JPH0382301A - Drive controller of electric car - Google Patents

Drive controller of electric car

Info

Publication number
JPH0382301A
JPH0382301A JP1214856A JP21485689A JPH0382301A JP H0382301 A JPH0382301 A JP H0382301A JP 1214856 A JP1214856 A JP 1214856A JP 21485689 A JP21485689 A JP 21485689A JP H0382301 A JPH0382301 A JP H0382301A
Authority
JP
Japan
Prior art keywords
speed
vehicle
vehicle speed
car
trailing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1214856A
Other languages
Japanese (ja)
Inventor
Haruo Naito
内藤 治夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1214856A priority Critical patent/JPH0382301A/en
Publication of JPH0382301A publication Critical patent/JPH0382301A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PURPOSE:To improve the reliability of an apparatus by having a car speed detector and a car speed estimator and by using a car speed for drive control at the time of normal running and an estimated speed in place of the car speed, when abnormality occurs in a car speed signal. CONSTITUTION:The signal of a trailing-wheel speed detector 12 and that of a car speed estimator 14 are inputted to a switching logic circuit 15, a trailing- wheel speed is usually selected and outputted to a current command rate-of- change compensator 13, and the output to the current command rate-of-change compensator 13 is switched to an estimated car speed, when abnormality occurs in a trailing-wheel speed signal. In a switching logic, the trailing-wheel speed is the speed of a car body having a large mass and suffers no sudden change of time, and the deviation of a detection speed is monitored always and abnor mality is judged, when the deviation exceeds a specified value.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は電動機で駆動される電気車の駆動制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a drive control device for an electric vehicle driven by an electric motor.

(従来の技術) 電気車は、車輪に電動機で回転力(トルク)を与えて、
この車輪とレールとの間の粘着力(摩擦力)により回転
力を推進力として用いて車両を推進する。1個の車輪の
粘着力FADは、粘着係数をμ、その車輪にかかる重量
(軸重)をWとすると FAD=μW            (1)になる。
(Conventional technology) Electric cars use electric motors to apply rotational force (torque) to the wheels.
The adhesive force (frictional force) between the wheels and the rails uses rotational force as propulsion force to propel the vehicle. The adhesive force FAD of one wheel is FAD=μW (1) where μ is the adhesive coefficient and W is the weight (axle load) on the wheel.

回転力FTHが粘着力を上回ると、余剰の回転力ΔFT
H(=FTHFAo)により車輪が車体速度以上に加速
されレール上を空回りして、推進力の伝達が著しく低下
する。この現象は駆動時に発生し、「空転」とよぶ、制
動時には、制動力FBRが粘着力を上回ると、余剰の制
動力ΔFBR(=FBR−FAD)により車輪が車体速
度以下に減速され、車輪がレール上をすべり、やはり制
動力の伝達が著しく低下する。これを「滑走」とよぶ6
以下本発明では空転に関して説明を行うが、滑走につい
ても全く同様のことが成り立つので説明を省略する。
When the rotational force FTH exceeds the adhesive force, the excess rotational force ΔFT
Due to H (=FTHFAo), the wheels are accelerated beyond the vehicle body speed and idle on the rails, resulting in a significant decrease in the transmission of propulsive force. This phenomenon occurs during driving and is called "slip." During braking, if the braking force FBR exceeds the adhesion force, the excess braking force ΔFBR (= FBR - FAD) will decelerate the wheels below the vehicle body speed, causing the wheels to It will slide on the rail, and the transmission of braking force will be significantly reduced. This is called "gliding"6
Hereinafter, in the present invention, explanation will be given regarding slipping, but the same applies to sliding, so the explanation will be omitted.

なお、上記の、電動機に連結された車輪を動輪とよび、
連結されていないものを従軸とよぶ。
Note that the wheels connected to the electric motor mentioned above are called driving wheels.
The one that is not connected is called the slave shaft.

空転は上記のとおり回転力が粘着力を上回ると発生する
のであるが、粘着力が回転力を下回る場合も同様である
As mentioned above, slipping occurs when the rotational force exceeds the adhesive force, but the same thing occurs when the adhesive force is lower than the rotational force.

空転が発生するとまず第一に駆動力の円滑な伝達が行わ
れなくなるが、この他動輪踏の剥離、軸受けの焼損、レ
ールの疲労・摩滅などの副次的問題も生じる。そこでな
るべく空転しないように駆動制御する必要がある。その
ための最も簡単な対策の一つは、各動輪があまり大きな
トルクを発生せぬよう動輪に連結された電動機を駆動制
御する方法である。しかしこの方法では車両を索引する
のに十分なトルクを得るのに多数の電動機ないしは動輪
を必要とし、コストの上昇をまねく、シたがって空転を
起こさぬ範囲でなるべく大きなトルクを発生して駆動制
御することが望ましい。
When slipping occurs, the first thing that happens is that the driving force is not transmitted smoothly, but secondary problems also occur, such as separation of the treads of the passive wheels, burnout of the bearings, and fatigue and wear of the rails. Therefore, it is necessary to control the drive so that it does not spin as much as possible. One of the simplest measures for this purpose is to drive and control the electric motors connected to the driving wheels so that each driving wheel does not generate too large a torque. However, this method requires a large number of electric motors or driving wheels to obtain sufficient torque to index the vehicle, which increases costs.Therefore, drive control is performed by generating as much torque as possible without causing the vehicle to spin. It is desirable to do so.

ここで従来の制御例を示し、その問題点を指摘する。第
4図はPWMインバータで誘導電動機を駆動する電気車
における電動機駆動装置の一般的構成を示す制御ブロッ
ク図である。図示のように電流制御ループを構成し、電
流指令を与えて電動機のトルクを制御して電気車の駆動
力を制御する図中、1は電流指令に基づき電流パターン
(実際の電流指令)を発生する電流パターン発生器、2
は電流パターンと検出した実際の電動機電流を用い適当
な制御論理に基づいてすベリ周波数指令を出力する電流
制御器、3は電動機回転周波数にすベリ周波数指令を加
算してインバータ周波数指令を作る加算器、4はすベリ
周波数指令に基づきV/F一定制御をするV/F一定制
御器、5はV/F一定制御器の出力である電圧指令に基
づきPWMパルスを発生するPWMパルス発生器、6は
PWM制御電圧形インバータ、7は誘導電動機、8は電
流検出器で検出した電流は電流制御部2ヘフイードバツ
クされる。9は速度検出器で、検出した速度は本例では
インバータ周波数指令を作る加算器3へ送られる。10
は空転/滑走検出器で、その検出信号は、電流パターン
発生器1へ送られる。
Here, we will show an example of conventional control and point out its problems. FIG. 4 is a control block diagram showing the general configuration of a motor drive device in an electric vehicle that drives an induction motor using a PWM inverter. As shown in the figure, a current control loop is configured and a current command is given to control the torque of the electric motor to control the driving force of the electric vehicle.In the diagram, 1 generates a current pattern (actual current command) based on the current command. current pattern generator, 2
3 is a current controller that outputs a perfect frequency command based on an appropriate control logic using the current pattern and the detected actual motor current, and 3 is an adder that adds the perfect frequency command to the motor rotation frequency to create an inverter frequency command. 4 is a V/F constant controller that performs V/F constant control based on the Suberi frequency command; 5 is a PWM pulse generator that generates PWM pulses based on the voltage command that is the output of the V/F constant controller; The current detected by 6 is a PWM control voltage type inverter, 7 is an induction motor, and 8 is a current detector is fed back to the current control section 2. Reference numeral 9 denotes a speed detector, and the detected speed is sent to an adder 3 which generates an inverter frequency command in this example. 10
is a slipping/skidding detector, and its detection signal is sent to the current pattern generator 1.

この電動機制御系で電気車を駆動制御する場合空転・滑
走を起こさなければ何等問題はない。
When controlling the drive of an electric vehicle using this motor control system, there will be no problem as long as no slipping or skidding occurs.

(発明が解決しようとする課題) ここでは空転・滑走を起こした後、動輪を再粘着させる
制御(再粘着制御)をする場合を例として説明する。
(Problems to be Solved by the Invention) Here, a case will be described as an example in which control is performed to cause the driving wheels to readhere (readhesion control) after slipping or skidding occurs.

空転/滑走検出器lOでは、電動機の加速度を監視し、
この加速度が予め定めておいた値(以下本明細書では空
転検出加速度と称する)を上回ったら空転と判定し、別
に定めておいた値(以下本明細書では再粘着検出加速度
と称する)を下回ったら再粘着と判定することが多い。
The slip/slip detector lO monitors the acceleration of the electric motor,
If this acceleration exceeds a predetermined value (hereinafter referred to as idling detection acceleration), it is determined that idling is occurring, and if it falls below a separately determined value (hereinafter referred to as readhesion detection acceleration). It is often determined to be re-adhesion.

この方法の最大の欠点は、速度の微分信号である加速度
を用いる点にある。周知のとおり、一般に微分信号は雑
音に弱い。このため、まず第一に、空転および再粘着の
誤判定を起こしやすい。誤判定を起こすと、再粘着のた
めの制御が適正に作動せず、空転期間が長くなったり、
更には再粘着さえしなくなるなどの問題が生じる。
The biggest drawback of this method is that it uses acceleration, which is a differential signal of velocity. As is well known, differential signals are generally susceptible to noise. For this reason, first of all, erroneous determinations of slippage and readhesion are likely to occur. If a misjudgment occurs, the re-adhesion control will not operate properly and the idling period will become longer.
Furthermore, there arises a problem that even readhesion does not occur.

誤判定対策として、空転検出加速度および再粘着検出加
速度にある程度の余裕をもたせることがよく行われる。
As a countermeasure against misjudgment, it is often done to provide a certain amount of margin for the slip detection acceleration and readhesion detection acceleration.

例えば、空転判定加速度を正常走行加速度の2倍くらい
に取り、この設定で空転を検出したら実際の電流指令を
一定の傾斜で減少させ、再粘着加速度を正常走行加速度
より若干太きめにし、この設定で再粘着し判定してから
も一定の期間実際の電流指令を再粘着と判定した時点の
値に固定する方法がある。この方法によると、余裕を持
たせた分だけ再粘着制御の起動、つまり電流を絞る動作
の起動が遅れ、また本当に再粘着したとしても上記の一
定期間が経過するまでは再加速に移れず、速度の回復が
遅れるなどの問題がある。
For example, set the slip judgment acceleration to about twice the normal running acceleration, and when slipping is detected with this setting, reduce the actual current command at a constant slope, make the re-adhesion acceleration slightly thicker than the normal running acceleration, and use this setting. There is a method of fixing the actual current command for a certain period of time even after readhesion is determined. According to this method, the start of the readhesion control, that is, the start of the operation to throttle the current, is delayed by the margin provided, and even if the readhesion really occurs, re-acceleration cannot be started until the above-mentioned fixed period has passed. There are problems such as a delay in speed recovery.

また、空転判定において、検出した加速度が空転検出加
速度を単に越えただけでなく一定時間(例えば0.5秒
)以上越えている場合を空転として、誤判定を防ぐ方法
もある。この方法では、真の空転が発生しても、電流の
絞りが遅れるので空転の成長が続き、再粘着しづらくな
るという問題点がある。
In addition, there is also a method of preventing erroneous determinations in determining whether the vehicle is idling by determining that the vehicle is idling when the detected acceleration not only exceeds the idling detection acceleration but also exceeds the idling detection acceleration for a certain period of time (for example, 0.5 seconds). This method has the problem that even if true slipping occurs, the current throttling is delayed, so the slipping continues to grow, making readhesion difficult.

更には、速度を監視しておらず、加速度に頼っているた
め、特に再粘着の判定では正しい判定が必ずしも期待で
きないという問題点がある。そのため上記のように、再
粘着と判定した後も、一定の期間、実際の電流指令を再
粘着と判定した時点の値に固定する方法がとられたりす
るのだが、この一定の期間をどれほどにするのかの選択
基準はなく、またこの期間内に再粘着する保証はどこに
もない。
Furthermore, since speed is not monitored and the method relies on acceleration, there is a problem in that correct determination cannot always be expected, especially when determining readhesion. Therefore, as mentioned above, even after it is determined that re-adhesion has occurred, a method is used in which the actual current command is fixed at the value at the time when re-adhesion was determined for a certain period of time. There are no selection criteria as to whether or not to do so, and there is no guarantee that it will reattach within this period.

また、本従来例はPWMインバータで誘導電動機を駆動
する例であるが、インバータ周波数を決定するときに、
加算器3で電動機回転周波数にすベリ周波数指令を加え
ている。このように電動機回転周波数を用いると、本事
例では1台のインバータが1台の電動機を駆動する構成
となっているので、例えば空転が発生した場合、電動機
回転周波数が急上昇するのでインバータ周波数もそれに
ともなって急上昇し暴走を招くという難点がある。
Furthermore, although this conventional example is an example in which an induction motor is driven by a PWM inverter, when determining the inverter frequency,
An adder 3 adds a frequency command to the motor rotation frequency. Using the motor rotation frequency in this way, in this example, one inverter drives one electric motor, so if, for example, idling occurs, the motor rotation frequency will rise rapidly, and the inverter frequency will also change accordingly. This has the disadvantage that it can rapidly rise and lead to out-of-control situations.

1台のインバータが複数台の電動機を駆動する場合でも
、全軸が空転すれば上記の場合と同様暴走に至る。
Even when one inverter drives a plurality of electric motors, if all the shafts idle, the motors will run out of control as in the above case.

これらの問題を解決する1つの方法は車体速度を制御に
用いることである。正常走行時は車体速度と動輪速度は
一致する。(厳密には両者の一方を他方に換算した後で
一致するのであるが、記述の簡単のため以後省略する。
One way to solve these problems is to use vehicle speed for control. During normal driving, the vehicle speed and driving wheel speed match. (Strictly speaking, they match after converting one of them into the other, but this will be omitted hereafter for the sake of brevity.

)空転ないしは滑走が発生した場合には、動輪速度と車
体速度との間に偏差が生じる。この偏差を監視していれ
ば、空転・滑走を加速度ではなく速度の次元で検出でき
るので、先に指摘した加速度信号を用いる場合の難点が
除去できる。また車体速度をインバータ周波数決定に用
いれば、前記の暴走も生じない。
) When slipping or skidding occurs, a deviation occurs between the driving wheel speed and the vehicle body speed. If this deviation is monitored, slipping or skidding can be detected in terms of speed rather than acceleration, which eliminates the drawbacks of using acceleration signals as pointed out earlier. Further, if the vehicle speed is used to determine the inverter frequency, the above-mentioned runaway will not occur.

車体速度は電動機が連結されていない車輪、すなわち従
輪に速度検出器を取り付けてその回転速度を検出すれば
得られる。この場合、機関車や電車(旅客を乗せる車両
)において、電動機を搭載した車両には通常従軸が存在
しないので他の電動機を搭載していない車両から車体速
度、つまりは従軸速度を伝送することになる。こうする
と伝送路が長くなる上に連結器を経由する必要がある。
The vehicle speed can be obtained by attaching a speed detector to a wheel to which the electric motor is not connected, that is, a follower wheel, and detecting the rotational speed of the wheel. In this case, in locomotives and trains (vehicles that carry passengers), vehicles equipped with an electric motor usually do not have a slave shaft, so the vehicle body speed, that is, the slave shaft speed, is transmitted from other vehicles that are not equipped with an electric motor. It turns out. In this case, the transmission path becomes long and requires passing through a coupler.

したがって伝送路が断線するなどの異常が発生すること
も考慮しておく必要がある。この異常が発生すると、当
然制御に重大な影響が生じ、信頼性の上でも問題になる
Therefore, it is necessary to take into consideration the occurrence of abnormalities such as disconnection of the transmission line. When this abnormality occurs, it naturally has a serious effect on control and poses a problem in terms of reliability.

本発明は従来技術における上述の如き問題点を除去し、
信頼性の高い電気車の制御装置を提供することを目的と
する。
The present invention eliminates the above-mentioned problems in the prior art,
The purpose is to provide a highly reliable electric vehicle control device.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は上記の目的を達成するため、以下の構成にて電
気車の駆動制御を行う電気車の駆動制御装置である。
(Means for Solving the Problems) In order to achieve the above object, the present invention is a drive control device for an electric vehicle that controls the drive of an electric vehicle with the following configuration.

電気車の駆動制御において、車体速度を検出する車体速
度検出器と、車体速度を推定する車体速度推定器を有し
、正常走行時は前記車体速度を電気車の駆動制御に用い
、前記車体速度の信号に異常が生じた際には、前記車体
速度推定器により求められる車体の推定速度を前記車体
速度の代わりに用いることを特徴とする。
In the drive control of an electric vehicle, a vehicle speed detector that detects the vehicle speed and a vehicle speed estimator that estimates the vehicle speed are provided, and during normal running, the vehicle speed is used for drive control of the electric vehicle, and the vehicle speed is When an abnormality occurs in the signal, the estimated vehicle speed determined by the vehicle speed estimator is used instead of the vehicle speed.

(作 用) 上記の、本発明による電気車の駆動制御装置では、通常
は車体速度を電気車の駆動制御に用い、車体速度の信号
に異常が発生した際には車体速度の推定値を用いる構成
としたので、空転・再粘着などの検出に伴う誤動作や制
御の遅れ、あるいはインバータ周波数ひいては電動機速
度の暴走を防ぐ制御の信頼性を高めることができ、(発
明が解決しようとする課題)の項で指摘した従来技術の
難点を除去できる。
(Function) In the above drive control device for an electric vehicle according to the present invention, the vehicle speed is normally used to control the drive of the electric vehicle, and when an abnormality occurs in the vehicle speed signal, the estimated value of the vehicle speed is used. With this configuration, it is possible to improve the reliability of control that prevents malfunctions and control delays due to detection of slipping and readhesion, or runaway of the inverter frequency and motor speed, which is the problem that the invention aims to solve. It is possible to eliminate the drawbacks of the conventional technology pointed out in section.

(実施例) 以下に本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例に係わる電気車の駆動制
御装置のブロック図である。同図において第4図と同一
の構成要素には同一の記号を付し説明を省略する。
FIG. 1 is a block diagram of a drive control device for an electric vehicle according to a first embodiment of the present invention. In this figure, the same components as in FIG. 4 are given the same symbols and their explanations will be omitted.

本実施例では、車体速度として従軸速度を用いている。In this embodiment, the slave shaft speed is used as the vehicle speed.

第1図で、11は従軸、 12は従軸速度検出器である
。従軸速度検出器12で検出した従軸速度と、速度検出
器9で検出した電動機速度を係数器94でギヤ比、動輪
半径等を考慮して動輪速度に換算して、電流指令変化率
補正器13ヘフイードバツクする。14は車体速度を推
定するブロックである。
In FIG. 1, 11 is a slave shaft, and 12 is a slave shaft speed detector. The slave shaft speed detected by the slave shaft speed detector 12 and the motor speed detected by the speed detector 9 are converted into driving wheel speed by a coefficient unit 94, taking into account gear ratio, driving wheel radius, etc., and the current command change rate is corrected. Feed back to container 13. 14 is a block for estimating vehicle speed.

このブロックの構成方法は本発明に関係しないので詳し
くは述べないが、例えば車体速度を推定するオブザーバ
、車体の運動を模擬するシミュレータ、車体の加速度を
検出しそれを積分する方法などがある。
The method of constructing this block is not related to the present invention and will not be described in detail, but examples include an observer for estimating the vehicle speed, a simulator for simulating the motion of the vehicle, and a method for detecting and integrating the acceleration of the vehicle.

15は切り替え論理回路で、本実施例では従軸速度と車
体推定速度が入力され、従軸速度を監視し通常は従軸速
度を選択して電流指令変化率補正器13へ出力し、従軸
速度信号に異常が生じたことを検知したら、電流指令変
化率補正器13への出力を車体推定速度に切り替える。
Reference numeral 15 denotes a switching logic circuit, which receives the slave shaft speed and the estimated vehicle body speed in this embodiment, monitors the slave shaft speed, normally selects the slave shaft speed, outputs it to the current command change rate corrector 13, and outputs the slave shaft speed to the current command change rate corrector 13. When it is detected that an abnormality has occurred in the speed signal, the output to the current command change rate corrector 13 is switched to the estimated vehicle speed.

電流指令変化率補正器13は、上記の切り替え論理回路
の出力信号と動輪速度との偏差を算出し、比例および必
要に応じて積分処理をして電流指令変化率補正信号を生
成する。この電流指令変化率補正信号を電流パターン発
生器1ヘフイードバツクして、電流制御器2への指令値
を算定する。このようにすると、空転ないしは滑走が発
生した場合、前記偏差がOでなくなり、電流指令が絞ら
れて再粘着が計られる。
The current command change rate corrector 13 calculates the deviation between the output signal of the switching logic circuit and the driving wheel speed, performs proportional processing and, if necessary, integral processing to generate a current command change rate correction signal. This current command change rate correction signal is fed back to the current pattern generator 1 to calculate the command value to the current controller 2. In this way, when slipping or skidding occurs, the deviation is no longer O, and the current command is reduced to measure readhesion.

切り替え論理では、従軸速度の異常の監視を例えば以下
のようにして行なう、従軸速度は大きな質量をもつ車体
の速度であるので1時間的に急に変化することは有り得
ない。したがって、従軸速度の微分値、あるいはマイク
ロコンピュータで実行する場合これと等価な現時点以前
の検出速度と現時点の検出速度との偏差を常時監視して
、その値が一定の規定値(しきい値)を越えたとき異常
と判定する。
In the switching logic, abnormalities in the speed of the slave shaft are monitored as follows, for example.Since the speed of the slave shaft is the speed of a vehicle body with a large mass, it is impossible for it to change suddenly over an hour. Therefore, the differential value of the slave axis speed, or the deviation between the detected speed before the current point and the current detected speed, which is equivalent when executed by a microcomputer, is constantly monitored, and the value is set at a certain specified value (threshold value). ) is determined to be abnormal.

また従軸速度それ自体も進行方向を正としたとき、負の
値を示すことは有り得ないし、電気車の設計仕様で定め
られた最高速度を何倍も越える値になることもない。す
なわち従軸速度それ自体にも微分値の時と同様に、その
値が所定の範囲を越えたら異常と判定できる規定値を定
めることができる。よって速度を常時監視して、その値
が上記の規定値(しきい値)を越えたとき異常と判定す
る。
Furthermore, the slave shaft speed itself cannot take a negative value when the traveling direction is positive, and it cannot exceed a maximum speed many times higher than the maximum speed determined by the design specifications of the electric vehicle. That is, for the slave shaft speed itself, similarly to the differential value, it is possible to set a prescribed value that can be determined to be abnormal if the value exceeds a predetermined range. Therefore, the speed is constantly monitored, and when the value exceeds the specified value (threshold value) mentioned above, it is determined that there is an abnormality.

上記2つの方法を併用してもよい。The above two methods may be used together.

第2図は本発明の第2の実施例に係わる電気車の駆動制
御装置のブロック図である。同図において第1図と同一
の構成要素には同一の記号を付し説明を省略する。
FIG. 2 is a block diagram of a drive control device for an electric vehicle according to a second embodiment of the present invention. In this figure, the same components as in FIG. 1 are given the same symbols and their explanations will be omitted.

本実施例では、切り替え回路の出力信号を係数器111
でギヤ比、動輪半径等を考慮して電動機速度に換算し、
インバータ指令周波数の元となる加算器3へ戻される信
号として用いている。この構成にすると、動輪が空転し
たときでも、インバータ周波数が動輪速度と共に増大す
ることがない。
In this embodiment, the output signal of the switching circuit is sent to the coefficient unit 111.
Convert to motor speed by considering gear ratio, driving wheel radius, etc.
It is used as a signal returned to the adder 3 which is the source of the inverter command frequency. With this configuration, even when the driving wheels idle, the inverter frequency does not increase with the driving wheel speed.

その上第1の実施例と同じく切り替え回路15により信
号の異常を監視しているので、信頼性を向上できる。
Furthermore, as in the first embodiment, the switching circuit 15 monitors signal abnormalities, so reliability can be improved.

第3図は本発明の第3の実施例に係わる電気車の駆動制
御装置のブロック図である。同図において第1図および
第2図と同一の構成要素には同一の記号を付し説明を省
略する。
FIG. 3 is a block diagram of a drive control device for an electric vehicle according to a third embodiment of the present invention. In this figure, the same components as in FIGS. 1 and 2 are given the same symbols, and their explanations will be omitted.

この実施例は、第1および第2の実施例を合成したもの
で、切り替え論理の出力を電流指令変化率補正器13お
よび係数器111へ送る。この場合も前2例と同様信頼
性を向上する効果がある。
This embodiment is a combination of the first and second embodiments, and sends the output of the switching logic to the current command change rate corrector 13 and coefficient unit 111. In this case as well, there is an effect of improving reliability as in the previous two examples.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明によれば、通常走行時は
車体速度、その信号に異常が生じた場合は車体推定速度
を用いるようにして駆動制御装置に冗長性を付与したの
で、信頼性の高い電気車の駆動制御装置を提供すること
かでかる。
As explained above, according to the present invention, redundancy is provided to the drive control device by using the vehicle speed during normal driving and the estimated vehicle speed when an abnormality occurs in the signal, thereby improving reliability. It is possible to provide high-quality electric vehicle drive control equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第工図は本発明の第1の実施例の構成を示すブロック図
、第2図は本発明の第2の実施例の構成を示すブロック
図、第3図は本発明の第3の実施例の構成を示すブロッ
ク図、第4図は従来例の構成を示すブロック図である。 1・・・電流指令パターン発生器 2・・・電流制御器
3・・・加算器         4・・・V/F一定
制御器5・・・PWMパルス発生器 6・・・PWM制御制御電圧フィンバ
The second construction drawing is a block diagram showing the configuration of the first embodiment of the present invention, FIG. 2 is a block diagram showing the configuration of the second embodiment of the present invention, and FIG. 3 is a block diagram showing the configuration of the second embodiment of the present invention. FIG. 4 is a block diagram showing the structure of a conventional example. 1... Current command pattern generator 2... Current controller 3... Adder 4... V/F constant controller 5... PWM pulse generator 6... PWM control control voltage fin bar

Claims (1)

【特許請求の範囲】 電気車の駆動制御において、車体速度を検出する車体速
度検出器と、車体速度を推定する車体速度推定器を有し
、 正常走行時は前記車体速度を電気車の駆動制御に用い、
前記車体速度の信号に異常が生じた際には前記車体速度
推定器により求められる車体の推定速度を前記車体速度
の代わりに用いること、を特徴とする電気車の駆動制御
装置。
[Claims] In the drive control of the electric vehicle, the electric vehicle has a vehicle speed detector that detects the vehicle speed and a vehicle speed estimator that estimates the vehicle speed, and during normal running, the vehicle speed is used to control the drive of the electric vehicle. used for
A drive control device for an electric vehicle, characterized in that when an abnormality occurs in the vehicle speed signal, an estimated vehicle speed determined by the vehicle speed estimator is used instead of the vehicle speed.
JP1214856A 1989-08-23 1989-08-23 Drive controller of electric car Pending JPH0382301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1214856A JPH0382301A (en) 1989-08-23 1989-08-23 Drive controller of electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1214856A JPH0382301A (en) 1989-08-23 1989-08-23 Drive controller of electric car

Publications (1)

Publication Number Publication Date
JPH0382301A true JPH0382301A (en) 1991-04-08

Family

ID=16662685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1214856A Pending JPH0382301A (en) 1989-08-23 1989-08-23 Drive controller of electric car

Country Status (1)

Country Link
JP (1) JPH0382301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020188870A1 (en) * 2019-03-15 2020-09-24

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020188870A1 (en) * 2019-03-15 2020-09-24
WO2020188870A1 (en) * 2019-03-15 2020-09-24 株式会社日立製作所 Train control device and train control method

Similar Documents

Publication Publication Date Title
US6208097B1 (en) Traction vehicle adhesion control system without ground speed measurement
US4799161A (en) Control apparatus for maintaining traction in electric rolling stock
EP2191998B1 (en) Controller for electric vehicle
KR101165554B1 (en) Controller for electric vehicle
US6758087B2 (en) Method, system and storage medium for determining a vehicle reference speed
KR0182332B1 (en) Electric motor vehicle control apparatus and method for reducing the occurrence of wheel slip
KR100530627B1 (en) Controller of electric car
JP4882308B2 (en) Vehicle control system
WO2005110802A1 (en) Electric vehicle control device
JPH0880082A (en) Controller of electric rolling stock
RU2179515C2 (en) Electric vehicle control device
US4801855A (en) Method and system for controlling chopper
JP5063274B2 (en) Electric vehicle control device
JP2674999B2 (en) Train drive system
JPH0382301A (en) Drive controller of electric car
JP2009100603A (en) Electric vehicle controller
JPH0452560A (en) Presuming method of velocity of vehicle body in control apparatus of electric car
JPH02193502A (en) Controlling device of driving of electric rolling stock
JPH10257611A (en) Re-adhesion control apparatus for electric vehicle
JPH0522805A (en) Operation controller for electric vehicle
JP2824696B2 (en) Electric car control device
JP2000224708A (en) Electric rolling stock controller
JP2002034101A (en) Control device for electric car
JPH01243803A (en) Drive controller for electric rolling stock
JP6111779B2 (en) Control device for each wheel independent drive cart