JPH0374819A - Manufacture of laminated ceramic parts - Google Patents

Manufacture of laminated ceramic parts

Info

Publication number
JPH0374819A
JPH0374819A JP21087989A JP21087989A JPH0374819A JP H0374819 A JPH0374819 A JP H0374819A JP 21087989 A JP21087989 A JP 21087989A JP 21087989 A JP21087989 A JP 21087989A JP H0374819 A JPH0374819 A JP H0374819A
Authority
JP
Japan
Prior art keywords
cobalt
iron
oxide
electrode
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21087989A
Other languages
Japanese (ja)
Inventor
Ryo Kimura
涼 木村
Hideyuki Okinaka
秀行 沖中
Yukio Terada
幸男 寺田
Mariko Ishikawa
真理子 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21087989A priority Critical patent/JPH0374819A/en
Publication of JPH0374819A publication Critical patent/JPH0374819A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable simultaneous process of debinder sintering and shorten the process, by adopting a sintering process in air which has not been realized except noble metal material, reducing oxide, forming a cobalt electrode and iron metal, making them base metal electrodes, and forming a laminated ceramic parts. CONSTITUTION:Since ceramic material can be sintered at a temperature lower than or equal to the diffusion temperature of cobalt oxide or iron oxide, the diffusion of cobalt and iron into the ceramic material can be practically prevented when baking is performed in air as it is. Since reduction is performed at a temperature at which the ceramic material is not reduced after the ceramic material is sintered, it is possible to transform cobalt oxide into cobalt and form inner electrodes. That is, in the case of cobalt oxide, the melting point is high and 1998 deg.C, and it is stable; reduction is possible at a temperature higher than or equal to 200 deg.C by using hydrogen gas or the like. In the case of iron oxide, the melting point is high and 1538 deg.C, and it is stable; the reduction is possible at 300 deg.C or more. Thereby the sintering of electrodes and the ceramic material is enabled in air.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は積層セラミック部品の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing laminated ceramic parts.

従来の技術 積層セラミック部品はチップコンデンサ、チップインダ
クタ、多層配線基板などに多く見られる。とりわけセラ
ミックコンデンサでは、最も電極材料と誘電体材料の積
層化技術が進み、積層数も数10層〜100層に及んで
いる。今後とも、ますます高密度実装技術の進展ととも
に各種チップ部品に対する高積層化技術の開発は進めら
れるものと思われる。このように高積層化が進むと電極
材料は材料コスト的に高価なことから、コストに占める
ウエートがますます高くなる一方である。そして、電極
材料は電子部品において重要な材料であり、低コスト化
が最も望まれている材料の一つである。
Conventional technology Multilayer ceramic components are often found in chip capacitors, chip inductors, multilayer wiring boards, etc. In particular, in ceramic capacitors, the technology for laminating electrode materials and dielectric materials is most advanced, and the number of laminated layers ranges from several tens to 100 layers. It is expected that the development of highly laminated technology for various chip components will continue in the future as high-density packaging technology advances. As the number of layers becomes higher and higher, electrode materials become more expensive in terms of material cost, so their weight in the cost will only continue to increase. Electrode materials are important materials in electronic components, and are one of the materials for which cost reduction is most desired.

一般的に、チップコンデンサに用いられる誘電体磁器(
例えばチタン酸バリウム)の焼結温度は高いことから、
内部電極にはPt、Pd、Au。
Dielectric porcelain (generally used for chip capacitors)
For example, barium titanate) has a high sintering temperature, so
The internal electrodes are Pt, Pd, and Au.

Agなどの融点が高く、しかも高温で酸化されにくい貴
金属が使われてきた。しかし近年、低コスト化が要望さ
れ、それに呼応してBaTiOs系の磁器誘電体では、
Agの構成比が多いAg−Pd合金が使用できる低温焼
結型の磁器誘電体の開発が活発になってきた(例えば、
特開昭62−20201号公報などがある)。また、高
誘電率を示す鉛系誘電体もPb (Mgw3Nb2/z
 )03を主原料とした、900℃〜950℃で焼結さ
れるものが既に市販されている。しかしながら、こ゛れ
らの誘電体の電極にも、依然としてAgの構成比は多く
なったとは言うものの、Ag−Pd系の高価な材料が使
用されている。現状では、前記のような理由から依然と
してチップコンデンサに占める電極のコストが高く、チ
ップコンデンサのコストを下げる有効な手段には至って
いない。そこで最近では、Agよりもはるかにコストが
安いCu、Niなとの卑金属を内部電極に使用する検討
が種々なされている(例えば特開昭58−68803号
公報などがある)。しかし、これらの方法も焼結時には
内部電極の酸化を防ぐために窒素中または還元雰囲気中
で焼成する必要があり、コストに占めるガス化が無視で
きないことや、中性ガス雰囲気とはいえ高温で焼成する
ため誘電体が還元気味になり、十分に焼結しなかったり
して特性のバラツキが起こるなどの問題がある。
Precious metals such as Ag, which have a high melting point and are resistant to oxidation at high temperatures, have been used. However, in recent years, there has been a demand for lower costs, and in response to this demand, BaTiOs-based porcelain dielectrics
The development of low-temperature sintered porcelain dielectric materials that can use Ag-Pd alloys with a high composition ratio of Ag has become active (for example,
(Japanese Unexamined Patent Publication No. 62-20201, etc.). In addition, lead-based dielectrics exhibiting a high dielectric constant are Pb (Mgw3Nb2/z
)03 as the main raw material and is sintered at 900°C to 950°C is already commercially available. However, even though the composition ratio of Ag has increased, expensive Ag-Pd based materials are still used for these dielectric electrodes. At present, for the reasons mentioned above, the cost of electrodes in chip capacitors is still high, and no effective means have been found to reduce the cost of chip capacitors. Therefore, recently, various studies have been made to use base metals such as Cu and Ni, which are much cheaper than Ag, for the internal electrodes (for example, Japanese Patent Laid-Open No. 58-68803). However, these methods also require sintering in nitrogen or a reducing atmosphere to prevent oxidation of the internal electrodes, and the cost of gasification cannot be ignored, and even in a neutral gas atmosphere, sintering is required at high temperatures. As a result, the dielectric material tends to be reduced, causing problems such as insufficient sintering and variations in properties.

発明が解決しようとする課題 前記したように低温焼結の可能なセラミック材料が開発
され、電極ペーストもAg−Pd、あるいはAgの含有
量の多い低コストなものに移行されつつあるが、それで
もCu、Niなどに比べ10倍もの価格差があり、その
コストに占める割合は非常に高く、低価格で小型大容量
な積層セラミックコンデンサ、セラミックチップインダ
クタ、あるいは高密度実装を実現できるセラミック積層
回路基板などの各種積層セラミック部品を得るという目
的を満足し得ていない。また、最近では特開昭63−1
5407号公報に開示されるようなCu、Niなとの卑
金属を用いた積層セラミックコンデンサが開発されつつ
あるが、これらの方法も焼結時には内部電極の酸化を防
ぐために窒素中あるいは還元雰囲気中で焼成する必要が
あり、窒素の純度管理や焼成時の酸素濃度管理をしなけ
ればならず、コストに占めるガス化も無視できない。さ
らには、中性ガス雰囲気中とはいえ、高温で焼成するた
め誘電体が還元気味になり、焼結が不十分になりやすく
、内部電極の卑金属材料が誘電体セラミック中に拡散し
て特性の変動を起こすなどの問題がある。
Problems to be Solved by the Invention As mentioned above, ceramic materials that can be sintered at low temperatures have been developed, and electrode pastes are being shifted to Ag-Pd or low-cost materials with a high content of Ag. There is a price difference of 10 times compared to Ni, etc., and it accounts for a very high proportion of the cost, such as low-cost, small-sized, large-capacity multilayer ceramic capacitors, ceramic chip inductors, and ceramic multilayer circuit boards that can realize high-density packaging. However, the purpose of obtaining various laminated ceramic parts cannot be satisfied. Also, recently, Japanese Patent Application Publication No. 63-1
Multilayer ceramic capacitors using base metals such as Cu and Ni are being developed as disclosed in Japanese Patent No. 5407, but these methods also require sintering in nitrogen or a reducing atmosphere to prevent oxidation of the internal electrodes. It is necessary to perform firing, and the purity of nitrogen and oxygen concentration during firing must be controlled, and the cost of gasification cannot be ignored. Furthermore, since the dielectric is fired at high temperatures even in a neutral gas atmosphere, the dielectric tends to be reduced, resulting in insufficient sintering, and the base metal material of the internal electrodes diffuses into the dielectric ceramic, causing its characteristics to deteriorate. There are problems such as fluctuations.

本発明は前記のような課題を解決し、安価な電極材料を
使用し、しかもプロセス的にもガス化を節約できるとと
もに特性のバラツキが少ない積層セラミック部品の製造
方法を提供することを目的とするものである。
It is an object of the present invention to solve the above-mentioned problems, and to provide a method for manufacturing laminated ceramic parts that uses inexpensive electrode materials, saves on gasification in terms of process, and has less variation in properties. It is something.

課題を解決するための手段 本発明は前記問題点を解決するため、セラミック材料と
有機バインダーと可塑剤とを含む生シート上に酸化コバ
ルトまたは酸化鉄を主成分とするペーストで内部電極を
形成したものを、複数枚積層して積層体を形成する工程
と、前記積層体を空気中で脱バインダー及び焼成して焼
結体を形成する工程と、前記焼結体を水素または水素を
含む混合ガス中で熱処理して前記酸化コバルト層または
酸化鉄層を還元し内部電極とする工程と、この内部電極
に導通する外部端子電極を前記積層体外に形成する工程
とにより、積層セラミック部品を得ようとするものであ
る。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention forms internal electrodes with a paste containing cobalt oxide or iron oxide as a main component on a raw sheet containing a ceramic material, an organic binder, and a plasticizer. a step of stacking a plurality of materials to form a laminate; a step of debinding and firing the laminate in air to form a sintered body; and a step of heating the sintered body with hydrogen or a mixed gas containing hydrogen. A multilayer ceramic component is obtained by a step of heat-treating the cobalt oxide layer or iron oxide layer to form an internal electrode, and a step of forming an external terminal electrode electrically connected to the internal electrode outside the laminate. It is something to do.

作用 前記のような本発明の方法によればセラミック材料の焼
結温度は酸化コバルトまたは酸化鉄の拡散する温度以下
で焼結することができるため、空気中で酸化コバルトま
たは酸化鉄のまま焼成してもコバルト、鉄のセラミック
材料への拡散は実用上防止できる。そして、セラミック
材料の焼結後にセラミック材料が還元されない温度にて
還元されることにより、酸化コバルトをコバルトに変え
て内部電極とする。ここで、酸化コバルトの場合、融点
が1998℃と高く熱的に安定な材料であり、200℃
以上の温度にて還元性のガス、例えば水素ガス、アンモ
ニアガスにて還元することによって金属コバルトとなる
ことが知られている。このようにして還元されたコバル
トにて内部電極を形成して積層セラミック部品が形成で
きるようになるのである。同様にして酸化鉄は融点が1
538℃と高く熱的に安定な材料であり、300℃以上
の温度にて還元性のガス、例えば水素ガス、アンモニア
ガスにて還元することによって金属鉄となることが知ら
れている。したがって、本発明は電極とセラミック材料
との焼結を空気中で行えるため、窒素などの中性ガス雰
囲気中あるいは水素などの還元雰囲気中で焼成する必要
がなく、雰囲気処理の必要な工程は、焼結後に酸化コバ
ルトをコバルトに、または酸化鉄を鉄に還元する工程の
みになり、大幅なガス代の節約と中性雰囲気、還元雰囲
気中における焼成時のような特性のバラツキがなくなる
などの大きな利点が得られることとなる。
Effects According to the method of the present invention as described above, the ceramic material can be sintered at a temperature lower than the temperature at which cobalt oxide or iron oxide diffuses. However, diffusion of cobalt and iron into ceramic materials can be practically prevented. After the ceramic material is sintered, the ceramic material is reduced at a temperature at which it is not reduced, thereby converting the cobalt oxide into cobalt to form the internal electrode. In the case of cobalt oxide, it is a thermally stable material with a high melting point of 1998°C, and
It is known that metallic cobalt can be obtained by reduction with a reducing gas such as hydrogen gas or ammonia gas at the above temperature. In this way, the reduced cobalt can be used to form internal electrodes to form a multilayer ceramic component. Similarly, iron oxide has a melting point of 1
It is a material that is thermally stable at a high temperature of 538°C, and is known to become metallic iron by being reduced with a reducing gas such as hydrogen gas or ammonia gas at a temperature of 300°C or higher. Therefore, in the present invention, since the electrode and the ceramic material can be sintered in air, there is no need to sinter the electrode in a neutral gas atmosphere such as nitrogen or in a reducing atmosphere such as hydrogen, and the steps that require atmospheric treatment are After sintering, only the process of reducing cobalt oxide to cobalt or iron oxide to iron is required, which greatly reduces gas costs and eliminates the variation in properties that occurs when firing in a neutral or reducing atmosphere. Benefits will be obtained.

実施例 以下に本発明の実施例について具体的に説明する。Example Examples of the present invention will be specifically described below.

〈実施例1〉 まず、誘電体材料としてチタン酸バリウムを主成分とす
る高誘電率系誘電体材料を用いて、その平均粒径が0.
2μmに分布した誘電体粉体材料をポリポット中に各2
00g採取し、それぞれにポリビニルブチラール20g
、ブチルベンジルフタレート9g、トルエン150cc
、エタノール80ccを加えて撹拌後、ボールミル中で
16Hr混合し、スラリーを作製した。次に、このスラ
リーを用いてドクターブレード法で有機フィルム上に造
膜して、厚さ40μmの生シートを得た。次いで、平均
粒径が0.5μm、1.0μm。
<Example 1> First, a high dielectric constant dielectric material containing barium titanate as a main component was used as a dielectric material, and its average particle size was 0.
Dielectric powder material with a distribution of 2 μm was placed in each polypot.
00g was collected and 20g of polyvinyl butyral was added to each.
, butylbenzyl phthalate 9g, toluene 150cc
After adding and stirring 80 cc of ethanol, the mixture was mixed in a ball mill for 16 hours to prepare a slurry. Next, this slurry was used to form a film on an organic film using a doctor blade method to obtain a green sheet with a thickness of 40 μm. Next, the average particle diameter is 0.5 μm and 1.0 μm.

1.5μmの酸化コバルト(Coo)各Logと、ポリ
ブチルメタアクリレート(PBMA)をターピネオール
に溶かしたビヒクル3ccを加え、三段ロールで混練し
、酸化ニッケルペーストを作製した。この導体ペースト
を前記加工済の生シート上にスクリーン印刷して電極パ
ターンを形成した。
Each Log of 1.5 μm cobalt oxide (Coo) and 3 cc of a vehicle in which polybutyl methacrylate (PBMA) was dissolved in terpineol were added and kneaded with a three-stage roll to prepare a nickel oxide paste. This conductor paste was screen printed on the processed raw sheet to form an electrode pattern.

同様にして作製した電極形成済生シートを生シート上の
電極が生シートを介して対抗電極として構成されるよう
に積層した。ここで、生シート1層当たりの厚みは40
μmコンデンサとして作用する有効面積は2.4− で
5層の積層体とした。次に、熱プレスで70℃ 250
 kg / cdの圧力でラミネートしてシートを圧縮
成形した後、所定の寸法に切断した。このようにして誘
電体材料と酸化コバルトのチップ積層体を用意した。第
1図に積層後の断面を示し、1はチタン酸バリウム化合
物を含有する誘電体生シート、2は酸化コバルト内部電
極である。
The electrode-formed raw sheets produced in the same manner were stacked so that the electrode on the raw sheet was configured as a counter electrode with the raw sheet interposed therebetween. Here, the thickness per layer of raw sheet is 40
The effective area acting as a μm capacitor was 2.4-2, and it was a 5-layer laminate. Next, heat press at 70℃ 250
After laminating and compression molding the sheet at a pressure of kg/cd, it was cut into predetermined dimensions. In this way, a chip stack of dielectric material and cobalt oxide was prepared. FIG. 1 shows a cross section after lamination, where 1 is a dielectric green sheet containing a barium titanate compound, and 2 is a cobalt oxide internal electrode.

次に、この積層体を空気中で100℃/hrの昇降温速
度で1250℃で2時間保持し、脱バインダーと焼結を
同時に行った。焼成後、焼結体を水素100%の雰囲気
炉中で250℃で2時間熱処理し、酸化コバルトをコバ
ルトに還元した。還元後、外部電極を取付けるため、金
属コバルトペーストを塗布し、窒素雰囲気中にて600
℃で焼付け、内部電極2に導通する外部電極を積層体外
に設けて積層セラミックコンデンサを作製した。
Next, this laminate was held in air at 1250° C. for 2 hours at a temperature increase/decrease rate of 100° C./hr to perform binder removal and sintering simultaneously. After firing, the sintered body was heat-treated at 250° C. for 2 hours in a 100% hydrogen atmosphere furnace to reduce cobalt oxide to cobalt. After reduction, in order to attach the external electrode, a metallic cobalt paste was applied and heated for 600 minutes in a nitrogen atmosphere.
A multilayer ceramic capacitor was manufactured by baking at a temperature of 0.degree. C. and providing an external electrode conductive to the internal electrode 2 outside the multilayer body.

第2図は本発明方法による製造工程図を示している。FIG. 2 shows a manufacturing process diagram according to the method of the present invention.

このようにして得られた積層セラミックコンデンサの特
性を比較するため、静電容量、誘電損失、縁抵抗などの
電気特性を測定した。本発明の方法と従来方法(パラジ
ウム電極を内部電極として構成され、積層数その他は同
一条件で作製された積層セラミックコンデンサ)の特性
を比較するため、従来方法で積層セラミックコンデンサ
を作製したものを比較に供した。下記の第1表に静電容
量、誘電損失、絶縁抵抗(IR)などの特性結果を示す
In order to compare the characteristics of the multilayer ceramic capacitors obtained in this way, electrical characteristics such as capacitance, dielectric loss, and edge resistance were measured. In order to compare the characteristics of the method of the present invention and the conventional method (a multilayer ceramic capacitor configured with a palladium electrode as an internal electrode and manufactured under the same conditions including the number of laminated layers), a multilayer ceramic capacitor manufactured using the conventional method was compared. Served. Table 1 below shows the results of characteristics such as capacitance, dielectric loss, and insulation resistance (IR).

第1表から明らかなように、本発明方法によれば従来の
方法と比べてチップコンデンサ特性として十分に満足す
るものが得られることが解る。また、電極材料コストは
パラジウムに比較して圧倒的に安価であり、工程的に還
元工程を含むが、還元温度が低いことと水素濃度管理が
厳しくないことから、チップコンデンサを大量に処理す
ることができるために、プロセスコスト、材料コストを
考慮して約10分の1に製造コストが下げられることが
可能である。
As is clear from Table 1, it can be seen that the method of the present invention provides sufficiently satisfactory chip capacitor characteristics compared to the conventional method. In addition, the electrode material cost is overwhelmingly cheaper than palladium, and although the process includes a reduction process, the reduction temperature is low and hydrogen concentration control is not strict, making it possible to process chip capacitors in large quantities. Therefore, the manufacturing cost can be reduced to about 1/10 in consideration of process cost and material cost.

〈実施例2〉 まず、誘電体材料としてチタン酸バリウムを主成分とす
る高誘電率系誘電体材料を用いて、その平均粒径が0.
2μmに分布した誘電体粉体材料をポリポット中に各2
00g採取し、それぞれにポリビニルブチラール20g
、ブチルベンジルフタレート9g、トルエン150oc
、エタノール80ocを加えて撹拌後、ボールミル中で
16Hr混合し、スラリーを作製した。次に、このスラ
リーを用いてドクターブレード法で有機フィルム上に造
膜して、厚さ40μmの生シートを得た。次いで、平均
粒径が1.0μm、1.5μm。
<Example 2> First, a high dielectric constant dielectric material containing barium titanate as a main component was used as a dielectric material, and its average particle size was 0.
Dielectric powder material with a distribution of 2 μm was placed in each polypot.
00g was collected and 20g of polyvinyl butyral was added to each.
, butylbenzyl phthalate 9g, toluene 150oc
After adding 80 oc of ethanol and stirring, the mixture was mixed in a ball mill for 16 hours to prepare a slurry. Next, this slurry was used to form a film on an organic film using a doctor blade method to obtain a green sheet with a thickness of 40 μm. Next, the average particle diameter is 1.0 μm and 1.5 μm.

2.0μmの酸化鉄(Fe203)各Logと、ポリブ
チルメタアクリレート(PBMA)をターピネオールに
溶かしたビヒクル3ωを加え、三段ロールで混練し、酸
化ニッケルペーストを作製した。この導体ペーストを前
記加工済の生シート上にスクリーン印刷して電極パター
ンを形成した。
Each Log of iron oxide (Fe203) of 2.0 μm and a vehicle 3ω in which polybutyl methacrylate (PBMA) was dissolved in terpineol were added and kneaded with a three-stage roll to prepare a nickel oxide paste. This conductor paste was screen printed on the processed raw sheet to form an electrode pattern.

同様にして作製した電極形成済生シートを生シート上の
電極が生シートを介して対抗電極として構成されるよう
に積層した。ここで、生シート1層当たりの厚みは40
μm、コンデンサとして作用する有効面積は2.4m2
で5層の積層体とした。
The electrode-formed raw sheets produced in the same manner were stacked so that the electrode on the raw sheet was configured as a counter electrode with the raw sheet interposed therebetween. Here, the thickness per layer of raw sheet is 40
μm, effective area that acts as a capacitor is 2.4m2
A 5-layer laminate was obtained.

次に、熱プレスで70℃−250kg/c−の圧力でラ
ミネートしてシートを圧縮成形した後、所定の寸法に切
断した。このようにして誘電体材料と酸化鉄のチップ積
層体を用意した。次に、この積層体を空気中で100℃
/ h rの昇降温速度で1250℃で2時間保持し、
脱バインダーと焼結を同時に行った。焼成後、焼結体を
水素100%の雰囲気炉中で400℃で2時間熱処理し
、酸化鉄を鉄に還元した。還元後、外部電極を取付ける
ため、銅ペーストを塗布し、窒素雰囲気中にて600℃
で焼付け、内部電極に導通する外部電極を積層体外に設
けて積層セラミックコンデンサを作製した。このように
して得られた積層セラミックコンデンサの特性を比較す
るため、静電容量。
Next, the sheets were laminated using a hot press at a pressure of 70° C. and 250 kg/c and compression molded, and then cut into predetermined dimensions. In this way, a chip stack of dielectric material and iron oxide was prepared. Next, this laminate was heated to 100°C in air.
Hold at 1250 °C for 2 hours at a temperature increase/decrease rate of / hr,
Binder removal and sintering were performed simultaneously. After firing, the sintered body was heat treated at 400° C. for 2 hours in a 100% hydrogen atmosphere furnace to reduce iron oxide to iron. After reduction, in order to attach external electrodes, apply copper paste and heat at 600°C in a nitrogen atmosphere.
A multilayer ceramic capacitor was fabricated by baking the multilayer ceramic capacitor with an external electrode connected to the internal electrode outside the multilayer body. In order to compare the characteristics of the multilayer ceramic capacitors obtained in this way, we measured the capacitance.

誘電損失、絶縁抵抗などの電気特性を測定した。Electrical properties such as dielectric loss and insulation resistance were measured.

ここで、本発明の方法と従来方法(パラジウム電極を内
部電極として構成された積層セラミックコンデンサ)の
特性を比較するため、従来方法で積層セラミックコンデ
ンサを作製したものを比較に供した。下記の第2表に静
電容量、誘電損失、絶縁抵抗などの特性結果を示す。
Here, in order to compare the characteristics of the method of the present invention and the conventional method (a multilayer ceramic capacitor configured with a palladium electrode as an internal electrode), a multilayer ceramic capacitor manufactured by the conventional method was used for comparison. Table 2 below shows the results of characteristics such as capacitance, dielectric loss, and insulation resistance.

(以 下 余 白) 第2表から明らかなように、本発明によれば従来の方法
と比べてチップコンデンサ特性として十分に満足するも
のが得られることが解る。また、電極材料コストはパラ
ジウムに比較して圧倒的に安価であり、工程的に還元工
程を含むが、還元温度が低いことと水素濃度管理が厳し
くないことから、チップコンデンサを大量に処理するこ
とができるため、プロセスコスト、材料コストを考慮し
て約10分の1に製造コストが下げられることが可能で
ある。
(Margins below) As is clear from Table 2, it can be seen that according to the present invention, fully satisfactory chip capacitor characteristics can be obtained compared to the conventional method. In addition, the electrode material cost is overwhelmingly cheaper than palladium, and although the process includes a reduction process, the reduction temperature is low and hydrogen concentration control is not strict, making it possible to process chip capacitors in large quantities. Therefore, it is possible to reduce the manufacturing cost to about 1/10 in consideration of process cost and material cost.

〈実施例3〉 多層配線基板を作製するために、Al2O3を主成分と
し、フリットとしてホウケイ酸鉛系のガラスが2 w 
t%添加された平均粒径が0.5μmと2μmに分布し
た絶縁体材料2種類をポリポット中に各200g採取し
、以下実施例1と同様にして40μmの生シート2種類
を得た。次に、平均粒径が1.0〜2.3μmの炭酸コ
バルト、水酸化コバルト、硝酸コバルト各10gと、ポ
リブチルメタアクリレート(PBMA)をターピネオー
ルに溶かしたビヒクル3ωを加え、三段ロールで混練し
、コバルト化合物ペーストを作製した。そして、多層配
線基板は配線回路が構成されたシートが3次元的に配置
されたものであり、作製方法はスルホール工程を追加す
るのみにてほぼ前記実施例1と同様にして、印刷、積層
、スルホール工程を繰り返し、各回路ブロック単位に切
断、焼成を行って得られるものである。そして、焼成後
、焼結体を水素50%、窒素50%の雰囲気炉中で25
0℃、4時間還元処理し、空気中焼成によって酸化コバ
ルトに変化したコバルト化合物を金属コバルトに還元し
た。このようにして得られた多層配線基板におけるコバ
ルトは抵抗値が実用上十分に低く、マイグレーションに
優れた電極であり、絶縁層としてのAl2O3層は優れ
た絶縁抵抗などの電気特性を示した。
<Example 3> In order to produce a multilayer wiring board, the main component was Al2O3, and 2w of lead borosilicate glass was used as the frit.
200g of each of two types of insulating materials with t% added and having average particle diameters distributed between 0.5 μm and 2 μm were collected in a polypot, and the same procedure as in Example 1 was carried out to obtain two types of 40 μm raw sheets. Next, 10 g each of cobalt carbonate, cobalt hydroxide, and cobalt nitrate with an average particle size of 1.0 to 2.3 μm and a vehicle 3ω containing polybutyl methacrylate (PBMA) dissolved in terpineol were added and kneaded with a three-stage roll. A cobalt compound paste was prepared. The multilayer wiring board is a three-dimensional arrangement of sheets on which wiring circuits are constructed, and the manufacturing method is almost the same as in Example 1, except that a through-hole process is added, such as printing, laminating, It is obtained by repeating the through-hole process, cutting and firing each circuit block. After firing, the sintered body is placed in an atmosphere furnace containing 50% hydrogen and 50% nitrogen for 25 minutes.
Reduction treatment was carried out at 0° C. for 4 hours, and the cobalt compound, which had been changed into cobalt oxide by firing in air, was reduced to metallic cobalt. The cobalt in the thus obtained multilayer wiring board had a resistance value sufficiently low for practical use and was an electrode with excellent migration, and the Al2O3 layer as an insulating layer showed excellent electrical properties such as insulation resistance.

なお、本実施例では絶縁層としてAl2O3を主体とす
る材料のみを例示したが、酸化コバルトの融点以下で焼
結するセラミック絶縁体材料(例えばフォルステライト
、ステアタイト、マグネシア、チタニア系絶縁体材料)
であれば、本発明の方法を適用できることは言うまでも
ない。
In this example, only materials mainly composed of Al2O3 were used as the insulating layer, but ceramic insulator materials that sinter at a temperature below the melting point of cobalt oxide (for example, forsterite, steatite, magnesia, titania-based insulator materials) may also be used.
If so, it goes without saying that the method of the present invention can be applied.

〈実施例4〉 多層配線基板を作製するために、Al2O3を主成分と
し、フリットとしてホウケイ酸鉛系のガラスが2wt%
添加された平均粒径が0.5μmと2μmに分布した絶
縁体材料2種類をポリポット中に各200g採取し、以
下実施例1と同様にして40μmの生シート2種類を得
た。次に、平均粒径が1.5μmの炭酸鉄、2.0am
の水酸化鉄、1.3μmの硝酸鉄各Logと、ポリブチ
ルメタアクリレート(PBMA)をターピネオールに溶
かしたビヒクル3のを加え、三段ロールで混練し、コバ
ルト化合物ペーストを作製した。そして、多層配線基板
は配線回路が構成されたシートが3次元的に配置された
ものであり、作製方法はスルホール工程を追加するのみ
にてほぼ実施例1と同様にして1.印刷、積層、スルホ
ール工程を繰り返し、各回路ブロック単位に切断、焼成
を行って得られるものである。焼成後、焼結体を水素8
0%、窒素20%の雰囲気炉中で400℃、5時間還元
処理し、空気中焼成によって鉄化合物から酸化、鉄に変
化した酸化鉄を金属鉄に還元した。
<Example 4> In order to produce a multilayer wiring board, the main component was Al2O3, and 2wt% lead borosilicate glass was used as the frit.
200g of each of two kinds of insulating materials added with average particle diameters distributed at 0.5 μm and 2 μm were collected in a polypot, and the same procedure as in Example 1 was carried out to obtain two kinds of raw sheets of 40 μm. Next, iron carbonate with an average particle size of 1.5 μm, 2.0 am
Iron hydroxide of 1.3 μm, iron nitrate of 1.3 μm, and Vehicle 3 in which polybutyl methacrylate (PBMA) was dissolved in terpineol were added and kneaded with a three-stage roll to prepare a cobalt compound paste. The multilayer wiring board is one in which sheets each having a wiring circuit are arranged three-dimensionally, and the manufacturing method is similar to that of Example 1 except that a through-hole process is added. It is obtained by repeating printing, laminating, and through-hole processes, and then cutting and firing each circuit block. After firing, the sintered body is heated with hydrogen 8
A reduction treatment was performed at 400° C. for 5 hours in an atmospheric furnace containing 0% nitrogen and 20% nitrogen, and iron oxide, which had been oxidized and changed from an iron compound to iron by firing in air, was reduced to metallic iron.

このようにして得られた多層配線基板は、電極としての
鉄は抵抗値が実用上十分に低く、マイグレーションに優
れ、絶縁層としてのAl2O3層は優れた絶縁抵抗など
の電気特性を示した。
In the multilayer wiring board thus obtained, the iron as the electrode had a sufficiently low resistance for practical use and had excellent migration, and the Al2O3 layer as the insulating layer showed excellent electrical properties such as insulation resistance.

なお、本実施例では絶縁層としてAl2O3を主体とす
る材料のみを例示したが、酸化コバルトの融点以下で焼
結するセラミック絶縁体材料(例えばフォルステライト
、ステアタイト、マグネシア、チタニア系絶縁体材料〉
であれば、本発明の方法を適用できることは言うまでも
ない。
In this example, only materials mainly composed of Al2O3 were used as the insulating layer, but ceramic insulator materials that sinter at a temperature below the melting point of cobalt oxide (for example, forsterite, steatite, magnesia, titania-based insulator materials) may also be used.
If so, it goes without saying that the method of the present invention can be applied.

〈実施例5〉 磁性体粒子として粒径1.5μmのNi−Znフェライ
ト粉を準備し、ポリポット中に200g採取し、以下実
施例1と同様にして40μmの生シートを得た。一方、
硝酸コバルトをバインダーとしてエチルセルローズ、溶
媒としてα−テレピネオールを用いてペースト化する。
<Example 5> Ni-Zn ferrite powder with a particle size of 1.5 μm was prepared as magnetic particles, 200 g was collected in a polypot, and a raw sheet of 40 μm was obtained in the same manner as in Example 1. on the other hand,
A paste is formed using cobalt nitrate as a binder, ethyl cellulose, and α-terpineol as a solvent.

その後、磁性体シートと硝酸コバルトペーストを用いて
生シート上に交互に印刷、積層、スルホール印刷を行い
、硝酸コバルトの印刷パターンがスパイラル状に構成さ
れる電極構成とする。これはスパイラル状に構成された
電極を磁性粒子が埋めこんだ構造をしている。
Thereafter, printing, lamination, and through-hole printing are performed alternately on the raw sheet using magnetic sheets and cobalt nitrate paste, thereby forming an electrode configuration in which the printed pattern of cobalt nitrate is formed in a spiral shape. This has a structure in which a spiral electrode is embedded with magnetic particles.

そして、印刷、積層されたインダクター材料はチップサ
イズに切断され、1250℃−2時間の焼成条件にて焼
成される。このようにして焼結されたインダクタンス部
品は水素10%−アンモニア10%−窒素80%の雰囲
気中にて230℃3時間の還元条件にて還元し、コバル
トルミ極を形成する。このようにして得られたインダク
タンス部品は1mHの特性を有するチップインダクトが
得られた。
The printed and laminated inductor material is then cut into chip sizes and fired under firing conditions of 1250°C for 2 hours. The inductance component thus sintered is reduced under reducing conditions of 230° C. for 3 hours in an atmosphere of 10% hydrogen, 10% ammonia and 80% nitrogen to form a cobalt luminode. The inductance component thus obtained was a chip inductor having a characteristic of 1 mH.

なお、本発明においては、内部電極材料として熱処理す
ることによって酸化コバルトとなる炭酸コバルト、硝酸
コバルト、水酸化コバルトのうち、少なくともいずれか
1種類を用いてもよく、さらには酸化コバルトを含むこ
れらの混合粉を用いても本発明の方法を適用できること
は言うまでもない。また、同様にして熱処理することに
よって酸化鉄となる炭酸鉄、硝酸鉄、水酸化鉄のうち、
少なくともいずれか1種類を用いてもよく、さらには酸
化鉄を含むこれらの混合粉を用いても本発明の方法を適
用できるものである。そして、酸化コバルトと酸化鉄の
混合粉を用いても、本発明の方法を適用できることは容
易に考えられる。
In the present invention, at least one of cobalt carbonate, cobalt nitrate, and cobalt hydroxide, which become cobalt oxide by heat treatment, may be used as the internal electrode material, and furthermore, cobalt oxide containing cobalt oxide may be used. It goes without saying that the method of the present invention can also be applied to mixed powders. Also, among iron carbonate, iron nitrate, and iron hydroxide, which become iron oxide by heat treatment in the same way,
At least one of these may be used, and the method of the present invention can also be applied to a mixed powder of these containing iron oxide. It is easy to think that the method of the present invention can also be applied to a mixed powder of cobalt oxide and iron oxide.

発明の効果 本発明は、従来貴金属材料でないと実現できなかった空
気中で焼結を行うプロセスを採用し、その後に酸化物を
還元してコバルト電極、鉄電極を形成して卑金属電極と
し、積層セラミック部品を形成するという方法が可能に
なった。その結果、複雑な焼成雰囲気処理の必要な工程
は酸化コバルトをコバルトに、または酸化鉄を鉄に還元
する工程のみとなり、従来法のような窒素などの中性雰
囲気中で焼成する必要がないことと、脱バインダー焼結
工程が同時に行えるので、ガス化の大幅な節約と同時に
工程が短縮されるので大きなコストダウン効果が生じる
ものとなった。また、誘電特性、磁気特性などの電気的
特性あるいはセラミック特性を左右する焼結工程が空気
中で行えるので、中性ガス雰囲気中で焼結するような特
性のバラツキが起こらないなどの効果もある。さらに、
本発明の方法を用いることにより、安価かつ小型大容量
でしかも低温焼結が可能になり、さらには比抵抗の低い
卑金属材料を用いることによって耐マイグレーション性
に優れたものになるなど、多くの利点を持つ積層セラミ
ック部品を製造することができる。
Effects of the Invention The present invention employs a process of sintering in air, which could only be achieved with precious metal materials, and then reduces oxides to form cobalt electrodes and iron electrodes to form base metal electrodes. It is now possible to form ceramic parts. As a result, the only process that requires complicated firing atmosphere treatment is the process of reducing cobalt oxide to cobalt or iron oxide to iron, and there is no need to fire in a neutral atmosphere such as nitrogen as in conventional methods. Since the binder removal and sintering processes can be performed at the same time, the process is shortened and the gasification process is greatly reduced, resulting in a large cost reduction effect. In addition, since the sintering process, which affects electrical properties such as dielectric properties and magnetic properties, or ceramic properties, can be performed in air, there is no variation in properties that occurs when sintering in a neutral gas atmosphere. . moreover,
By using the method of the present invention, it is possible to achieve low-cost, small-sized, large-capacity sintering at low temperatures, and the use of base metal materials with low resistivity provides excellent migration resistance, among other advantages. It is possible to manufacture laminated ceramic parts with

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によって作製した生シートを積層したも
のの構成国、第2図は本発明による積層セラミックコン
デンサを製造する際の製造工程を示す図である。 ■・・・・・・生シート、2・・・・・・内部電極。
FIG. 1 is a diagram showing the constituent countries of a laminated green sheet produced according to the present invention, and FIG. 2 is a diagram showing the manufacturing process for manufacturing a multilayer ceramic capacitor according to the present invention. ■... Raw sheet, 2... Internal electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)セラミック材料と有機バインダーと可塑剤とを含
む生シート上に酸化コバルトまたは酸化鉄を主成分とす
るペーストで内部電極を形成したものを、複数枚積層し
て積層体を形成する工程と、前記積層体を空気中で脱バ
インダー及び焼成して焼結体を形成する工程と、前記焼
結体を水素または水素を含む混合ガス中で熱処理して前
記酸化コバルト層または酸化鉄層を還元し内部電極とす
る工程と、この内部電極に導通する外部端子電極を前記
積層体外に形成する工程よりなることを特徴とする積層
セラミック部品の製造方法。 2 内部電極材料に熱処理することによって酸化コバル
トとなる炭酸コバルト,硝酸コバルト,水酸化コバルト
のうち、少なくともいずれか1種類かあるいは酸化コバ
ルトを含むこれらの混合粉を用いることを特徴とする請
求項1記載の積層セラミック部品の製造方法。 3 内部電極材料に熱処理することによって酸化鉄とな
る炭酸鉄,硝酸鉄,水酸化鉄のうち、少なくともいずれ
か1種類かあるいは酸化鉄を含むこれらの混合粉を用い
ることを特徴とする請求項1記載の積層セラミック部品
の製造方法。
(1) A step of laminating a plurality of raw sheets containing a ceramic material, an organic binder, and a plasticizer, on which internal electrodes are formed using a paste containing cobalt oxide or iron oxide as a main component, to form a laminate. , a step of removing the binder and firing the laminate in air to form a sintered body, and heat treating the sintered body in hydrogen or a mixed gas containing hydrogen to reduce the cobalt oxide layer or the iron oxide layer. A method for manufacturing a laminated ceramic component, comprising the steps of: forming an internal electrode, and forming an external terminal electrode electrically connected to the internal electrode outside the laminated body. 2. Claim 1, characterized in that at least one of cobalt carbonate, cobalt nitrate, and cobalt hydroxide, which becomes cobalt oxide by heat treatment of the internal electrode material, or a mixed powder thereof containing cobalt oxide is used. A method of manufacturing the described laminated ceramic component. 3. Claim 1, characterized in that at least one of iron carbonate, iron nitrate, and iron hydroxide, which becomes iron oxide by heat treatment of the internal electrode material, or a mixed powder thereof containing iron oxide is used. A method of manufacturing the described laminated ceramic component.
JP21087989A 1989-08-16 1989-08-16 Manufacture of laminated ceramic parts Pending JPH0374819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21087989A JPH0374819A (en) 1989-08-16 1989-08-16 Manufacture of laminated ceramic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21087989A JPH0374819A (en) 1989-08-16 1989-08-16 Manufacture of laminated ceramic parts

Publications (1)

Publication Number Publication Date
JPH0374819A true JPH0374819A (en) 1991-03-29

Family

ID=16596608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21087989A Pending JPH0374819A (en) 1989-08-16 1989-08-16 Manufacture of laminated ceramic parts

Country Status (1)

Country Link
JP (1) JPH0374819A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195968A (en) * 2006-03-03 2008-08-28 Hitachi Zosen Corp Method for manufacturing fine metal particle
US7817402B2 (en) * 2005-03-31 2010-10-19 Tdk Corporation Multilayer ceramic electronic device and method of production of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7817402B2 (en) * 2005-03-31 2010-10-19 Tdk Corporation Multilayer ceramic electronic device and method of production of the same
JP2008195968A (en) * 2006-03-03 2008-08-28 Hitachi Zosen Corp Method for manufacturing fine metal particle

Similar Documents

Publication Publication Date Title
JPH11317322A (en) Laminated ceramic capacitor
US20070193410A1 (en) Copper alloy powder for electrically conductive paste
CN104576051B (en) Ceramic electronic component
JP2003100144A (en) Conductive paste, manufacturing method of laminated ceramic electronic component and laminated ceramic electronic component
JP5452244B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP2004128328A (en) Electronic component and its manufacturing method
JPH02122505A (en) Manufacture of laminated chip inductor
JP2005209404A (en) Conductive paste for internal electrode of laminated ceramic electronic component and manufacturing method of laminated ceramic electronic component using it
JP2007234330A (en) Conductor paste and electronic part
JPH0374819A (en) Manufacture of laminated ceramic parts
JP3520075B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH0374822A (en) Manufacture of laminated ceramic component
JP2676620B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2697069B2 (en) Manufacturing method of multilayer ceramic capacitor
JPS61144813A (en) Laminated ceramic capacitor and manufacture thereof
JP3134430B2 (en) Non-reducing dielectric ceramic composition
JP2002231561A (en) Multilayer ceramic electronic component and its manufacturing method
JPH0210607A (en) Conducting paste and thick film component using it
JPH03218614A (en) Formation of electrode and laminated chip component using same
JPH0378220A (en) Inductor element and its manufacture
JPH04331765A (en) Non-reducing dielectric ceramic composition
JPH06283369A (en) Manufacture of dielectric powder layered capacitor
JPH02138717A (en) Manufacture of laminated ceramic capacitor
JP2943360B2 (en) Conductive paste for multilayer ceramic capacitors
JPH0374823A (en) Formation of electrode and ceramic electronic component using same