JPH0379969A - Two-stage compression refrigeration cycle - Google Patents

Two-stage compression refrigeration cycle

Info

Publication number
JPH0379969A
JPH0379969A JP1216345A JP21634589A JPH0379969A JP H0379969 A JPH0379969 A JP H0379969A JP 1216345 A JP1216345 A JP 1216345A JP 21634589 A JP21634589 A JP 21634589A JP H0379969 A JPH0379969 A JP H0379969A
Authority
JP
Japan
Prior art keywords
temperature
stage compressor
stage
vortex tube
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1216345A
Other languages
Japanese (ja)
Other versions
JP2615496B2 (en
Inventor
Kazuo Nakatani
和生 中谷
Mitsuhiro Ikoma
生駒 光博
Minoru Tagashira
田頭 實
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21634589A priority Critical patent/JP2615496B2/en
Publication of JPH0379969A publication Critical patent/JPH0379969A/en
Application granted granted Critical
Publication of JP2615496B2 publication Critical patent/JP2615496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect

Abstract

PURPOSE:To enable raising the temperature of the air ejected in indoor heating and also suppling hot water by providing between a lower-stage compressor and a higher- stage compressor a vortex tube whose higher-temperature outlet is connected to a second condenser and whose lower-temperature outlet is connected to the higher-stage compressor. CONSTITUTION:The refrigerant gas discharged at a medium pressure from a lower- stage compressor 9 flows into the inlet of a vortex tube 11, inside which a swirl develops and separates into higher-temperature gas and a lower-temperature gas; the higher-temperature gas, whose temperature is much higher than the temperature of the medium-pressure refrigerant gas entering the vortex tube 11, flows out through an outlet on the high temperature side and into an indoor heat exchanger 16 to be used for heating air and then condenses into liquid, whereas the lower-temperature gas, whose temperature is much lower than the temperature of the medium-pressure refrigerant gas entering the vortex tube 11, flows out through an outlet on the low temperature side, is sucked into a higher-stage compressor 10 to undergo compression from medium pressure to high pressure, and then flows into a hot water-supplying heat exchanger 12 to be used for heating water and then condenses into liquid. By providing a single vortex tube a simple structure is rendered capable of raising the temperature of indoor heating higher and supplying hot water.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は 空気調和機等に用いられる冷凍サイクルに関
し 特に2段圧縮冷凍サイクルに関すも従来の技術 従来 低温冷凍装置や高温ヒートポンプのように冷凍サ
イクルの蒸発圧力と凝縮圧力との比(圧縮比)が大きい
場合に(友 吐出温度上昇の防」ムおよび圧縮機効率を
向上させるために圧縮機を2台直列に接続して冷媒を2
段階に圧縮する2段圧縮冷凍サイクル装置が広く使われ
ていもまた 最近は冷暖房と給湯を同時に運転できる多
機能な巳−トポンプが市場のニーズとして高まってきて
おり、たとえば第3図に示すような従来例(特公昭58
−48824)があ幾 第3図は暖房と給湯を同時運転
する場合の従来の冷凍サイクルの構成図であり、 lは
低段側圧縮機、 2は高段側圧縮機 3は給湯用熱交換
銖 4、5はそれぞれ第1、第2絞り装置 6は室外側
熱交換器玄 それぞれ順に環状に接続されて給湯用回路
を構成していもま7..7は第3絞り装置であり、給湯
用熱交換器3の出口と高段側圧縮機2の吸入配管とを接
続する配管上に設けている。また 8は室内側熱交換器
で、その人口を低段側圧縮機lの吐出配管と、また そ
の出口を第1絞り装置4と第2絞り装置5の間の配管に
接続されており、低段側圧縮機1、室内側熱交換器8、
第2絞り装置5、室外側熱交換器6によって暖房用回路
を構成していもここにおいて、低段側圧縮機lより吐出
された中間圧の冷媒ガスの一部は分岐されて室内側熱交
換器8に流入よ そこで暖房に寄与して白らは凝縮液化
すも また 低段側圧縮機l上り吐出された残りの冷媒
ガスは高段側圧縮機2に吸引されそこで高圧まで圧縮さ
れて給湯用熱交換器3に流入し 給湯に寄与して自らは
液化し 第1絞り装置4で絞られた抵 室内側熱交換器
8より出た液冷媒と合流して第2絞り装置5に流入すも
 そこで低圧まで絞られて室外側熱交換器6で外気より
吸熱して自らはガス化龜 再び低段側圧縮機1に吸入さ
れる。ここにおいて、給湯用熱交換器3より出た冷媒液
の一部が第3絞り装置7で中間圧まで絞られて低段側圧
縮機1の吐出ガスと合流する構成になっているので、高
段側圧縮機2の吸入ガス温度を低下させることができ、
圧縮比の大きい給湯運転の場合にも高段側圧縮機2の吐
出ガス温度が異常に高くなることなく、暖房運転と同時
に高温の給湯も得ることができるものであも発明が解決
しようとする課題 しかしながら上記のような従来例において(友暖房と給
湯の同時運転時に 効率の高い運転をしようとすると、
暖房の吹出し温度が低くなったり、あるいは吹出し温度
を高めようεすると高段側の圧縮比が低段側に比較し非
常に小さくなり、圧縮比のバランスが悪くなって、 シ
ステムとしての効率が悪くなっていた すなわ板 2段圧縮冷凍サイクルの運転において(上底
段側と高段側でそれぞれの圧縮比がほぼ同じになる中間
圧で運転するのがサイクルとして望ましく、装置の成績
係数も高くなることはよく知られてい& しかしなか伝
 低段側で暖鳳 高段側で給湯を得ようとする場合に同
一圧縮比にしようとすると、中間圧力における凝縮温度
が低くなって、暖房の吹出し温度が低くなり実用上使用
できなかっ九 また この問題点を解決するために 中間圧を一部げて
凝縮温度を高めようとすると高段側の圧縮比が低段側に
比べて非常に小さ(なり、システムの効率が悪くなって
い九 たとえ(′L よく用いられている冷媒のフロン
R22の場合で一般的な暖房運転時である室外側熱交換
器の蒸発温度がO″q室内側熱交換器の凝縮温度が50
°Ω 給湯用熱交換器の凝縮温度が70°Cの場念 低
段側の圧縮比が約3.9゜高段側の圧縮比が約1.5と
なり、低段と高段の圧縮比のバランスが悪くなりシステ
ム全体の成績係数が非常に悪くなっていtち  また 
高段側の吸入比容積も非常に小さくなるた八 低段側に
比較し高段側圧縮機のシリンタ゛容積をかなり小さくし
なければならず、設計上も困難な点が多かつ九 また 従来は高圧の液冷媒を中間圧まで絞って高段側圧
縮機の吸入側に直接流入させていたたへ液流量の制御が
困難であったり、液圧縮の心配もあっ起 また それを
構成するための絞り装置や配管などが必要で装置が非常
に複雑になってい九本発明(友 このような従来技術の
課題を解決することを目的とすも 課題を解決するための手段 本発明の2段圧縮冷凍サイクル(友 少なくとも低段側
圧縮風 高段側圧縮機 第1凝縮徴 第2凝縮器、 第
1絞り装置 第2絞り装置 蒸発器から主回路を構成し
 低段側圧縮機と高段側圧縮機との間にボルテックスチ
ューブを設ζす、その高温側出口を第2凝縮器と接続し
 低温側出口を高段側圧縮機に接続したことを特徴とす
るものであり、望ましく(よ 第1絞り装置と第2絞り
装置の間に気液分離器を設け、高段側圧縮機入口と接続
したことを特徴とするものであも 作用 上記構成により、低段側圧縮機より吐出された中間圧の
冷媒ガスはボルテックスチューブ入口に流入し その内
部で旋回流が発生して高温ガスと低温ガスに分岐され 
その内の高温ガス(上 高温側出口より出て第2凝縮器
である室内側熱交換器に流入してそこで暖房に寄与し 
自らは凝縮液化すも まな 低温ガスは低温側出口より
出て、高段側圧縮機に吸引され 中間圧から高圧まで圧
縮されて第1凝縮器である給湯用熱交換器に流入し給湯
に寄与して自らは凝縮液化すも ここにおいて、低段側
と高段側でそれぞれの圧縮比がほぼ同じになる望ましい
中間圧で運転した場合でL 室内側熱交換器に流入する
過熱度の大きいガスによって暖房の吹出し温度を高める
ことができも また 高段側圧縮機の吸入ガス温度をボ
ルテックスチューブによって低くすることができるので
、圧が高いにもかかわらず、高段側圧縮機の吐出ガス温
度を低くおさえて高温の給湯が可能となり、圧縮機の安
全性と成績係数を高く維持した暖房給湯の同時運転がで
きも 実施例 以下に 本発明の実施例について図面を参照しながら説
明すも 第1図は本発明の一実施例における2段圧縮冷凍サイク
ルを示すものであり、 9は低段側圧縮数10は高段側
圧縮a  11はボルテックスチューブ、 12は給湯
用熱交換1i13は第1絞り装置14は第2絞り装置 
15は室外側熱交換器でそれぞれ順に環状に接続され 
給湯用回路を構成していも ま?、、16は室内側熱交換器で、その人口をボルテッ
クスチューブ11の高温側出口と、またその出口を第1
絞り装置13と第2絞り装置14の間の配管に接続され
ており、低段側圧縮機9、ボルテックスチューブ11.
  室内側熱交換器16、第2絞り装置14、室外側熱
交換器15によって暖房用回路を構成しており、室内側
熱交換器16を中間圧 給湯用熱交換器12を高圧とし
て2段圧縮冷凍サイクルを構成していも このように構成された2段圧縮冷凍サイクルの運転方法
について説明すも 低段側圧縮機9より吐出された中間圧の冷媒ガスはボル
テックスチューブ11の入口に流入しその内部で旋回流
が発生して高温ガスと低温ガスに分岐され その内の高
温ガスはボルテックスチューブ11に流入した中間圧の
冷媒ガス温度よりかなり高温となり、高温側出口より出
て室内側熱交換器16に流入してそこで暖房に寄与し 
自らは凝縮液化すも また 低温ガスはボルテックスチ
ューブ11に流入した中間圧の冷媒ガス温度よりかなり
低温となって低温側出口より出て、高段側圧縮機10に
吸引され 中間圧から高圧まで圧縮されて給湯用熱交換
器12に流入し給湯に寄与して自らは凝縮液化すも こ
こにおいて、成績係数の高t、k  低段側と高段側の
圧縮比がほぼ同じになる中間圧で運転した場合でL!縮
湿温度しては低いものへ ボルテックスチューブ11で
温度を高くされた過熱度の大きいガスによって室内側熱
交換器16での暖房の吹出し温度を高くすることができ
も また 高段側圧縮機10の吸入ガスは低段側圧縮機
9の吐出ガスより温度を下げることができ、高段側圧縮
機10の吐出ガス温度を低くおさえて高温の給湯が可能
となん このようにボルテックスチューブを1つ設ける
ことにより、簡単な構成で暖房の高温化と高温給湯が達
成でき、特に安全面で問題な高段側圧縮機の吐出ガス温
度が異常に高くなるようなことなく、圧縮機の安全性と
成績係数を高く維持した暖房給湯の同時運転が実現でき
も また 本発明の別の実施例を第2図を用いて説明すも 
第2図において第1図と同一番号で示した部品は同様の
機能をもつものであり、説明は省略すへ ここにおいて
1友 第1絞り装置13と第2絞り装置14の間に中間
熱交換器17を配置しており、内部は第1絞り装置を出
た二相の冷媒が流れていも また ボルテックスチュー
ブ11の低温側出口と高段側圧縮機10の吸入側との間
の配管を中間圧熱交換器17内部の二相冷媒と熱交換で
きるようにしており、こうすることによってボルテック
スチューブ11での冷却のみならず中間熱交換器17で
の熱交換によって高段側圧縮機lOの吸入ガスを確実に
冷却することができも本発明は上記実施例に示すは力\
 種々の態様に構成することができ氏 例えば上記実施
例では中間熱交換器17で間接的に熱交換することによ
って高段側圧縮機10の吸入ガスを冷却した力文 中間
熱交換器17の二相冷媒を直接高段側圧縮機10の吸入
側へ流入させる構成も考えらへ これらは本発明に含ま
れるものであa まな 上記実施例では低段側圧縮機巳高段側圧縮機を別
置きにした力t 一体の(同一シェルの)二段圧縮機な
どでも行えることは明白であり、これらもまた本発明に
含まれるものであも発明の効果 以上のように 本発明の2段圧縮冷凍サイクル(友 低
段側圧縮機と高段側圧縮機の間にボルテックスチューブ
を設けて二段圧縮冷凍サイクルを構成したので、二段圧
縮冷凍サイクルで望ましい低比 高段の圧縮比が同程度
の運転を実現しなが転生間圧の比較的低い運転状態で鯨
 ボルテックスチューブによって室内側熱交換器の冷媒
ガス温度を高へ その吹出し温度を高めることができも
また 高段側圧縮機の吸入ガスは同じくボルテックスチ
ューブによって冷却されるので高温の給湯を得たい時に
も高段側圧縮機の吐出温度が上昇するようなこεはなく
、安全で成績係数の高い運転ができる効果があも また 第1絞り装置と第2絞り装置の間に中間熱交換器
を配置することによって、ボルテックスチューブの冷却
効果とあいまって、高段側圧縮機の吸入ガスを確実に冷
却することができるものであも
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to refrigeration cycles used in air conditioners, etc., and particularly relates to two-stage compression refrigeration cycles. When the ratio of evaporation pressure to condensation pressure (compression ratio) is large, two compressors are connected in series to prevent a rise in discharge temperature and to improve compressor efficiency.
Although two-stage compression refrigeration cycle equipment that compresses water in stages is widely used, there has recently been an increasing need in the market for multifunctional pumps that can operate air conditioning, heating, and hot water supply at the same time. Conventional example (Special Public Service 1986)
-48824) Aiku Figure 3 is a configuration diagram of a conventional refrigeration cycle when heating and hot water supply are operated simultaneously, where 1 is a low-stage compressor, 2 is a high-stage compressor, and 3 is a heat exchanger for hot water supply. 4 and 5 are the first and second throttling devices, respectively. 6 is the outdoor heat exchanger. They are connected in order in a ring to form a hot water supply circuit. .. Reference numeral 7 denotes a third throttle device, which is provided on a pipe connecting the outlet of the hot water supply heat exchanger 3 and the suction pipe of the high-stage compressor 2. Further, 8 is an indoor heat exchanger, whose population is connected to the discharge pipe of the low-stage compressor l, and its outlet is connected to the pipe between the first throttle device 4 and the second throttle device 5. Stage side compressor 1, indoor heat exchanger 8,
Even if a heating circuit is configured by the second expansion device 5 and the outdoor heat exchanger 6, a part of the intermediate pressure refrigerant gas discharged from the low-stage compressor l is branched off for indoor heat exchange. The remaining refrigerant gas, which is discharged from the low-stage compressor l, is sucked into the high-stage compressor 2, where it is compressed to a high pressure to supply hot water. The liquid refrigerant flows into the indoor heat exchanger 3, contributes to hot water supply, liquefies itself, merges with the liquid refrigerant exited from the indoor heat exchanger 8, which is throttled by the first throttle device 4, and flows into the second throttle device 5. There, the air is throttled down to a low pressure, absorbs heat from the outside air in the outdoor heat exchanger 6, becomes a gas, and is sucked into the low-stage compressor 1 again. Here, a part of the refrigerant liquid discharged from the hot water supply heat exchanger 3 is throttled to an intermediate pressure by the third throttle device 7 and merges with the discharge gas of the low stage compressor 1, so that the high temperature The suction gas temperature of the stage side compressor 2 can be lowered,
The invention seeks to solve this problem by providing a system that can provide high-temperature hot water at the same time as heating operation without causing the discharge gas temperature of the high-stage compressor 2 to become abnormally high even in hot water supply operation with a high compression ratio. However, in the conventional example described above (when trying to operate with high efficiency when both heating and hot water heating are operated at the same time),
If the heating air outlet temperature becomes low, or if an attempt is made to increase the air outlet temperature, the compression ratio on the high stage side becomes much smaller than that on the low stage side, resulting in an unbalanced compression ratio and poor system efficiency. When operating a two-stage compression refrigeration cycle, it is desirable to operate the cycle at an intermediate pressure where the compression ratios on the upper and higher stages are approximately the same, and the coefficient of performance of the equipment is high. It is well known that this happens and that if you try to use the same compression ratio to obtain hot water on the high stage side, the condensation temperature at the intermediate pressure will become low, causing the heating to blow out. The temperature becomes so low that it cannot be used for practical purposes.In order to solve this problem, if we try to raise the condensing temperature by partially raising the intermediate pressure, the compression ratio on the high stage side is very small compared to the low stage side ( For example, in the case of Freon R22, a commonly used refrigerant, the evaporation temperature of the outdoor heat exchanger during normal heating operation is O''q. The condensing temperature of the vessel is 50
°Ω Suppose the condensing temperature of the heat exchanger for hot water supply is 70°C. The compression ratio on the low stage side is approximately 3.9°, the compression ratio on the high stage side is approximately 1.5, and the compression ratio between the low stage and high stage is As a result, the balance between the
Since the suction specific volume on the high stage side is also very small, the cylinder volume of the high stage compressor must be made considerably smaller than that on the low stage side, which poses many design difficulties. Since the high-pressure liquid refrigerant was throttled down to an intermediate pressure and flowed directly into the suction side of the high-stage compressor, it was difficult to control the liquid flow rate, and there were concerns about liquid compression. The present invention aims to solve the problems of the prior art, but the two-stage compression of the present invention is a means for solving the problems. Refrigeration cycle (partner) At least low-stage compressed air High-stage compressor 1st condensing device 2nd condenser, 1st throttling device 2nd throttling device The main circuit consists of the evaporator, the low-stage compressor and the high-stage compressor A vortex tube is installed between the compressor and the high-temperature side outlet of the vortex tube is connected to the second condenser, and the low-temperature side outlet is connected to the high-stage compressor. The device is characterized in that a gas-liquid separator is provided between the throttle device and the second throttle device, and is connected to the inlet of the high-stage compressor. The high-pressure refrigerant gas flows into the vortex tube inlet, where a swirling flow occurs and is split into high-temperature gas and low-temperature gas.
The high-temperature gas (upper) exits from the high-temperature side outlet and flows into the indoor heat exchanger, which is the second condenser, where it contributes to heating.
The low-temperature gas comes out from the low-temperature side outlet, is sucked into the high-stage compressor, is compressed from intermediate pressure to high pressure, and flows into the first condenser, the hot water heat exchanger, where it contributes to hot water supply. The gas with a high degree of superheat flowing into the indoor heat exchanger is In addition, the temperature of the intake gas of the high-stage compressor can be lowered by using the vortex tube, so the temperature of the discharge gas of the high-stage compressor can be lowered even though the pressure is high. It is possible to supply hot water at a low temperature while simultaneously operating hot water for heating while maintaining the safety of the compressor and the coefficient of performance. The figure shows a two-stage compression refrigeration cycle in one embodiment of the present invention, where 9 is the low stage compression number 10 is the high stage compression a, 11 is the vortex tube, 12 is the hot water supply heat exchanger 1, and 13 is the first throttle. Device 14 is a second squeezing device
15 is an outdoor heat exchanger, each connected in turn in a ring shape.
Is it okay to configure a hot water supply circuit? ,, 16 is an indoor heat exchanger, whose population is connected to the high temperature side outlet of the vortex tube 11, and its outlet is connected to the first
It is connected to the piping between the expansion device 13 and the second expansion device 14, and the low-stage compressor 9, the vortex tube 11.
The indoor heat exchanger 16, the second expansion device 14, and the outdoor heat exchanger 15 constitute a heating circuit, with the indoor heat exchanger 16 at intermediate pressure and the hot water supply heat exchanger 12 at high pressure for two-stage compression. Although the refrigeration cycle is configured, the operating method of the two-stage compression refrigeration cycle configured in this way will be explained. The intermediate pressure refrigerant gas discharged from the lower stage compressor 9 flows into the inlet of the vortex tube 11 and the A swirling flow is generated inside and is branched into high-temperature gas and low-temperature gas.The high-temperature gas has a temperature considerably higher than that of the intermediate-pressure refrigerant gas that entered the vortex tube 11, and exits from the high-temperature side outlet to the indoor heat exchanger. 16 and contributes to heating there.
Although it condenses and liquefies itself, the low-temperature gas becomes considerably lower than the temperature of the intermediate-pressure refrigerant gas that flows into the vortex tube 11, exits from the low-temperature side outlet, is sucked into the high-stage compressor 10, and is compressed from intermediate pressure to high pressure. It flows into the hot water supply heat exchanger 12 and contributes to hot water supply, condensing and liquefying itself. Here, the coefficient of performance is high t, k. L if you drive! The condensation temperature can be lowered.The high-superheated gas heated in the vortex tube 11 can raise the heating blowout temperature in the indoor heat exchanger 16.Also, the high-stage compressor 10 The temperature of the suction gas can be lowered than that of the discharge gas of the low-stage compressor 9, and the temperature of the discharge gas of the high-stage compressor 10 can be kept low, making it possible to supply high-temperature hot water.In this way, one vortex tube is used. By providing this, high-temperature heating and high-temperature hot water supply can be achieved with a simple configuration, and the discharge gas temperature of the high-stage compressor, which is a safety issue, will not become abnormally high, and the safety of the compressor will be improved. Simultaneous operation of heating and hot water supply while maintaining a high coefficient of performance can be realized.Another embodiment of the present invention will be explained with reference to FIG.
In FIG. 2, the parts indicated by the same numbers as in FIG. 1 have the same functions, and the explanation will be omitted. 17, and even though the two-phase refrigerant from the first expansion device flows inside, the piping between the low-temperature side outlet of the vortex tube 11 and the suction side of the high-stage compressor 10 is placed in the middle. It is designed to exchange heat with the two-phase refrigerant inside the pressure heat exchanger 17, and by doing so, not only cooling in the vortex tube 11 but also heat exchange in the intermediate heat exchanger 17 causes suction of the high-stage compressor lO. Although the gas can be reliably cooled, the present invention does not require the power shown in the above embodiments.
For example, in the above embodiment, the intake gas of the high-stage compressor 10 is cooled by indirectly exchanging heat with the intermediate heat exchanger 17. A configuration in which the phase refrigerant flows directly into the suction side of the high-stage compressor 10 is also considered.These are included in the present invention.In the above embodiment, the low-stage compressor and the high-stage compressor are separated. It is obvious that the two-stage compression of the present invention can be performed using an integrated two-stage compressor (with the same shell), and these are also included in the present invention.As described above, the two-stage compression of the present invention Refrigeration cycle (Friend) A vortex tube is installed between the low-stage compressor and the high-stage compressor to configure a two-stage compression refrigeration cycle, so the desired low ratio and high-stage compression ratio are the same in a two-stage compression refrigeration cycle. However, the temperature of the refrigerant gas in the indoor heat exchanger can be increased by the vortex tube in an operating state where the intertransfer pressure is relatively low. Since the gas is also cooled by the vortex tube, there is no possibility that the discharge temperature of the high-stage compressor will rise even when high-temperature hot water is desired to be supplied, and the effect is that safe operation with a high coefficient of performance can be achieved. By placing an intermediate heat exchanger between the first throttle device and the second throttle device, combined with the cooling effect of the vortex tube, it is possible to reliably cool the intake gas of the high stage compressor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の2段圧縮冷凍サイクルの構
成は 第2図は本発明の別の実施例の2段圧縮冷凍サイ
クル構成は 第3図は従来例の2段圧縮冷凍サイクルの
構成図であも 9・・・低段側圧縮@ 10・・・高段側圧縮機 11
・・・給湯用熱交換銖 12・・・第1絞り装置t、1
3・・・第2絞り装置 14・・・室内側熱交換器 1
5・・・第3絞り装置 16・・・室内側熱交換器 1
7・・・中間熱交換器
Fig. 1 shows the configuration of a two-stage compression refrigeration cycle according to an embodiment of the present invention. Fig. 2 shows the structure of a two-stage compression refrigeration cycle according to another embodiment of the invention. Fig. 3 shows a conventional two-stage compression refrigeration cycle. In the configuration diagram, Amo 9...low stage side compression @ 10... high stage side compressor 11
... Heat exchanger for hot water supply 12 ... First throttle device t, 1
3...Second expansion device 14...Indoor heat exchanger 1
5...Third expansion device 16...Indoor heat exchanger 1
7...Intermediate heat exchanger

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも低段側圧縮機、高段側圧縮機、第1凝
縮器、第2凝縮器、第1絞り装置、第2絞り装置、蒸発
器から主回路が構成され、前記低段側圧縮機と前記高段
側圧縮機との間にボルテックスチューブが設けられ、前
記ボルテックスチューブの高温側出口が第2凝縮器入口
に接続され、低温側出口が高段側圧縮機入口に接続され
たことを特徴とする2段圧縮冷凍サイクル。
(1) A main circuit is composed of at least a low-stage compressor, a high-stage compressor, a first condenser, a second condenser, a first throttle device, a second throttle device, and an evaporator, and the low-stage compressor A vortex tube is provided between the compressor and the high stage compressor, a high temperature side outlet of the vortex tube is connected to the second condenser inlet, and a low temperature side outlet is connected to the high stage compressor inlet. A two-stage compression refrigeration cycle featuring:
(2)第1絞り装置と第2絞り装置の間に中間熱交換器
が設けられ、ボルテックスチューブの低温側出口と高段
側圧縮機入口との間の冷媒を前記中間熱交換器内部の冷
媒と直接、あるいは間接に熱交換させることを特徴とす
る請求項1記載の2段圧縮冷凍サイクル。
(2) An intermediate heat exchanger is provided between the first expansion device and the second expansion device, and the refrigerant between the low temperature side outlet of the vortex tube and the high stage side compressor inlet is transferred to the refrigerant inside the intermediate heat exchanger. 2. The two-stage compression refrigeration cycle according to claim 1, wherein heat is exchanged directly or indirectly with the refrigeration cycle.
JP21634589A 1989-08-23 1989-08-23 Two-stage compression refrigeration cycle Expired - Lifetime JP2615496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21634589A JP2615496B2 (en) 1989-08-23 1989-08-23 Two-stage compression refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21634589A JP2615496B2 (en) 1989-08-23 1989-08-23 Two-stage compression refrigeration cycle

Publications (2)

Publication Number Publication Date
JPH0379969A true JPH0379969A (en) 1991-04-04
JP2615496B2 JP2615496B2 (en) 1997-05-28

Family

ID=16687096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21634589A Expired - Lifetime JP2615496B2 (en) 1989-08-23 1989-08-23 Two-stage compression refrigeration cycle

Country Status (1)

Country Link
JP (1) JP2615496B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105783320A (en) * 2016-05-09 2016-07-20 珠海格力节能环保制冷技术研究中心有限公司 Air conditioner system
CN109282520A (en) * 2018-10-08 2019-01-29 广东申菱环境系统股份有限公司 Vortex tube and compression compound straight-expansion type air conditioner system and control method
CN110057125A (en) * 2019-05-21 2019-07-26 天津商业大学 A kind of CO of double vortex tube couplings2Double-stage compressive refrigerating system
US11149991B2 (en) * 2019-02-15 2021-10-19 Yang Yoon Seon Heating and cooling apparatus having moisture removal function for testing electrical characteristic of semiconductor element using probe system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105783320A (en) * 2016-05-09 2016-07-20 珠海格力节能环保制冷技术研究中心有限公司 Air conditioner system
CN109282520A (en) * 2018-10-08 2019-01-29 广东申菱环境系统股份有限公司 Vortex tube and compression compound straight-expansion type air conditioner system and control method
CN109282520B (en) * 2018-10-08 2023-12-22 广东申菱环境系统股份有限公司 Vortex tube and compression type combined direct expansion air conditioning system and control method
US11149991B2 (en) * 2019-02-15 2021-10-19 Yang Yoon Seon Heating and cooling apparatus having moisture removal function for testing electrical characteristic of semiconductor element using probe system
CN110057125A (en) * 2019-05-21 2019-07-26 天津商业大学 A kind of CO of double vortex tube couplings2Double-stage compressive refrigerating system
CN110057125B (en) * 2019-05-21 2023-10-20 天津商业大学 Double vortex tube coupled CO 2 Two-stage compression refrigeration system

Also Published As

Publication number Publication date
JP2615496B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
US20210293459A1 (en) Two-pipe enhanced-vapor-injection outdoor unit and multi-split system
JP2004085019A (en) Air conditioner
JP2011153738A (en) Refrigerating cycle device
JPH0379969A (en) Two-stage compression refrigeration cycle
US11300337B2 (en) Outdoor system for air conditioner
JP2005164104A (en) Heat pump device
JPH02309157A (en) Two-stage compression refrigeration cycle device and operation thereof
CN109579357B (en) Multi-online heat pump system with efficient heat recovery function and control method
KR20180093570A (en) Air conditioner
KR100304583B1 (en) Heat pump unit with injection cycle
JP2808899B2 (en) Two-stage compression refrigeration cycle device
JP2646894B2 (en) Refrigeration cycle device
CN109737626A (en) The air-cooled condensate compressor group of low-temperature vortex parallel-connection of the outdoor version with Gas-supplying enthalpy-increasing
JPH04257660A (en) Two stage compression refrigerating cycle device
JPH062965A (en) Two-stage compression refrigerating cycle apparatus
JPH04268165A (en) Double-stage compression and freezing cycle device
CN215808984U (en) Air conditioning system
CN210197767U (en) Heat pump heat source water energy control device
JP3084918B2 (en) Heat pump water heater
JPH03148569A (en) 2-stage compression room cooling, heating and water supplying system
JPH08303879A (en) Refrigerating unit
KR200214007Y1 (en) Air-conditioning apparatus with low compression load
JP2003343934A (en) Device using refrigeration cycle, and air conditioner
JPH03129256A (en) Device for freezing cycle
KR200214003Y1 (en) Heating apparatus with low compression load