JPH0378267A - Excimer laser device - Google Patents

Excimer laser device

Info

Publication number
JPH0378267A
JPH0378267A JP21447289A JP21447289A JPH0378267A JP H0378267 A JPH0378267 A JP H0378267A JP 21447289 A JP21447289 A JP 21447289A JP 21447289 A JP21447289 A JP 21447289A JP H0378267 A JPH0378267 A JP H0378267A
Authority
JP
Japan
Prior art keywords
laser
gas
impurity
laser gas
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21447289A
Other languages
Japanese (ja)
Inventor
Hideto Kawahara
河原 英仁
Koichi Wani
和邇 浩一
Yasuhiro Shimada
恭博 嶋田
Tadaaki Miki
三木 忠明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21447289A priority Critical patent/JPH0378267A/en
Publication of JPH0378267A publication Critical patent/JPH0378267A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a laser output from being lowered until impurity concentration is saturated at the initial stage of laser operation by providing a laser gas purifying device, and encapsulating impurity gas produced during laser oscillation in a discharge tube beforehand. CONSTITUTION:A laser oscillator 1 is supplied with given mixing ratio laser gas from a laser gas supply device 2 and a given amount of impurity from an impurity addition device 4. After completion of the supply of the laser gas and the impurity to the laser gas and the impurity to the laser oscillator 1, there are started simultaneously laser oscillation of the oscillator 1, laser gas purification by a laser gas purifying device 4, and laser gas supply by the device 2 for making constant the laser gas mixing ratio. Since impurity concentration in the laser gas remains unchanged so long as operation conditions of the oscillator 1, the device 2, and the device 3 are altered, the laser output is prevented from being lowered owing to the increase of the impurity concentration and hence a stable laser output can be maintained over a long period.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はエキシマレーザ装置に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to an excimer laser device.

従来の技術 希ガスハロゲンエキシマレーザは紫外域で発振する高出
力・高効率のレーザ光源であり、超LSIリソグラフィ
ーやCVDをはじめとする様々な半導体・光化学プロセ
スの光源として、また穴開け・切断等の超微細加工用ツ
ールとして注目されている。
Conventional technology Rare gas halogen excimer lasers are high-output, high-efficiency laser light sources that oscillate in the ultraviolet region, and are used as light sources for various semiconductor and photochemical processes, including VLSI lithography and CVD, as well as for drilling and cutting. It is attracting attention as a tool for ultra-fine processing.

ところで、希ガスハロゲンエキシマレーザはレーザガス
に反応性の極めて高いハロゲンガスを用いるので、連続
運転時に、ハロゲンガスの減少とそれに伴い発生するレ
ーザガス以外の不純物の増大により、レーザ出力が徐々
に低下していくことが避は難い。このレーザガス寿命の
短さが、応用範囲の拡大を妨げる一つの原因となってお
り、早急な解決が望まれている。
By the way, rare gas halogen excimer lasers use extremely reactive halogen gas as the laser gas, so during continuous operation, the laser output gradually decreases due to a decrease in halogen gas and an accompanying increase in impurities other than the laser gas. It is difficult to avoid going. This short lifetime of the laser gas is one of the reasons that hinders the expansion of the range of applications, and an immediate solution is desired.

従来より、レーザガス長寿命化のためにはレーザガス清
浄化装置を用いるのが一般的である。レーザガス清浄化
装置の方式としては、レーザガスの一部を廃棄すると同
時に新しいレーザガスを供給する「交換式」と、レーザ
ガスの一部を取り出して、その中にあるハロゲンガス及
び不純物を除去し、新たなハロゲンガスを加えてレーザ
本体へ戻してやる「循環精製式」の二つに大別される。
Conventionally, in order to extend the life of laser gas, it has been common to use a laser gas cleaning device. There are two types of laser gas purification equipment: the "replaceable type", which discards part of the laser gas and supplies new laser gas at the same time, and the "replaceable type", which removes part of the laser gas, removes halogen gas and impurities from it, and replaces it with new one. There are two types of ``circulatory purification type'' in which halogen gas is added and returned to the laser body.

発明が解決しようとする課題 希ガスハロゲンエキシマレーザの連続運転時に発生する
不純物の内では、レーザ放電への単位時間当りの入力に
比例して増大するものがレーザ出力低下に特に支配的な
影響を及ぼす。また、その発生源はレーザ放電管内材料
であるため、不純物は半永久的に発生し続けると考えら
れる。不純物増加率を式で表すと(1)式のようになる
Problems to be Solved by the Invention Among the impurities generated during continuous operation of a rare gas halogen excimer laser, those that increase in proportion to the input per unit time to the laser discharge have a particularly dominant effect on the decrease in laser output. affect Further, since the source of impurities is the material inside the laser discharge tube, it is thought that impurities continue to be generated semi-permanently. The impurity increase rate can be expressed as equation (1).

(dm/dt)+=a       −−(1)ここで
、mは不純物濃度、aは不純物の単位時間当りの発生率
(一定)である。
(dm/dt)+=a --(1) Here, m is the impurity concentration, and a is the generation rate (constant) of impurities per unit time.

それに対しレーザガス清浄化装置による不純物除去率は
、その時の不純物濃度及びガス流量(循環式であれば単
位時間当りの循環量、交換式であれば単位時間当りの交
換量)に比例する。式で表すと(2)式のようになる。
On the other hand, the impurity removal rate by the laser gas purifying device is proportional to the impurity concentration and gas flow rate at that time (the amount of circulation per unit time in the case of a circulation type, the amount of exchange per unit time in the case of an exchange type). Expressed as a formula, it is as shown in formula (2).

(dm/d t)x=mr/V   ・旧・・(2)こ
こで、■はガスの全容積(一定)、rは単位時間当りの
ガス流量(一定)である。ただしガス清浄化装置の方式
が「循環式」であれば、(2)式が成立するのは理想的
な場合、すなわち、ガス清浄化装置を通過したレーザガ
スからすべての不純物が除去される場合のみである。
(dm/d t)x=mr/V - Old... (2) Here, ■ is the total volume of gas (constant), and r is the gas flow rate per unit time (constant). However, if the gas purification system is a "circulation type", equation (2) only holds true in the ideal case, that is, when all impurities are removed from the laser gas that has passed through the gas purification system. It is.

時刻tにおける不純物濃度mの変化率d m / dt
は、(1)+(2)で表すことができるから、(3)式
のような微分方程式になる。
Rate of change of impurity concentration m at time t d m / dt
can be expressed as (1)+(2), so it becomes a differential equation like equation (3).

dm/ d t = a −m r/V     ・・
−−(3)(3)式を解くと、不純物濃度mの経時変化
は(4)式で表せる。
dm/dt=a-mr/V...
--(3) When equation (3) is solved, the change in impurity concentration m over time can be expressed by equation (4).

m−(aV/r)11−exp (−r/V)tl・・
・・・・(4) すなわち不純物濃度mは、j −+ coで一定値(a
V/ r )に飽和する。極限時には、ガス流量rを無
限大にすればm=0となり不純物の増大を防げるわけで
あるが、非現実的である。
m-(aV/r)11-exp (-r/V)tl...
...(4) That is, the impurity concentration m is a constant value (a
V/r). In the extreme case, if the gas flow rate r is made infinite, m=0 and an increase in impurities can be prevented, but this is unrealistic.

不純物濃度が飽和した後は、レーザガスの混合比を一定
に保つ方策を講じることによりレーザ出力の安定化を図
ることが可能である。しがし、不純物が徐々に増加しで
ある値に飽和するまでのレーザ出力の低下は防ぎようが
なく、これが大きな問題となっていた。
After the impurity concentration is saturated, it is possible to stabilize the laser output by taking measures to keep the mixing ratio of the laser gas constant. However, as the impurities gradually increase, there is no way to prevent the laser output from decreasing until it reaches a certain value, which has become a major problem.

第4図は従来のKrFエキシマレーザ連続発振中におけ
る不純物のCF、濃度の増大とレーザ出力低下の様子の
一例である。He=94.75%、F 2 =0.25
%、Kr=5%をレーザ放電管に封入し、流量117 
m i nでレーザガス清浄化を行いながらレーザを連
続発振した結果、不純物CF4の濃度が約50ppmで
飽和してレーザ出力が安定するまでに500万ショット
以上を要しその間のレーザ出力の低下率は10数%に達
した。
FIG. 4 shows an example of an increase in CF impurity concentration and a decrease in laser output during continuous oscillation of a conventional KrF excimer laser. He=94.75%, F2=0.25
%, Kr=5% is sealed in a laser discharge tube, and the flow rate is 117
As a result of continuously oscillating the laser while cleaning the laser gas with min, it took more than 5 million shots until the concentration of impurity CF4 was saturated at about 50 ppm and the laser output stabilized, and the rate of decrease in laser output during that time was It reached more than 10%.

本発明はこのような課題を解決するためになされたもの
であり、レーザ運転初期の、不純物濃度が飽和するまで
の間のレーザ出力の低下を防止し、安定したレーザ出力
を得る方法を提供するものである。
The present invention has been made to solve these problems, and provides a method for obtaining stable laser output by preventing a decrease in laser output during the initial stage of laser operation until the impurity concentration is saturated. It is something.

課題を解決するための手段 この課題を解決するために本発明は、レーザガス清浄化
装置を具備し、レーザ発振中に生成される不純物ガスが
予め放電管内に封入されているようにしたものである。
Means for Solving the Problem In order to solve this problem, the present invention is equipped with a laser gas cleaning device, and impurity gas generated during laser oscillation is sealed in advance in the discharge tube. .

作用 このような構成によれば、レーザ連続運転中にレーザガ
ス中の不純物濃度は常に一定値を保つため、レーザ出力
はレーザ運転初期に低下せず、安定した状態を保つこと
ができる。
Effect: According to such a configuration, since the impurity concentration in the laser gas is always maintained at a constant value during continuous laser operation, the laser output does not decrease at the beginning of laser operation and can maintain a stable state.

実施例 第1図は本発明の実施例であるエキシマレーザ装置の概
略図であり、レーザ発振器1.レーザガス供給装置2、
レーザガス清浄化装置3、不純物添加装置4より構成さ
れている。ここでは、ガス清浄化装置として交換式を用
いている。レーザガス供給装置2が所定の混合比のレー
ザガスを、不純物添加装置4が所定量の不純物をそれぞ
れレーザ発振器1に供給する。発明者の実験によると、
たとえばKrFエキシマレーザであれば、出力低下に支
配的な影響を及ぼす不純物はCF4であることがわかっ
ている。添加する不純物としては、CF4だけでよい。
Embodiment FIG. 1 is a schematic diagram of an excimer laser device according to an embodiment of the present invention, in which a laser oscillator 1. laser gas supply device 2,
It is composed of a laser gas cleaning device 3 and an impurity adding device 4. Here, an exchangeable type gas cleaning device is used. A laser gas supply device 2 supplies laser gas at a predetermined mixing ratio, and an impurity addition device 4 supplies a predetermined amount of impurities to the laser oscillator 1. According to the inventor's experiments,
For example, in the case of a KrF excimer laser, it is known that CF4 is an impurity that has a dominant effect on output reduction. As the impurity to be added, only CF4 is sufficient.

ここで、不純物添加量は、実験結果より求めた不純物発
生率aとガス流量rと全ガス容積Vとから算出した(a
V/r)である。
Here, the amount of impurity added was calculated from the impurity generation rate a obtained from the experimental results, the gas flow rate r, and the total gas volume V (a
V/r).

レーザガス及び不純物のレーザ発振器1への供給が終了
した後、レーザ発振器1のレーザ発振、レーザガス清浄
化装置3によるレーザガス清浄化、レーザガス供給装置
2によるレーザガス混合比−変化のためのレーザガス供
給を同時に始める。レーザ発振器1、レーザガス供給装
置2、交換式レーザガス清浄化装置3の運転条件を変え
ない限りレーザガス中の不純物濃度は変化しないから不
純物濃度の増大によるレーザ出力の低下は起こらず、長
期間にわたって安定したレーザ出力を維持することがで
きる。
After the supply of laser gas and impurities to the laser oscillator 1 is completed, laser oscillation of the laser oscillator 1, laser gas cleaning by the laser gas cleaning device 3, and laser gas supply for changing the laser gas mixture ratio by the laser gas supply device 2 are simultaneously started. . The impurity concentration in the laser gas does not change unless the operating conditions of the laser oscillator 1, laser gas supply device 2, and replaceable laser gas purification device 3 are changed, so the laser output does not decrease due to an increase in impurity concentration, and the laser output remains stable over a long period of time. Laser output can be maintained.

第2図は本発明を利用した場合の不純物濃度とレーザ出
力の様子の一例である。He=94.75%、F2=0
.25%、Kr=5%を全圧1 kg / cjでレー
ザ放電管に封入し、さらに不純物CF4を50ppm添
加した後、流量11/minで交換式ガス清浄化装置を
運転しレーザガス清浄化を行うと同時に5%F2(He
希釈)を10m1/m i n余分に添加することによ
りレーザガスの混合比を一定に保ちなからレーザを連続
発振した。
FIG. 2 is an example of the impurity concentration and laser output when the present invention is used. He=94.75%, F2=0
.. 25%, Kr=5% is sealed in a laser discharge tube at a total pressure of 1 kg/cj, and after adding 50 ppm of impurity CF4, the exchangeable gas purifier is operated at a flow rate of 11/min to clean the laser gas. At the same time, 5% F2 (He
By adding an extra 10 ml/min of dilution), the laser was continuously oscillated while keeping the laser gas mixture ratio constant.

不純物CF4の濃度は5Qppmでほぼ一定しており、
レーザ発振初期におけるレーザ出力の低下は見られず安
定していた。
The concentration of impurity CF4 is almost constant at 5Qppm,
No decrease in laser output was observed in the initial stage of laser oscillation, and the laser output remained stable.

第3図はガス清浄化装置として第2図における交換式に
かわって循環式を使用した場合の不純物濃度とレーザ出
力の様子の一例であり、発振条件は第2図の場合と同じ
である。この場合も不純物CF4の濃度は50ppmで
ほぼ一定しており、レーザ発振初期におけるレーザ出力
の低下は見られず安定していた。
FIG. 3 shows an example of the impurity concentration and laser output when a circulating type gas purifying device is used instead of the exchange type shown in FIG. 2, and the oscillation conditions are the same as in FIG. 2. In this case as well, the concentration of the impurity CF4 was approximately constant at 50 ppm, and the laser output was stable without any decrease in the laser output at the initial stage of laser oscillation.

発明の詳細 な説明したように、本発明によれば、エキシマレーザの
運転初期における、レーザガス以外の不純物濃度の増大
によるレーザ出力の低下を防止することができ、長期間
にわたって安定したレーザ出力を維持できるという優れ
た特徴を有するエキシマレーザ装置を提供するものであ
る。
As described in detail, according to the present invention, it is possible to prevent a decrease in laser output due to an increase in the concentration of impurities other than laser gas during the initial stage of operation of an excimer laser, and to maintain stable laser output over a long period of time. The purpose of the present invention is to provide an excimer laser device having excellent features such as:

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す概略図、第2図及び第3
図は本発明を利用した場合の不純物濃度とレーザ出力を
示した図、第4図は従来のエキシマレーザの不純物濃度
とレーザ出力の様子を示した図である。 1・・・・・・レーザ発振器、2・・・・・・レーザガ
ス供給装置、3・・・・・・ガス清浄化装置、4・・・
・・・不純物添加装置。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, FIG. 2 and FIG.
The figure shows the impurity concentration and laser output when the present invention is used, and FIG. 4 shows the impurity concentration and laser output of a conventional excimer laser. 1... Laser oscillator, 2... Laser gas supply device, 3... Gas cleaning device, 4...
...Impurity addition device.

Claims (1)

【特許請求の範囲】[Claims] レーザガス清浄化装置を具備し、レーザ発振中に生成さ
れる不純物ガスが予め放電管内に封入されていることを
特徴とするエキシマレーザ装置。
An excimer laser device equipped with a laser gas cleaning device, characterized in that impurity gas generated during laser oscillation is sealed in advance in a discharge tube.
JP21447289A 1989-08-21 1989-08-21 Excimer laser device Pending JPH0378267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21447289A JPH0378267A (en) 1989-08-21 1989-08-21 Excimer laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21447289A JPH0378267A (en) 1989-08-21 1989-08-21 Excimer laser device

Publications (1)

Publication Number Publication Date
JPH0378267A true JPH0378267A (en) 1991-04-03

Family

ID=16656293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21447289A Pending JPH0378267A (en) 1989-08-21 1989-08-21 Excimer laser device

Country Status (1)

Country Link
JP (1) JPH0378267A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048060A (en) * 1996-11-11 2000-04-11 Toshiba Tec Kabushiki Kaisha Printing medium discharge apparatus used in an ink jet printer
JP2006303174A (en) * 2005-04-20 2006-11-02 Komatsu Ltd Excimer laser apparatus, method for exchanging laser gas, and method for calculating partial gas exchange amount

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048060A (en) * 1996-11-11 2000-04-11 Toshiba Tec Kabushiki Kaisha Printing medium discharge apparatus used in an ink jet printer
JP2006303174A (en) * 2005-04-20 2006-11-02 Komatsu Ltd Excimer laser apparatus, method for exchanging laser gas, and method for calculating partial gas exchange amount
JP4650881B2 (en) * 2005-04-20 2011-03-16 株式会社小松製作所 Excimer laser device, laser gas exchange method and partial gas exchange amount calculation method

Similar Documents

Publication Publication Date Title
JP3072876B2 (en) Etching solution purification method
US4629611A (en) Gas purifier for rare-gas fluoride lasers
US20100086459A1 (en) Impurity removing apparatus and method of operating the same
JP2007243113A (en) Production method, production device, and washing device for gas dissolution washing water
JPH0760914B2 (en) Eximer laser gas purification method and apparatus
CA2082405C (en) Method for extending the gas lifetime of excimer lasers
JPH0378267A (en) Excimer laser device
TW200910446A (en) Etching solution reproducing apparatus and etching solution reproduction method
JPH0378268A (en) Method of oscillating excimer laser
CN108939868B (en) Excimer laser oscillation device with gas recovery function
JP2003178986A5 (en)
JP4872613B2 (en) Gas dissolving cleaning water manufacturing apparatus and manufacturing method
JP4166928B2 (en) Ozone generation method
JPH0429386A (en) Excimer laser
JP3434315B2 (en) Regeneration method of impurity removing device in fluorine-based excimer laser device
JPH0446607B2 (en)
JP6670869B2 (en) Laser gas recycling system and method
JPH0521868A (en) Excimer laser oscillator
JP3591088B2 (en) Semiconductor substrate cleaning equipment
JP2000294856A (en) Ultraviolet laser device and gas for ultraviolet laser
JP2877417B2 (en) Gas laser device
SU772984A1 (en) Gas mixture for cleaning quartz articles
JPS63213239A (en) Cleaning and loading of low pressure discharge lamp
JPS62252183A (en) Gas laser
JPH03194991A (en) Excimer laser device