JPH0382704A - Method for smelting stainless steel unnecessary of electric power for smelting without using electric furnace for producing raw material ferro-chromium - Google Patents

Method for smelting stainless steel unnecessary of electric power for smelting without using electric furnace for producing raw material ferro-chromium

Info

Publication number
JPH0382704A
JPH0382704A JP1217243A JP21724389A JPH0382704A JP H0382704 A JPH0382704 A JP H0382704A JP 1217243 A JP1217243 A JP 1217243A JP 21724389 A JP21724389 A JP 21724389A JP H0382704 A JPH0382704 A JP H0382704A
Authority
JP
Japan
Prior art keywords
smelting
chromium
melting
stainless steel
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1217243A
Other languages
Japanese (ja)
Inventor
Isao Tanabe
田辺 伊佐雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1217243A priority Critical patent/JPH0382704A/en
Publication of JPH0382704A publication Critical patent/JPH0382704A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To produce a stainless steel at a low cost without using electric power by melting and perfectly reducing in a converter-type furnace after pre-reducing pellet of Cr ore and powdered coke in a rotary kiln to make high carbon ferro-chromium and executing vacuum decarbonizing refining, after adding iron scrap to this and melting. CONSTITUTION:After crashing the Cr ore, the coke powder, and pulp waste liquid and bentonite as binder is added and kneaded to make the pellet. The powdered coke as outer coating carbonaceous material, and silica and lime stone are added to the pellet and charged into the rotary kiln and heated at 1250-1400 deg.C, and after executing the pre-reduction of >=60% of Cr2O3 and FeO in the Cr ore, this is charged into the converter as tiltable. Successively, O2 gas and fuel of coal, coke, etc., are blown and the pre-reduced pellet is melted with heat generation by burning be fuel, and also by reducing the remaining Cr2O3 and FeO, the high carbon ferro-chromium is produced. The iron scrap is added to this high carbon ferro-chromium and after melting in the converter, the vacuum decarbonizing treatment is executed to produce the stainless steel at a low cost without using the electric power.

Description

【発明の詳細な説明】 ステンレス鋼たとえば17C+ステンレス鋼の製錬は、
一般に製錬用エル−型電気炉を用いて行われて来たが、
其後L・D転炉による吹錬による方法が主流となりつつ
ある。しかしながらステンレスの主たる合金成分である
クロムとしては、依然として高炭素フェロクロムを使用
する方法に止っている。最も新しい方法とされているP
lasmach+ome法においてもCl52〜58%
チャージクロムを当りの消費電力はエネルギ回収により
、回収されるとはされているが、プラズマ用電力380
0〜4500KWHを要し決して進歩した方法とは云え
ない。
[Detailed Description of the Invention] Smelting of stainless steel, for example 17C+ stainless steel, is as follows:
Generally, it has been carried out using an L-type electric furnace for smelting.
After that, the method of blowing using an L/D converter became mainstream. However, as chromium, which is the main alloying component of stainless steel, high carbon ferrochrome is still the only method used. P, which is considered the newest method
Even in the lasmach+ome method, Cl52-58%
It is said that the power consumption per charge chrome is recovered through energy recovery, but the plasma power consumption is 380 yen.
It requires 0 to 4,500 KWH and cannot be called an advanced method.

本発明の方法はステンレス鋼製造について、実質的に高
炭素フェロクロム冷塊を使用することを取りやめ、高炭
素フェロクロム製造についても電気炉を全く使用しない
製錬用電力消費を皆無とした革新的製錬法である。
The method of the present invention substantially eliminates the use of high-carbon ferrochrome cold blocks for the production of stainless steel, and is an innovative smelting method that eliminates the use of electric furnaces at all for the production of high-carbon ferrochrome, eliminating electricity consumption for smelting. It is the law.

高炭素フェロクロムの製錬法は従来法から最近最も進ん
だ方法として特許公告4g−34966’ゝ(発明者:
田辺伊佐雄)、並びに特許公告昭和48年−37885
” (発明者:田辺伊佐雄)などの方法によりクロム鉱
石微粉砕品とコースク微粉砕品を混合し、必要バインダ
ーを用いて製造した含炭ペレットを用い、さらに必要に
応じて外装コークスの必要量も用いて、反応温度を12
50〜1400℃として下記の結果を得ている。即ちク
ロムの還元率を約70%、Feの還元率を約95%とし
て、この還元ペレットを他の混合物とともに密閉型エル
−炉にホットチャージし、高炭素フェロクロム屯当りの
電力消費も約1800〜1700KW)I/lと通常法
による製錬電力400[IKWtl/+の1/2以下と
している。
The smelting method for high-carbon ferrochrome is the most advanced method recently compared to the conventional method, as disclosed in Patent Publication No. 4G-34966' (Inventor:
Isao Tanabe) and patent publication 1972-37885
” (inventor: Isao Tanabe), etc., by mixing finely crushed chromium ore and finely crushed coke, and using the necessary binder, carbon-containing pellets are used, and if necessary, the required amount of exterior coke is also added. The reaction temperature was set to 12
The following results were obtained at 50 to 1400°C. That is, by setting the reduction rate of chromium to about 70% and the reduction rate of Fe to about 95%, and hot-charging the reduced pellets together with other mixtures in a closed type L-furnace, the power consumption per tonne of high carbon ferrochrome is about 1800 ~ 1700KW) I/l and the smelting power by the normal method is 400[IKWtl/+] or less.

しかしながら、本発明による新方法は、高炭素フェロク
ロムを得るための電気炉を省略し、還元ペレットを主体
とする。ロータリーキルンデスチャージ物を一旦保温炉
に保持し、ついで溶融還元炉にチャージし、酸素ガスに
よる石炭粉の吹込によるか、酸素ガスとメタン、プロパ
ン、ブタン等燃料ガスに必要に応じて石炭もしくはコー
クス粉を吹込み、必要に応じてCaF2、及びCaOな
どのフラックスも添加して、還元ペレット段階で未還元
であった酸化クロム並びに酸化鉄を可及的に還元すると
共に、メタルとスラグ共に完全に溶融させる。
However, the new method according to the present invention omits the electric furnace for obtaining high carbon ferrochrome and mainly uses reduced pellets. The rotary kiln descharge is temporarily held in a heat insulating furnace, then charged into a smelting reduction furnace, and either by blowing coal powder with oxygen gas or by adding coal or coke powder to oxygen gas and fuel gas such as methane, propane, butane, etc. as necessary. Fluxes such as CaF2 and CaO are added as necessary to reduce as much as possible the chromium oxide and iron oxide that were unreduced at the reduced pellet stage, and to completely melt both metal and slag. let

これにより溶融還元炉の傾注操作により、メタルとスラ
ップはは\゛完全分離出来得られたスラグフリー溶融フ
ェロクロムメタルは次工程で溶融銑鉄と混合するか、ス
チールスクラップと溶融吹錬を行うことにより、容易に
製錬電力を必要とせず、ステンレ鋼の吹錬が可能である
As a result, the metal and slag can be completely separated by the tilting operation of the smelting reduction furnace, and the resulting slag-free molten ferrochrome metal can be mixed with molten pig iron in the next process or melted and blown with steel scrap. Stainless steel can be easily blown without requiring smelting power.

以上本性の実施により、製錬電力皆無でステンレスの製
錬が可能となり、大幅なコスト低減が可能となる。また
スラグの除去が完全であるためCr−a「eを直接もし
くは還元ペレットをLID転炉に直接添加する場合に比
し、スラグによる障害がなく、吹錬操作も安定し、しか
もCrのスラグロスも低く、酸素吹錬による酸化クロム
の金属層この回収も非常にスムースになることは論を待
たない。
By implementing the above-mentioned principle, it becomes possible to smelt stainless steel without using any smelting power, and it becomes possible to significantly reduce costs. In addition, since slag removal is complete, there is no slag-related trouble and the blowing operation is stable compared to when Cr-a'e is added directly or reduced pellets are directly added to the LID converter, and the slag loss of Cr is also reduced. It goes without saying that the recovery of this metal layer of chromium oxide by oxygen blowing is also very smooth.

つぎに本発明による方法の実施例により説明する。Next, examples of the method according to the present invention will be explained.

実施例 本性の実施について使用した原料の組成を示すと第1表
の通りである。
Table 1 shows the composition of the raw materials used in carrying out the present invention.

(以下余白) ※F、C:Fixed Carbon   V、M:V
olatile matte「つぎに粉砕後のペレット
用クロム鉱石と、粉コークスの粉度を示せば、第2表の
とうりペレット用標準的粒度である。
(Left below) *F, C: Fixed Carbon V, M: V
olatile matte ``Next, the fineness of the chromium ore for pellets after crushing and the fineness of coke breeze is shown in Table 2, which is the standard particle size for pellets.

さて実施にあたっての配合は、クロム鉱石1000部に
粉コークス234部(理論還元量の約135%)、パル
プ廃液30部、ベントナイト30部をよく混合し、水分
をよく調整して、回転式ペレタイザーで、平均約151
nlのペレットとし、水分6.5%迄乾燥し、ついでこ
れに外装炭材として10mm以下の粉コークス30部と
、5〜2Qmmサイズの珪石105部、石炭石(Ca0
55.6%)75部をライニング内径2.50m長さ6
0mのロータリーキルンに装入腰反応帯の最高温度ヲ1
400℃とし、ロータリーキルンによる還元を行うと共
に、バーナーサイドより、粉コークス15部を投射しな
がら、還元ペレ・ソトとその附帯物を保温保持器に一旦
操入した。3ケ月間の連続運転による還元ペレットを主
とするデスチャージ物の平均組成は、第3表の通りであ
った。
Now, the formulation for the implementation was to thoroughly mix 1000 parts of chromium ore, 234 parts of coke powder (approximately 135% of the theoretical reduction amount), 30 parts of pulp waste liquid, and 30 parts of bentonite, adjust the moisture well, and use a rotary pelletizer. , average about 151
nl pellets, dried to a moisture content of 6.5%, and then added 30 parts of coke powder of 10 mm or less as exterior carbon material, 105 parts of silica stone of 5 to 2 Q mm size, and coal stone (Ca0
55.6%) Lining 75 parts Inner diameter 2.50m Length 6
The maximum temperature of the reaction zone charged into a rotary kiln at 0 m is 1.
The temperature was set at 400° C., and reduction was carried out using a rotary kiln, and while 15 parts of coke powder was being projected from the burner side, the reduced Pelle Soto and its accessories were once introduced into a heat-insulating holder. The average composition of the discharge material mainly consisting of reduced pellets after three months of continuous operation was as shown in Table 3.

第3表 ロータリーキルン、デスケージ物平均組成(v1%)ま
た反応温度を1400℃を目標とした平均時間のデスチ
ャージ物の重量は、平均19.3  でありその容積は
約7.5m’で、保温保持器の容積は内容積10m3の
ものを用いた。保温保持容器のチャージ開始からチャー
ジの打切り、溶融還元工程のチャージ迄の平均約1.5
時間であったが平均温度は1360℃前後であった。
Table 3 Rotary kiln, average composition of descharged material (v1%) Also, the weight of the descharged material during the average time aiming at a reaction temperature of 1400°C was 19.3 on average, and its volume was approximately 7.5 m', keeping it warm. The cage used had an internal volume of 10 m3. An average of approximately 1.5 from the start of charging the heat-retaining container to the discontinuation of charging and the charging of the melting reduction process
Despite the time, the average temperature was around 1360°C.

溶融還元炉については図2AのPored Proce
ss型(3)について主として検討し、P、Cタイプに
ついて以上溶融還元工程としては、酸素−石炭粉末−天
然ガス併用方式で溶融還元工程の原単位は20チヤージ
の平均結果として、表4の通りであった。
For the smelting reduction furnace, refer to the Pored Process in Figure 2A.
We mainly investigated the SS type (3), and for the P and C types, the smelting reduction process was performed using a combination of oxygen, coal powder, and natural gas, and the basic unit of the smelting reduction process was the average result of 20 charges, as shown in Table 4. Met.

また得られた高炭素フェロクロムの平均組成は、表5の
通りであり、之をベースとしたCr収率は94.2%と
良好なものであり、溶融還元エネルギーもコスト安なも
ので、電気炉によるよりも可成りコスト安と結論ずけら
れた。
The average composition of the obtained high carbon ferrochrome is as shown in Table 5, and the Cr yield based on this is 94.2%, which is a good value. It was concluded that the cost was considerably lower than that using a furnace.

高炭素フェロクロム溶融物と溶融銑または、スチール、
スクラップからの17%ステンレス製錬の容易なことは
よく知られており、実施例も多種多様なので特に必要と
は考えられないので省略する。
High carbon ferrochrome melt and hot pig iron or steel,
It is well known that it is easy to smelt 17% stainless steel from scrap, and there are many different examples, so it is not considered necessary and will therefore be omitted.

引用文献 1)特許公報 昭和48年34966出願昭和44年1
月17日 発明者 田辺伊佐雄 2)特許公報 昭和48年371185出願昭和44年
12月4日 発明者 田辺伊佐雄 3)浜田尚夫;鉄と鋼?2 (1986) 1991〜
2000“溶融還元技術開発の現状と将来” 4)甲斐幹、星記男、上館良興、山王哲也;鉄と鋼70
 (19841680〜686  “ステンレス鋼にお
ける転炉複合吹錬法の冶金特性”
Cited document 1) Patent publication No. 34966 filed in 1972, No. 1 in 1962
May 17th Inventor: Isao Tanabe 2) Patent Publication: 1971 371185 Filed: December 4, 1962 Inventor: Isao Tanabe 3) Nao Hamada; Iron and steel? 2 (1986) 1991~
2000 “Current status and future of smelting reduction technology development” 4) Miki Kai, Kio Hoshi, Yoshioki Kamidate, Tetsuya Sanno; Tetsu to Hagane 70
(19841680-686 “Metallurgical properties of converter combined blowing process in stainless steel”)

【図面の簡単な説明】[Brief explanation of drawings]

図1はクロム鉱石の含炭ペレットの還元炉ロータリーキ
ルンであり、含炭クロム鉱ペレットを加熱反応せしめて
還元ペレットとし、これを保温保持容器に保持し、フロ
で還元ペレットを溶融還元炉にチャージする。図2A、
B、Cは還元ペレットの溶融還元装置図であり、未還元
酸化クロムの最終還元を行うと共に全生成メタルと、ス
ラグを溶融分離する装置であり、スラグは傾注によって
分離し、溶融メタルを溶融液として利用することができ
る。
Figure 1 shows a rotary kiln, which is a reduction furnace for carbon-containing pellets of chromium ore.Charcoal-containing chromium ore pellets are heated and reacted to form reduced pellets, which are held in a heat-insulating holding container, and the reduced pellets are charged into the melting and reduction furnace using fluorocarbons. . Figure 2A,
B and C are diagrams of the reduced pellet melting and reduction equipment, which performs the final reduction of unreduced chromium oxide and melts and separates all produced metal and slag.The slag is separated by tilting, and the molten metal is transferred to the molten liquid. It can be used as

Claims (1)

【特許請求の範囲】 1、クロム鉱石を粉砕し、必要量のバインダーを添加含
炭ペレットとし、之に必要量の外装炭を添加し、必要量
の珪石,石炭若干添加して、ロータリーキルンにより、
反応温度を 1250〜1400℃範囲として、酸化クロムの還元率
を60%以上(実質的には70〜95%)とし、生成し
た還元ペレットを主体とする反応物は保温容器に保持す
る第1工程を実施する。 2、ついで保温保持した第1工程ロータリーキルン処理
物を第2工程として、溶融還元炉にチャージし、酸素ガ
スに石炭もしくはコークス粉末を溶融還元炉に送り込み
、場合によっては炭化水素ガスを同時に送入して酸素ガ
スと反応させ、その発熱と還元ペレットが保有している
固定炭素並びに酸素ガスと共に装入した炭材からの固定
炭素による残留酸化クロムの還元と反応物の溶融の進行
により、メタルとスラグを完全溶融分離し、必要に応じ
て造滓剤を添加してこれを助け、溶融還元炉の傾注操作
により、スラグはほゞ完全に除去することができ、高炭
素フェロクロムは、スラグフリーの溶融メタルとして得
てL・D転炉もしくは、複合吹着L・D転炉にて、溶融
もしくはスチールスクラップと混合吹錬して、ステンレ
ス鋼とすることを特徴とするステンレスの製錬法。
[Claims] 1. Grind chromium ore, add the required amount of binder, make it into carbon-containing pellets, add the required amount of exterior charcoal, add the required amount of silica stone and some coal, and use a rotary kiln.
A first step in which the reaction temperature is set in the range of 1250 to 1400°C, the reduction rate of chromium oxide is set to 60% or more (substantially 70 to 95%), and the reactant mainly consisting of the generated reduced pellets is kept in a heat insulating container. Implement. 2.Then, in the second step, the heat-retained product processed by the rotary kiln in the first step is charged into a melting reduction furnace, and coal or coke powder is fed into the melting reduction furnace with oxygen gas, and in some cases, hydrocarbon gas is also fed at the same time. metal and slag due to the heat generation and reduction of residual chromium oxide by the fixed carbon contained in the pellets and the fixed carbon from the carbon material charged together with the oxygen gas and the progress of melting of the reactants. By completely melting and separating the slag, adding slag-forming agents as needed to assist in this, and tilting the smelting reduction furnace, slag can be almost completely removed, and high carbon ferrochrome can be melted without slag. A method for smelting stainless steel, which is obtained as a metal and melted or mixed with steel scrap and blown into stainless steel in an L/D converter or a composite blowing L/D converter.
JP1217243A 1989-08-25 1989-08-25 Method for smelting stainless steel unnecessary of electric power for smelting without using electric furnace for producing raw material ferro-chromium Pending JPH0382704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1217243A JPH0382704A (en) 1989-08-25 1989-08-25 Method for smelting stainless steel unnecessary of electric power for smelting without using electric furnace for producing raw material ferro-chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1217243A JPH0382704A (en) 1989-08-25 1989-08-25 Method for smelting stainless steel unnecessary of electric power for smelting without using electric furnace for producing raw material ferro-chromium

Publications (1)

Publication Number Publication Date
JPH0382704A true JPH0382704A (en) 1991-04-08

Family

ID=16701098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1217243A Pending JPH0382704A (en) 1989-08-25 1989-08-25 Method for smelting stainless steel unnecessary of electric power for smelting without using electric furnace for producing raw material ferro-chromium

Country Status (1)

Country Link
JP (1) JPH0382704A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609815A (en) * 1983-06-29 1985-01-18 Nippon Steel Corp High chromium alloy manufacturing method by smelting reduction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609815A (en) * 1983-06-29 1985-01-18 Nippon Steel Corp High chromium alloy manufacturing method by smelting reduction

Similar Documents

Publication Publication Date Title
US5882375A (en) Process for the production of hydraulic binders and/or alloys, such as for examples, ferrochromium or ferrovanadium
JPH08337827A (en) Method for reducing metal oxide in rotary hearth furnace heated with oxidizing flame
JP2002509194A (en) Sustainable steelmaking process by effective direct reduction of iron oxide and solid waste
AU778627B2 (en) Method for treating slags or slag mixtures on an iron bath
US3746533A (en) Process of producing ferro-nickel in a rotary furnace including pelletizing and pre-reducing ore
US3947267A (en) Process for making stainless steel
JPH06172916A (en) Manufacturing of stainless steel
FI75368B (en) FRAME STEERING FOR FERROCHROME.
SU1225495A3 (en) Method of producing ferromanganese
JPS62290841A (en) Manufacture of chromium-containing iron
US3832158A (en) Process for producing metal from metal oxide pellets in a cupola type vessel
JPH0382704A (en) Method for smelting stainless steel unnecessary of electric power for smelting without using electric furnace for producing raw material ferro-chromium
JP2000045012A (en) How to use dust in converter steelmaking.
JPS6036613A (en) Production of raw molten nickel-containing stainless steel
JPS61194125A (en) Simultaneous treatment of sludge and steel making slag
US4412862A (en) Method for the production of ferrochromium
JPS609815A (en) High chromium alloy manufacturing method by smelting reduction
FI69647B (en) FOERFARANDE FOER FRAMSTAELLNING OCH BEHANDLING AV FERROKROM
JPS59113131A (en) Treatment of slag formed in smelting of ferrochromium
JPH0159327B2 (en)
JPH01316406A (en) Production of chromium-containing molten iron
JPS62167809A (en) Production of molten chromium iron
JPH06940B2 (en) Method for smelting reduction refining of high manganese iron alloy
US3640701A (en) Direct reduction of oxides
JPS594502B2 (en) Manufacturing method of low phosphorus ferrochrome