference on both sides of the membrane, it is desirable that the membrane has excellent heat insulation properties. Hydrophobic porous membranes retain gas within the membrane and have excellent insulation properties, but a certain degree of thickness is required, 0.5 to 2 mm.
It is desirable that it has a certain thickness. As a material for the membrane, polytetrafluoroethylene (PTFE) resin is excellent because it has strong hydrophobicity, is non-adhesive to substrates such as rice, and is hard to clog.

次に本発明の実験例を示す。Next, an experimental example of the present invention will be shown.

実験例 1 第2図に実験装置の概要を示した。多孔質ポリテロラフ
ルオロエチレン(PTFE)製チューブ(外径9mm、
内径7mm、長さ93cm、細孔径1μm )を設けた
攪拌槽に原料11を入れ、バルブ15を閉じ、1 した。攪拌槽の温度は30℃、PTFEチューブ入口の
温度は4.5及び17.0℃、攪拌器の回転数は110
0rpとし、原料液および吸収液を経時的にサンプリン
グすると共に吸収液の増加量を測定した。
Experimental Example 1 Figure 2 shows an outline of the experimental apparatus. Porous polytetrafluoroethylene (PTFE) tube (outer diameter 9 mm,
The raw material 11 was placed in a stirring tank with an inner diameter of 7 mm, a length of 93 cm, and a pore diameter of 1 μm, and the valve 15 was closed. The temperature of the stirring tank was 30°C, the temperature at the inlet of the PTFE tube was 4.5 and 17.0°C, and the rotation speed of the stirrer was 110°C.
At 0 rpm, the raw material liquid and the absorption liquid were sampled over time, and the increase in the absorption liquid was measured.

実験結果は第3図に示した。第3図において、横軸は吸
収液の循環時間(h「)、縦軸はエタノール濃度(vo
1%)である。吸収液として蒸留水を循環し始めてから
約7〜8時間後に吸収液中のエタノール濃度は最高とな
り、以後原料液中のエタノール濃度の低下により吸収液
の濃度も低下した。
The experimental results are shown in Figure 3. In Figure 3, the horizontal axis is the absorption liquid circulation time (h''), and the vertical axis is the ethanol concentration (vo
1%). Approximately 7 to 8 hours after circulating distilled water as the absorption liquid, the ethanol concentration in the absorption liquid reached its maximum, and thereafter, the concentration of the absorption liquid also decreased as the ethanol concentration in the raw material liquid decreased.

エタノールの濃縮率(吸収液中のエタノール濃度/原料
液中のエタノール濃度)に及ぼす原料液と吸収液の温度
差の影響は大きく、温度差が25.5度のとき原料液中
のエタノール濃度は10.5vo1%、吸収液の濃度は
17.3vo1%であって、約1.6倍濃縮された。し
かし、温度差が13度の場合、]]、5vo1%から1
5.4vo1%まで約1.3倍濃縮されたにすぎなかっ
た。温度差が25.5及び13度の場合の吸収液中のエ
タノール濃度が最高値に達したときの吸収lま た。この実験結果は原料液の温度に対し吸収液の温度が
低いほどエタノールの濃縮及び回収液量の増加に有利で
あることを示している。
The temperature difference between the raw material liquid and the absorption liquid has a large effect on the ethanol concentration rate (ethanol concentration in the absorption liquid/ethanol concentration in the raw material liquid), and when the temperature difference is 25.5 degrees, the ethanol concentration in the raw material liquid is The concentration of the absorption liquid was 17.3 vol. 1%, which was about 1.6 times concentrated. However, if the temperature difference is 13 degrees, ]], 5vo1% to 1
It was only concentrated about 1.3 times to 5.4 vol. The absorption l when the ethanol concentration in the absorption liquid reaches the maximum value when the temperature difference is 25.5 and 13 degrees. This experimental result shows that the lower the temperature of the absorption liquid is compared to the temperature of the raw material liquid, the more advantageous it is to concentrating ethanol and increasing the amount of recovered liquid.

実験例 2 原料中のエタノール濃度と吸収液中のその濃度の関係を
検討した。実験は第2図において、バルブ15を開き、
ポンプ11により吸収液の増加分を攪拌槽に還流し、原
料液及び吸収液量を一定に保ち、吸収液中のエタノール
濃度が原料液に対し平衡となるまで約20時間一定温度
のもとに循環を続けた後サンプリングすると共に還流量
を測定した。外径4mm、内径3mm、長さ 1mのP
TFE製多孔質チューブを用い吸収液の流速は30m1
/minとした。原料液の濃度は8〜43 vo1%、
吸収液の温度は5°Cとした。
Experimental Example 2 The relationship between the ethanol concentration in the raw material and the concentration in the absorption liquid was investigated. In the experiment, the valve 15 is opened in FIG.
The increased amount of the absorption liquid is returned to the stirring tank by the pump 11, the amounts of the raw material liquid and the absorption liquid are kept constant, and the mixture is kept at a constant temperature for about 20 hours until the ethanol concentration in the absorption liquid reaches equilibrium with the raw material liquid. After continued circulation, sampling was performed and the reflux amount was measured. P with outer diameter 4mm, inner diameter 3mm, length 1m
The flow rate of the absorption liquid is 30ml using a TFE porous tube.
/min. The concentration of the raw material liquid is 8 to 43 vol%,
The temperature of the absorption liquid was 5°C.

実験結果を第4図に示した。第4図の横軸は原料中のエ
タノール濃度、縦軸は吸収液中のエタノール濃度及び吸
収液還流量である。本発明の方法による濃縮率は、沸点
における蒸留よりかなり低還流量へのエタノール濃度の
影響は小さかった。
The experimental results are shown in Figure 4. The horizontal axis of FIG. 4 is the ethanol concentration in the raw material, and the vertical axis is the ethanol concentration in the absorption liquid and the amount of absorption liquid reflux. The concentration ratio by the method of the present invention was much lower than distillation at the boiling point, and the effect of ethanol concentration on the reflux rate was small.

吸収液のエタノール濃度が50 vo1%以上になると
PTFEの膜面が液体で濡れ、膜を原料が液状で通過す
るようになり蒸留できなくなった。
When the ethanol concentration of the absorption liquid exceeded 50 vol%, the PTFE membrane surface became wet with the liquid, and the raw material passed through the membrane in liquid form, making it impossible to distill it.

第4図の点線は、原料液の温度を30℃、吸収液の温度
5℃として、15 volの原料を本発明の方法により
3回濃縮すると、1回目で24 vo1%、2回目で3
5.5 vo1%、3回目で47.5 vo1%まで濃
縮できるこを示したものである。
The dotted line in Figure 4 shows that when 15 vol of the raw material is concentrated three times by the method of the present invention, with the temperature of the raw material liquid being 30°C and the temperature of the absorption liquid being 5°C, the concentration is 24 vol 1% in the first time and 3 vol in the second time.
This shows that it is possible to concentrate from 5.5 vol 1% to 47.5 vol 1% in the third time.

実験例 3 直径の異なる3本の多孔質PTFEチューブを用い直径
の大きさの順に重ねて三重のチューブとし、それぞれ別
個の吸収液を循環し、吸収液の増加分は実験例2と同様
に全量前段に還流した。吸収液の流れの方向はそれぞれ
逆向きとした。この方法によれば攪拌槽中の原料は1度
に3回蒸留されることになる。つまり通常の蒸留と比較
すると蒸留塔の3 段分に 相当す る。用 いたチ 
ューブ113.5 cmであった。
Experimental Example 3 Three porous PTFE tubes with different diameters were stacked in order of diameter to form a triple tube, and separate absorption liquid was circulated in each tube, and the increase in absorption liquid was equal to the total amount as in Experimental Example 2. It was refluxed to the previous stage. The flow direction of the absorbent liquid was set to be opposite to each other. According to this method, the raw material in the stirred tank is distilled three times at once. In other words, compared to normal distillation, this is equivalent to three stages of a distillation column. Use ita chi
The tube was 113.5 cm.

原料液及び各吸収液中のエタノール濃度、吸収液流量、
還流液流量を第1表に示した。最も内側のチューブの入
口の温度か6.7°C1攪拌槽の濃度か30°Cのとき
、それぞれのチューブの出入り口の温度は第2表のよう
になった。各チューブ間の温度差が小さいためそれぞれ
の濃縮率は小さかったか、全体としては9.4vo1%
から 18.3vo1%まで約1.9倍濃縮され、膜1
枚である実験例1よりも濃縮率は大きかった。
Ethanol concentration in raw material liquid and each absorption liquid, absorption liquid flow rate,
The flow rate of the reflux liquid is shown in Table 1. When the temperature at the inlet of the innermost tube was 6.7°C and the concentration in the stirred tank was 30°C, the temperature at the entrance and exit of each tube was as shown in Table 2. The concentration rate for each tube was small because the temperature difference between each tube was small, and the overall concentration was 9.4vo1%.
It is concentrated about 1.9 times from 18.3vo1%, and membrane 1
The concentration rate was higher than that of Experimental Example 1, which was a single sheet.

第1表 吸収液中のエタノール濃度等Table 1 Ethanol concentration in absorption liquid, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明分離法の原理説明図、第2図は液−膜一
液型膜蒸留実験装置概要図、第3図は膜蒸留による原料
液と吸収液中のエタノール濃度の経時変化説明図、第4
図は膜蒸留における原料中のエタノール濃度と吸収液中
のエタノール濃度及び吸収液還流量の関係の説明図。
Figure 1 is a diagram explaining the principle of the separation method of the present invention, Figure 2 is a schematic diagram of a liquid-membrane one-component membrane distillation experimental apparatus, and Figure 3 is an explanation of changes over time in the ethanol concentration in the raw material liquid and absorption liquid by membrane distillation. Figure, 4th
The figure is an explanatory diagram of the relationship between the ethanol concentration in the raw material, the ethanol concentration in the absorption liquid, and the reflux amount of the absorption liquid in membrane distillation.

Claims (2)

【特許請求の範囲】[Claims] (1)疎水性材質の連続微気孔性多孔質体で形成した膜
の一方の面に原料としての揮 発性物質溶存水性液を、他方の面に原料 液より温度の低い回収用水性液を接触さ せ、原料液中の揮発性物質が疎水性多孔 質体表面に保持されている気体との界面 で蒸発し、膜表面及び細孔内に保持され ている気体層をその物質の蒸気圧差を推 進力としてガス拡散により移動して、膜 の他方の気液界面で回収用の水性液に吸 収され、その揮発性物質に関し回収側の 液体を原料液よりも高濃度の水溶液とす ることを特徴とする蒸留方法。
(1) One side of the membrane formed of a continuous microporous hydrophobic material is contacted with an aqueous liquid containing a volatile substance as a raw material, and the other side is contacted with an aqueous recovery liquid whose temperature is lower than that of the raw material liquid. The volatile substances in the raw material liquid evaporate at the interface with the gas held on the surface of the hydrophobic porous material, and the gas layer held on the membrane surface and in the pores is driven by the vapor pressure difference of the substance. It moves by gas diffusion as a force and is absorbed by the aqueous liquid for recovery at the other gas-liquid interface of the membrane, making the liquid on the recovery side an aqueous solution with a higher concentration than the raw material liquid in terms of volatile substances. Distillation method.
(2)疎水性材質の連続微気孔性多孔質体で形成した膜
の一方の面に原料としての揮 発性物質溶存水性液を、他方の面に原料 液より温度の低い回収用水性液を接触さ せ、原料液中の揮発性物質が、疎水性多 孔質体表面に保持されている気体との界 面で蒸発し、膜表面及び細孔内に保持さ れている気体層をその物質の蒸気圧差を 推進力としてガス拡散により移動して、 膜の他方の気液界面で回収用の水性液に 吸収されることを利用する揮発性物質溶 存水性液からその溶存揮発性物質を除去 する方法。
(2) One side of the membrane formed of a continuous microporous hydrophobic material is contacted with an aqueous liquid containing a volatile substance as a raw material, and the other side is contacted with an aqueous recovery liquid whose temperature is lower than that of the raw material liquid. The volatile substances in the raw material liquid evaporate at the interface with the gas held on the surface of the hydrophobic porous material, and the gas layer held on the membrane surface and in the pores is heated by the vapor pressure difference of the substance. A method for removing dissolved volatile substances from an aqueous liquid in which the volatile substances are moved by gas diffusion as a driving force and absorbed by the aqueous liquid for recovery at the other gas-liquid interface of the membrane.
JP1226395A 1989-09-02 1989-09-02 Separation of dissolving volatile substance from volatile substance dissolving solution by distillation Pending JPH0389922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1226395A JPH0389922A (en) 1989-09-02 1989-09-02 Separation of dissolving volatile substance from volatile substance dissolving solution by distillation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1226395A JPH0389922A (en) 1989-09-02 1989-09-02 Separation of dissolving volatile substance from volatile substance dissolving solution by distillation

Publications (1)

Publication Number Publication Date
JPH0389922A true JPH0389922A (en) 1991-04-15

Family

ID=16844451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1226395A Pending JPH0389922A (en) 1989-09-02 1989-09-02 Separation of dissolving volatile substance from volatile substance dissolving solution by distillation

Country Status (1)

Country Link
JP (1) JPH0389922A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022036A1 (en) * 1992-04-30 1993-11-11 Tygola Pty.Ltd. Membrane extraction process
US5382364A (en) * 1991-10-25 1995-01-17 W. L. Gore & Associates, Inc. Process for removing alcohol from liquids
US5817359A (en) * 1992-04-30 1998-10-06 Palassa Pty. Ltd. Methods for dealcoholization employing perstration
US5824223A (en) * 1995-11-08 1998-10-20 Rentiers Machinery Proprietary Ltd. Methods and apparatus for osmotic distillation
US5938928A (en) * 1991-08-01 1999-08-17 Nonap Pty. Ltd. Osmotic distillation process using a membrane laminate
US6112908A (en) * 1998-02-11 2000-09-05 Rentiers Machinery Pty, Ltd. Membrane laminates and methods for their preparation
US6716146B2 (en) 2000-08-23 2004-04-06 Sankyo Manufacturing Co., Ltd. Tool Magazine
US7837877B2 (en) 2006-06-09 2010-11-23 Air Products And Chemicals, Inc. Process for separating components of a multi-component feed stream

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014905A (en) * 1983-07-08 1985-01-25 Agency Of Ind Science & Technol Concentrating method of aqueous solution containing dissolved volatile substance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014905A (en) * 1983-07-08 1985-01-25 Agency Of Ind Science & Technol Concentrating method of aqueous solution containing dissolved volatile substance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938928A (en) * 1991-08-01 1999-08-17 Nonap Pty. Ltd. Osmotic distillation process using a membrane laminate
US5382364A (en) * 1991-10-25 1995-01-17 W. L. Gore & Associates, Inc. Process for removing alcohol from liquids
WO1993022036A1 (en) * 1992-04-30 1993-11-11 Tygola Pty.Ltd. Membrane extraction process
US5817359A (en) * 1992-04-30 1998-10-06 Palassa Pty. Ltd. Methods for dealcoholization employing perstration
US5824223A (en) * 1995-11-08 1998-10-20 Rentiers Machinery Proprietary Ltd. Methods and apparatus for osmotic distillation
US6112908A (en) * 1998-02-11 2000-09-05 Rentiers Machinery Pty, Ltd. Membrane laminates and methods for their preparation
US6716146B2 (en) 2000-08-23 2004-04-06 Sankyo Manufacturing Co., Ltd. Tool Magazine
US7837877B2 (en) 2006-06-09 2010-11-23 Air Products And Chemicals, Inc. Process for separating components of a multi-component feed stream

Similar Documents

Publication Publication Date Title
Mangindaan et al. Beverage dealcoholization processes: Past, present, and future
US7955506B2 (en) Process for dewatering an aqueous organic solution
Abu-Zeid et al. A comprehensive review of vacuum membrane distillation technique
Tomaszewska Membrane distillation-examples of applications in technology and environmental protection
US6755975B2 (en) Separation process using pervaporation and dephlegmation
JP2010517559A (en) Process for enriching the aroma of dealcoholic beverages
Onsekizoglu Bagci Potential of membrane distillation for production of high quality fruit juice concentrate
JP2012500114A (en) Separation method of liquid mixture
Kumar et al. Fermentative energy conversion: renewable carbon source to biofuels (ethanol) using Saccharomyces cerevisiae and downstream purification through solar driven membrane distillation and nanofiltration
Al-Anezi et al. Potential of membrane distillation–a comprehensive review
Sun et al. Production of alcohol-free wine and grape spirit by pervaporation membrane technology
Pei et al. Emerging forward osmosis and membrane distillation for liquid food concentration: A review
US5382364A (en) Process for removing alcohol from liquids
Sagne et al. A pilot scale study of reverse osmosis for the purification of condensate arising from distillery stillage concentration plant
JPH0389922A (en) Separation of dissolving volatile substance from volatile substance dissolving solution by distillation
US4875980A (en) Method for separating and concentrating an organic component from an aqueous solution containing same
JPH051710B2 (en)
JPH0824561B2 (en) Method for producing low alcohol beer
Basile et al. Pervaporation and membrane contactors
Van Gassel et al. An energy-efficient membrane distillation process
JPS62237906A (en) Method for separating and concentrating organic material having low boiling point from aqueous solution
JPS61199788A (en) Separation and concentration of fermentation product, and method for continuous fermentation
TWM579642U (en) Smart seawater desalination circulation system
US20240058758A1 (en) Multi-stage direct contact membrane distillation system and process
CN103421660B (en) A kind of base wine and membrane distillation method thereof of the double aromatic white spirit through film distillation upgrading