JPH0377424B2 - - Google Patents

Info

Publication number
JPH0377424B2
JPH0377424B2 JP5480986A JP5480986A JPH0377424B2 JP H0377424 B2 JPH0377424 B2 JP H0377424B2 JP 5480986 A JP5480986 A JP 5480986A JP 5480986 A JP5480986 A JP 5480986A JP H0377424 B2 JPH0377424 B2 JP H0377424B2
Authority
JP
Japan
Prior art keywords
temperature
branch pipe
compressor
temperature sensor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5480986A
Other languages
Japanese (ja)
Other versions
JPS62213655A (en
Inventor
Kyuhei Ishihane
Shigeaki Kuroda
Kensaku Kokuni
Hiroshi Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61054809A priority Critical patent/JPS62213655A/en
Priority to KR1019870000782A priority patent/KR900003052B1/en
Priority to DE8787102333T priority patent/DE3763465D1/en
Priority to US07/016,404 priority patent/US4706469A/en
Priority to EP87102333A priority patent/EP0237822B1/en
Publication of JPS62213655A publication Critical patent/JPS62213655A/en
Publication of JPH0377424B2 publication Critical patent/JPH0377424B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧縮機、室内側熱交換器、室外側熱交
換器、膨脹弁、四方弁を主構成要素として形成さ
れる冷凍サイクルを備えたヒートポンプ式空気調
和機に係り、特に膨脹弁の開度制御に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention comprises a refrigeration cycle formed of a compressor, an indoor heat exchanger, an outdoor heat exchanger, an expansion valve, and a four-way valve as main components. The present invention relates to a heat pump type air conditioner, and in particular to control of the opening degree of an expansion valve.

〔従来の技術〕[Conventional technology]

従来のヒートポンプ式空気調和機として、特開
昭58−208568号に記載のように、圧縮機の吸入配
管および蒸発器の中間にそれぞれ温度センサーを
設置し、各温度センサーによつて吸入ガス温度と
蒸発温度を検出し、両者の温度差が一定となるよ
うに冷媒流量制御弁の開度を調節して流量を制御
する方式がある。
As described in Japanese Patent Application Laid-Open No. 58-208568, a conventional heat pump air conditioner has temperature sensors installed between the suction pipe of the compressor and the evaporator, and each temperature sensor measures the temperature of the intake gas. There is a method of controlling the flow rate by detecting the evaporation temperature and adjusting the opening degree of a refrigerant flow control valve so that the difference between the two temperatures is constant.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記ヒートポンプ式空気調和機においては、暖
房運転時には室外側熱交換器が、冷房運転時には
室内側熱交換器がそれぞれ蒸発器として作用する
ので、蒸発温度検知用の温度センサーが2個必要
となる、つまり冷媒の流量制御に3個の温度セン
サーを具える必要がある。また、室内、室外の熱
負荷変動に伴なつて蒸発器の中間部の冷媒、即ち
温度センサー取付部分の冷媒が過熱したりする場
合があり、常に安定した蒸発温度を検出できず、
正確な流量制御ができなくなる。
In the heat pump air conditioner, the outdoor heat exchanger acts as an evaporator during heating operation, and the indoor heat exchanger acts as an evaporator during cooling operation, so two temperature sensors are required to detect the evaporation temperature. In other words, it is necessary to provide three temperature sensors to control the flow rate of the refrigerant. Additionally, as the heat load changes indoors and outdoors, the refrigerant in the middle of the evaporator, that is, the part where the temperature sensor is attached, may overheat, making it impossible to always detect a stable evaporation temperature.
Accurate flow control becomes impossible.

本発明の目的は、2個の温度センサーによつ
て、常に正確な流量制御を行うことができるヒー
トポンプ式空気調和機を提供することにある。
An object of the present invention is to provide a heat pump type air conditioner that can always perform accurate flow control using two temperature sensors.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、圧縮機の吐出口から四方弁に至る
冷媒配管の途中より立上がるように分岐し、かつ
自由端部を封止した分岐管を設け、この分岐管の
自由端部寄りに、該分岐管内で凝縮される冷媒の
凝縮温度を検出する第1温度センサーを設ける一
方、圧縮機の吐出ガス温度を検出する第2温度セ
ンサーを設け、前記の第1、第2温度センサーに
より検出される凝縮温度と吐出ガス温度との温度
差を算出し、その結果による信号を膨脹弁に与え
て開度を制御する制御器を設ける構成とすること
により、達成される。
The above purpose is to provide a branch pipe that branches upward from the middle of the refrigerant pipe leading from the discharge port of the compressor to the four-way valve and whose free end is sealed, and to install a branch pipe near the free end of the branch pipe. A first temperature sensor is provided to detect the condensation temperature of the refrigerant condensed in the branch pipe, and a second temperature sensor is provided to detect the discharge gas temperature of the compressor, which is detected by the first and second temperature sensors. This is achieved by providing a controller that calculates the temperature difference between the condensation temperature and the discharge gas temperature and provides a signal based on the result to the expansion valve to control the opening degree.

〔作 用〕[Effect]

分岐管に流入した冷媒はその自由端部で外気な
どにより冷却されて凝縮し、その凝縮温度が第1
温度センサーにより検出される。また圧縮機の吐
出ガス温度が第2温度センサーにより検出され、
各温度センサーの検出信号が制御器に入力され
る。制御器は凝縮温度と吐出ガス温度との温度差
を算出し、その結果による信号を膨脹弁に出力し
て開度を制御する。前記分岐管内の凝縮冷媒は流
下して冷凍サイクル内に戻る。
The refrigerant flowing into the branch pipe is cooled by outside air at its free end and condensed, and the condensation temperature reaches the first
Detected by temperature sensor. Further, the discharge gas temperature of the compressor is detected by a second temperature sensor,
Detection signals from each temperature sensor are input to the controller. The controller calculates the temperature difference between the condensation temperature and the discharge gas temperature, and outputs a signal based on the result to the expansion valve to control the opening degree. The condensed refrigerant in the branch pipe flows down and returns into the refrigeration cycle.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図、第2図によ
り説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は本発明によるヒートポンプ式空気調和
機の冷凍サイクル図、第2図は第1図のA部拡大
図を示す。図において、1は圧縮機、2は室内側
熱交換器、3は室外側熱交換器、4は膨脹弁、5
は四方弁で、これら各機器は図示のように配管接
続されて冷凍サイクルを形成している。この冷凍
サイクルにおける圧縮機1の吐出口から四方弁5
に至る配管6には、該配管より分岐する分岐管7
が設けられている。この分岐管7はかぎ形をなし
て立上がるように設けられ、かつ自由端部7aが
封止されている。また分岐管7は裸管のまゝ、あ
るいは冷却フインを有して外気と接触するように
なつている。また、分岐管7の自由端部7a寄り
には、該分岐管7内で凝縮される冷媒の凝縮温度
を検出する第1温度センサー8が設置されてい
る。
FIG. 1 shows a refrigeration cycle diagram of a heat pump type air conditioner according to the present invention, and FIG. 2 shows an enlarged view of section A in FIG. In the figure, 1 is a compressor, 2 is an indoor heat exchanger, 3 is an outdoor heat exchanger, 4 is an expansion valve, 5
is a four-way valve, and these devices are connected via piping as shown to form a refrigeration cycle. From the discharge port of the compressor 1 in this refrigeration cycle to the four-way valve 5
The pipe 6 leading to the pipe has a branch pipe 7 branching from the pipe.
is provided. This branch pipe 7 is provided so as to stand up in a hook shape, and its free end 7a is sealed. The branch pipe 7 may be left as a bare pipe or may be provided with cooling fins so as to be in contact with the outside air. Further, a first temperature sensor 8 is installed near the free end 7a of the branch pipe 7 to detect the condensation temperature of the refrigerant condensed within the branch pipe 7.

一方、圧縮機1の吐出管には、その吐出ガス温
度を検出する第2温度センサー9が設置されてい
る。また、前記の第1、第2温度センサー8,9
により検出される凝縮温度と吐出ガス温度との温
度差を算出し、その結果による信号を膨脹弁4に
出力して開度を制御する制御器10が設けられて
いる。
On the other hand, a second temperature sensor 9 is installed in the discharge pipe of the compressor 1 to detect the temperature of the discharged gas. Further, the first and second temperature sensors 8, 9
A controller 10 is provided that calculates the temperature difference between the condensation temperature detected by and the discharge gas temperature, and outputs a signal based on the result to the expansion valve 4 to control the opening degree.

次に本実施例の作用について説明する。 Next, the operation of this embodiment will be explained.

暖房運転時は、圧縮機1より吐出される高温高
圧の冷媒が四方弁5を通つて室内側熱交換器2に
流入し、ここで空気などにより冷却され凝縮液化
する。その液冷媒は膨脹弁4で減圧された後、室
外側熱交換器3に流入し、ここで外部から熱を吸
収して蒸発する。その後、ガス冷媒は四方弁5を
通つて圧縮機1に吸入される。
During heating operation, high-temperature, high-pressure refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 2 through the four-way valve 5, where it is cooled by air or the like and condensed and liquefied. After the liquid refrigerant is depressurized by the expansion valve 4, it flows into the outdoor heat exchanger 3, where it absorbs heat from the outside and evaporates. Thereafter, the gas refrigerant is drawn into the compressor 1 through the four-way valve 5.

上記の暖房時において、分岐管7内には配管6
を流れるガス冷媒の一部が流入し、外気により冷
却されて凝縮液化する。この液冷媒は分岐管7内
壁に沿つて流下して配管6に戻りサイクル内を循
環する。そして液冷媒が分岐管7内から流出する
と同時に、配管6よりガス冷媒が分岐管7内に流
入する。一方、分岐管7内の液冷媒の凝縮温度は
第1温度センサー8により検出され、圧縮機1の
吐出ガス温度は第2温度センサー9により検出さ
れ、各検出信号は制御器10に入力される。制御
器10は凝縮温度と吐出ガス温度との温度差を算
出し、その結果による信号を膨脹弁4に出力して
開度を制御する。これにより冷媒の流量が制御さ
れる。
During the above-mentioned heating, there is a pipe 6 inside the branch pipe 7.
A part of the gas refrigerant flowing through the pipe flows in, is cooled by the outside air, and condenses into a liquid. This liquid refrigerant flows down along the inner wall of the branch pipe 7, returns to the pipe 6, and circulates within the cycle. Then, at the same time that the liquid refrigerant flows out of the branch pipe 7, the gas refrigerant flows into the branch pipe 7 from the pipe 6. On the other hand, the condensation temperature of the liquid refrigerant in the branch pipe 7 is detected by the first temperature sensor 8, the discharge gas temperature of the compressor 1 is detected by the second temperature sensor 9, and each detection signal is input to the controller 10. . The controller 10 calculates the temperature difference between the condensation temperature and the discharge gas temperature, and outputs a signal based on the result to the expansion valve 4 to control the opening degree. This controls the flow rate of the refrigerant.

冷房運転時は、四方弁5が切換わることによつ
て、圧縮機1より吐出される冷媒が、四方弁5、
室外側熱交換器3、膨脹弁4、室内側熱交換器
2、四方弁5、圧縮機1の順に循環する、即ち暖
房時とは逆に室内側熱交換器2が蒸発器となり、
室外側熱交換器3が凝縮器となる。また、この時
分岐管7内の凝縮温度が第1温度センサー8によ
り検出され、かつ吐出ガス温度が第2温度センサ
ー9により検出され、膨脹弁4の開度が制御され
て冷媒の流量が制御される。
During cooling operation, the four-way valve 5 is switched so that the refrigerant discharged from the compressor 1 is switched between the four-way valve 5,
The outdoor heat exchanger 3, the expansion valve 4, the indoor heat exchanger 2, the four-way valve 5, and the compressor 1 are circulated in this order, that is, the indoor heat exchanger 2 becomes an evaporator, contrary to the heating operation.
The outdoor heat exchanger 3 becomes a condenser. At this time, the condensation temperature in the branch pipe 7 is detected by the first temperature sensor 8, and the discharge gas temperature is detected by the second temperature sensor 9, and the opening degree of the expansion valve 4 is controlled to control the flow rate of the refrigerant. be done.

従つて、本実施例においては、分岐管7の凝縮
温度を検出する第1温度センサー8と、吐出ガス
温度を検出する第2温度センサー9との2個の温
度センサーによつて冷媒の流量を制御することが
できる。また、凝縮温度検出部の分岐管7におい
ては、凝縮した液冷媒が流下してサイクル内に戻
ると同時にガス冷媒が流入するという工程を繰り
返すことになるので、第1温度センサー8により
安定した凝縮温度が検出される。その結果、常に
正確な冷媒流量の制御を行うことができる。
Therefore, in this embodiment, the flow rate of the refrigerant is determined by two temperature sensors: a first temperature sensor 8 that detects the condensation temperature of the branch pipe 7, and a second temperature sensor 9 that detects the discharge gas temperature. can be controlled. In addition, in the branch pipe 7 of the condensation temperature detection section, the process of the condensed liquid refrigerant flowing down and returning to the cycle and the gas refrigerant flowing in at the same time is repeated, so the first temperature sensor 8 ensures stable condensation. Temperature is detected. As a result, accurate control of the refrigerant flow rate can be performed at all times.

尚、本発明においては、第3図に示すように配
管6に、傾斜して立上がる分岐管17を設けるよ
うにしてもよい。
In the present invention, as shown in FIG. 3, the piping 6 may be provided with a branch pipe 17 that rises at an angle.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、2個の温
度センサーによつて常に正確な流量制御を行うこ
とができる。
As explained above, according to the present invention, accurate flow control can always be performed using two temperature sensors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明ヒートポンプ式空気調和機の一
実施例を示す冷凍サイクル図、第2図は第1図の
A部拡大図、第3図は分岐管の変形例を示す図で
ある。 1…圧縮機、2…室内側熱交換器、3…室外側
熱交換器、4…膨脹弁、5…四方弁、7,17…
分岐管、8…第1温度センサー、9…第2温度セ
ンサー、10…制御器。
FIG. 1 is a refrigeration cycle diagram showing one embodiment of the heat pump type air conditioner of the present invention, FIG. 2 is an enlarged view of section A in FIG. 1, and FIG. 3 is a diagram showing a modification of the branch pipe. 1... Compressor, 2... Indoor heat exchanger, 3... Outdoor heat exchanger, 4... Expansion valve, 5... Four-way valve, 7, 17...
Branch pipe, 8...first temperature sensor, 9...second temperature sensor, 10...controller.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、室内側熱交換器、室外側熱交換器、
膨脹弁、四方弁を主構成要素として形成される冷
凍サイクルを備えたヒートポンプ式空気調和機に
おいて、圧縮機の吐出口から四方弁に至る冷媒配
管の途中より立上がるように分岐し、かつ自由端
部を封止した分岐管を設け、この分岐管の自由端
部寄りに、該分岐管内で凝縮される冷媒の凝縮温
度を検出する第1温度センサーを設ける一方、圧
縮機の吐出ガス温度を検出する第2温度センサー
を設け、前記の第1、第2温度センサーにより検
出される凝縮温度と吐出ガス温度との温度差を算
出し、その結果による信号を前記膨脹弁に与えて
開度を制御する制御器を設けたことを特徴とする
ヒートポンプ式空気調和機。
1 Compressor, indoor heat exchanger, outdoor heat exchanger,
In a heat pump air conditioner equipped with a refrigeration cycle formed mainly of an expansion valve and a four-way valve, a refrigerant pipe that branches upward from the middle of the refrigerant pipe from the discharge port of the compressor to the four-way valve, and has a free end. A first temperature sensor is provided near the free end of the branch pipe to detect the condensation temperature of the refrigerant condensed in the branch pipe, and a first temperature sensor is provided near the free end of the branch pipe to detect the temperature of the gas discharged from the compressor. A second temperature sensor is provided to calculate the temperature difference between the condensation temperature detected by the first and second temperature sensors and the discharge gas temperature, and a signal based on the result is provided to the expansion valve to control the opening degree. A heat pump type air conditioner characterized by being equipped with a controller.
JP61054809A 1986-03-14 1986-03-14 Heat pump type air conditioner Granted JPS62213655A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61054809A JPS62213655A (en) 1986-03-14 1986-03-14 Heat pump type air conditioner
KR1019870000782A KR900003052B1 (en) 1986-03-14 1987-01-31 Refrigerant flow control system for use with refrigerator
DE8787102333T DE3763465D1 (en) 1986-03-14 1987-02-19 REFRIGERANT FLOW CONTROL SYSTEM FOR COOLERS.
US07/016,404 US4706469A (en) 1986-03-14 1987-02-19 Refrigerant flow control system for use with refrigerator
EP87102333A EP0237822B1 (en) 1986-03-14 1987-02-19 Refrigerant flow control system for use with refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61054809A JPS62213655A (en) 1986-03-14 1986-03-14 Heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS62213655A JPS62213655A (en) 1987-09-19
JPH0377424B2 true JPH0377424B2 (en) 1991-12-10

Family

ID=12981046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61054809A Granted JPS62213655A (en) 1986-03-14 1986-03-14 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS62213655A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5688961B2 (en) * 2010-12-13 2015-03-25 シャープ株式会社 Air conditioner, expansion valve opening control method and program

Also Published As

Publication number Publication date
JPS62213655A (en) 1987-09-19

Similar Documents

Publication Publication Date Title
KR900003052B1 (en) Refrigerant flow control system for use with refrigerator
CN109520136B (en) Heat pump water heater control method and heat pump water heater
CN106016628B (en) The method and device of air conditioner defrosting control
CN104976840B (en) A kind of control method for electronic expansion valve of wind-cooled cold-water or Hot water units
JP4462435B2 (en) Refrigeration equipment
JP2002089980A (en) Air conditioner
JP5989534B2 (en) Refrigeration system apparatus and air conditioner
JP2666665B2 (en) Multi-room air conditioner
JPH0377424B2 (en)
JP2893844B2 (en) Air conditioner
WO2015045150A1 (en) Air conditioner operation method
JP2534926B2 (en) Multi-room air conditioner
JP2592141B2 (en) Heat pump type air conditioner
JPS6345030B2 (en)
KR880000935B1 (en) Control device for refrigeration cycle
JPH035826Y2 (en)
KR100256317B1 (en) Defrost device and algorithm of heat pump
JPH046371A (en) Multi-room type air-conditioning machine
JPH0579894B2 (en)
JPH03170753A (en) Air conditioner
JPH08189735A (en) Operation control device for air conditioning device
JP2507400B2 (en) Refrigerant heating type air conditioner
JPH0577944B2 (en)
JPH02279966A (en) Air conditioner
JPH08145482A (en) Multi-chamber split type heater