JPH0372696B2 - - Google Patents

Info

Publication number
JPH0372696B2
JPH0372696B2 JP63115094A JP11509488A JPH0372696B2 JP H0372696 B2 JPH0372696 B2 JP H0372696B2 JP 63115094 A JP63115094 A JP 63115094A JP 11509488 A JP11509488 A JP 11509488A JP H0372696 B2 JPH0372696 B2 JP H0372696B2
Authority
JP
Japan
Prior art keywords
sintered alloy
binder phase
phase
concentration
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63115094A
Other languages
Japanese (ja)
Other versions
JPH01287245A (en
Inventor
Yasuro Taniguchi
Hisashi Sasaki
Mitsuo Ueki
Keiichi Kobori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP63115094A priority Critical patent/JPH01287245A/en
Publication of JPH01287245A publication Critical patent/JPH01287245A/en
Publication of JPH0372696B2 publication Critical patent/JPH0372696B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、切削工具部材、耐摩耗工具用部材と
して用いられる被覆焼結合金として有効な表面調
質焼結合金の表面に被覆膜を形成してなる被覆表
面調質焼結合金に関するものである。 (従来の技術) 超硬合金などの焼結合金に、より耐摩耗性のあ
るTiC,TiCN,TiN,Al2O3などの薄層を被覆
したいわゆる被覆焼結合金は、母材である焼結合
金の強靭性と被覆膜の優れた耐摩耗性を兼ね備
え、すでに広く実用に供されている。 上記被覆膜は、耐摩耗性に優れている反面極め
て硬脆いため、使用中に該被覆膜に亀裂を生じ易
く、これがきつかけとなり母材にまでその亀裂が
拡大し刃先の欠損に発展するという問題があつ
た。この問題点を解決するため提案されたすぐれ
た先行技術として特開昭54−87719号公報があり、
すでに実用に供されている。 この先行技術は、窒素を含有するB−1型結晶
構造を有する相(以下β相という)とWC相を硬
質相とし鉄族金属を結合相とする超硬合金の表面
層からβ相を内部に移動させ該超硬合金の5〜
200μmの表面層のβ相を他の部分より少なくす
るというものである。そして、このような特殊な
構造をもつ超硬合金は、窒素を不可欠的に含有す
るB−1型炭窒化物とWCと鉄族金属からなる圧
粉体を真空焼結し、表面において脱窒させること
により製造されるとしている。 事実、この方法による表面層の脱βの現象は、
当時の東京大学鈴木寿教授らによつて詳しく研究
され(「金属学会誌」第45巻第1号第95頁〜第99
頁及び「粉体および粉末冶金」第29巻第2号第20
頁〜第23頁)表面層の脱βが確認されているし、
前述の如くその脱β超硬合金が被覆超硬合金の母
材として利用されている。 (発明が解決しようとする問題点) しかしながら、この方法による表面層の脱β超
硬合金を被覆超硬合金の母材として利用するとき
には耐欠損性の点で尚不十分であることが知られ
た。 すなわち第1図は鈴木寿編著になる「超硬合金
と焼結硬質材料」(丸善)第302頁記載の図を引用
したものであるが、この図にみるように、表面層
からの脱βは見事に実現されているが、一方結合
相であるCoの量については、この量が多いと表
面からのき裂の進展を抑止して耐欠損性を向上さ
せることが可能となるのであるが、Coが富化さ
れているのは表面から数10μm内部であり、表面
においてはむしろCoは貧化され、他の例による
と内部の平均的濃度と同水準又はそれ以下にさえ
なつていることが知られる。従つて当然の帰結と
して、このような表面層の脱β超硬合金を被覆超
硬合金の母材として用いれば、脆い被覆膜に発生
した亀裂の母材内部への進展を母材表面層で抑止
する効果は減殺される。 本発明の目的は、上記従来技術のもつ技術的課
題を解決し、被覆焼結合金に有用な新規な構造を
もつ母材の表面に硬質膜を形成してなる被覆表面
調質焼結合金を提供することにある。 (問題点を解決するための手段) 本発明は、周期律表の4a,5a及び6a族金属の
炭化物、炭窒化物、炭酸化物、炭窒酸化物又はこ
れらの相互固溶体の中の少なくとも1種を含む硬
質相80〜97wt%と、残りが鉄族金属の中の少な
くとも1種を含む結合相とからなる焼結合金の表
面に被覆膜を形成してなる被覆焼結合金におい
て、該焼結合金の結合相の相対濃度が焼結合金の
表面で最大値をとつた後、焼結合金の表面から少
なくとも5μmまでは内部に向つて減少してなる
表面調質焼結合金からなり、該被覆膜が周期律表
の4a,5a及び6a族金属の炭化物、窒化物、炭酸
化物、窒酸化物及びこれらの相互固溶体、炭化ケ
イ素、窒化ケイ素、酸化アルミニウム、酸窒化ア
ルミニウム、窒化アルミニウム、立方晶窒化ホウ
素、ダイヤモンドの中の少なくとも1種の単層又
は多層でなることを特徴とする表面調質焼結合金
である。 本発明における表面調質焼結合金を第2図を用
いて、さらに具体的に説明すると、焼結合金の表
面において結合相の相対濃度が最大値のa点をと
り、焼結合金の表面から少なくとも5μmまでの
内部のb点に向つてa→bと減少し、b点からさ
らに内部の結合相の相対濃度が、例えば第2図の
,又はの如くに変動して後、内部の平均的
結合相濃度のc点に達する場合、もしくは極端な
例では、結合相の相対濃度がa→bと減少した後
にすぐc点に達する場合などを挙げることができ
る。これらの内、焼結合金の表面から内部の平均
的結合相濃度に達するまでの層、所謂焼結合金の
結合相の相対濃度が変動してなる表面層におい
て、例えば第3図に示すように結合相の相対濃度
が焼結合金の表面で最大値(a)をとつた後に、焼結
合金の表面から少なくとも5μmの内部の点(b)か
ら内部の平均的結合相濃度(c)に滑らかに近ずいて
いる場合、又は例えば第4図に示すように結合相
の相対濃度が焼結合金の表面で最大値(a)をとつた
後、焼結合金の表面から少なくとも5μmの内部
の点(b)からさらに減少して、内部の平均的結合相
濃度よりも小さい最小値(d)をとり、その後内部に
向つては内部の平均的結合相濃度(c)まで滑らかに
増加している場合が実用上重要である。 第5図は、1実施例として本発明における表面
調質焼結合金の構成元素の内部における平均的濃
度を1としたときの焼結合金の表面から内部に至
る各元素の相対濃度分布を示すものである。すな
わち、この第5図によつて明らかな如く、本発明
における表面調質焼結合金の表面では結合相であ
るCoの濃度は内部の平均的Co濃度より大きい最
大値となつており、次いで減少しながら内部の平
均的Co濃度より小さい最小値をとり、そのあと
は増加して遂には内部の平均的Co濃度となつて
いる。 本発明における表面調質焼結合金の硬質相は、
97重量%を超えて多くなると、相対的に結合相が
3重量%未満となつて、被覆表面調質焼結合金と
しての強度低下が著しくなること、逆に表面調質
焼結合金の硬質相が80重量%未満になると、相対
的に結合相が20重量%を超えて多くなつて、被覆
表面調質焼結合金としての耐塑性変形性及び耐摩
耗性に伴う寿命低下が著しくなることから、80〜
97重量%と定めた。 また、本発明における表面調質焼結合金の結合
相の相対濃度が表面で最大値をとつた後、この表
面から5μm未満の間で内部に向つて減少する場
合は、表面の最大結合相量にも関係するが、主と
して耐欠損性の低下が著しくなることから、本発
明における表面調質焼結合金の結合相の相対濃度
は、表面で最大値とし、その表面から少なくとも
5μmまでは内部に向つて減少していることと定
めた。 次に、本発明における上記表面調質焼結合金を
製造する方法としては、周期律表の4a,5a及び
6a族金属の炭化物、炭窒化物、炭酸化物、炭窒
酸化物又はこれらの相互固溶体の中の少なくとも
1種を含む硬質相と、鉄族金属の中の少なくとも
1種を含む結合相とからなる焼結合金の製造工程
中において、焼結後又は焼結の過程で、結合相の
固液共存温度域内の温度でもつて該焼結合金の表
面に脱炭処理を施すことにより、該結合相の相対
濃度が焼結合金の表面で最大値をとつた後、焼結
合金の表面から少なくとも5μmまでは内部に向
つて減少してなる焼結合金とすることができる。
このとき好ましくは該焼結合金の焼結後又は焼結
の過程において、結合相の固液共存温度域内の温
度で該焼結合金の表面に緩徐な速度で脱炭処理を
施すことにより、焼結合金の結合相の相対濃度が
焼結合金の表面において最大となり、その表面か
ら少なくとも5μmまでは内部に向つて減少しな
がら滑らかに内部の平均的結合相濃度となつてい
る表面調質焼結合金を得ること、また好ましくは
焼結合金の表面に迅速な速度で脱炭処理を施すか
又は該焼結合金の表面に浸炭処理を行つた後に該
焼結合金の表面に脱炭処理を施すことにより、焼
結合金の結合相の相対濃度が焼結合金の表面にお
いて最大となり、その表面から少なくとも5μm
まで内部に向つて減少して内部の平均的結合相濃
度よりも小さい最小値をとつた後、さらに内部に
向つては内部の平均的結合相濃度まで滑らかに増
加してなる表面調質焼結合金を得ることができる
ものである。 さらに、本発明は上記の表面調質焼結合金を母
材として、この母材の表面に、例えば周期律表の
4a,5a及び6a族金属の炭化物、窒化物、炭酸化
物、窒酸化物及びこれらの相互固溶体、炭化ケイ
素、窒化ケイ素、酸化アルミニウム、酸窒化アル
ミニウム、窒化アルミニウム、立方晶窒化ホウ
素、ダイヤモンドの中の少なくとも1種の単層又
は多層の被覆膜の形成されてなる被覆表面調質焼
結合金を提供するものである。この被覆表面調質
焼結合金は、上記の表面調質焼結合金の表面に従
来から行われている化学蒸着法(CVD法)や物
理蒸着法(PVD法)でもつて被覆膜を形成する
ことにより、得ることができる。 勿論、従来の脱β相の表面層と上述の結合相濃
度分布でなる表面層とを組合わせてなる表面層、
具体的には、表面層中にB−1型結晶構造の硬質
相が存在しない状態もしくは存在しているとして
も表面層を除いた焼結合金の内部よりも少ない状
態、別の表現をすると、表面層は表面層を除いた
焼結合金の内部に比べてB−1型結晶構造の硬質
相が減少してなる相、すなわち脱βの層で、しか
も上述の結合相濃度分布からなる表面層を有する
焼結合金の表面に被覆膜を形成して表面層におけ
る耐欠損性をさらに高めるということも好ましい
ことである。この場合は、第3図で示した結合相
の分布は勿論のこと、特に、第4図に示したよう
な結合相の分布が容易に得られること、及び被覆
焼結合金を切削工具部材として用いると刃先の強
度を向上させることができるという利点がある。 ここで述べてきた周期律表の4a,5a及び6a族
金属とはTi,Zr,Hf(4a族金属)、V,Nb,Ta
(5a族金属)及びCr,Mo,W(6a族金属)を現わ
し、内部の平均的結合相濃度とは、焼結合金の結
合相の相対濃度が変動してなる表面層から、さら
に焼結合金の内部における、結合相の相対濃度が
殆んど変動していない安定な領域内での平均的結
合相濃度を現すものである。別の表現をすると、
焼結合金の表面層を除いた内部における結合相の
平均的濃度を現すものである。この焼結合金の表
面層の深さは、焼結合金の形状及び表面調質を行
う条件によつて変動し、例えば焼結合金の表面か
ら少なくとも10μmの場合、又は焼結合金の表面
から多くとも2mmの場合など広範囲で制御可能で
ある。実用的には焼結合金の形状、被覆膜の材質
及び膜の構成並びに用途によつて決定することが
好ましいことである。 (作用) 本発明は炭素を不可欠的に含む焼結合金におい
て、その焼結合金を脱炭雰囲気中で結合相の固液
共存温度に再加熱し、該焼結合金の表面を脱炭す
ることにより表面層に結合相のみを富化させるこ
とができるという知見に基いてなされたものであ
る。この結合相富化現象の起こるメカニズムは必
ずしも明確ではないが次のような原理によるもの
と思われる。 説明の便利のために第6図に示した単純なW−
Co−C三元状態図の16%Coにおける断面相図に
よつて説明する。 素材である焼結合金は公知の如何なる方法で作
製されたものであつてもよいが、このようにして
作られた焼結合金は、第6図の斜線部に示す結合
相の固液共存温度域内の温度に加熱される。この
とき炉内雰囲気を例えばCO2ガスの導入あるいは
高真空とすること等によつて脱炭雰囲気にすると
該焼結合金表面において脱炭が起こり、表面の炭
素濃度は第6図の斜線部を拡大して示した第7図
における結合相の液相線ABから結合相の固相線
CDの方向、矢印bで示すように減少して、固相
線CDに達し、液相は凝固し、それに伴い体積減
少が起こる。その結果内部より液相が補充される
が、これも表面付近に達して脱炭され固相線CD
に達して凝固し、同様のことが繰返されて表面は
結合相が富化される。 前述した先行技術特開昭54−87719号公報に開
示される脱βによる表面において、結合相の濃度
が第1図の如くかえつて小さくなる理由は、鈴木
教授らの研究(「日本金属学誌」第45巻第98頁)
によれば焼結中の蒸発揮散によると考えられる
が、本発明による場合この蒸発揮散がなく、その
結果として表面における最大濃度を維持できるの
は、実に表面脱炭による表面結合相の固化によつ
て蒸発を避けることができたためと考えられる。 さて本発明における表面調質焼結合金を作製す
る場合、表面に供給される液相は当然のことなが
ら表面に比較的近い部分から最も早く調達される
ため、脱炭処理を迅速に行えばその付近において
液相の不足を生じ、結合相濃度の最小点を作る。
一方脱炭処理を緩徐に行えば、この最小点は事実
上無いに等しいものが得られる。例えばH2
CO2雰囲気ガスを用いてWC−5%Co合金を脱炭
させる場合、雰囲気ガス中のCO2ガス濃度10%以
上、雰囲気ガス圧10torr以上、温度1330℃以下、
処理時間3分以内であれば迅速な脱炭処理であ
り、結合相の相対濃度分布に最小値を作ることが
できる。一方雰囲気ガス中のCO2濃度10%以下、
雰囲気ガス圧10torr以下、温度1330℃以上、処理
時間3分以上であれば脱炭は緩徐であり、結合相
の相対濃度分布には実質的に最小値を生じない。
さらには、焼結後又は焼結過程において10℃/分
以下の速度で徐冷しながら結合相の固液共存温度
域を通過させることができる。このとき冷却速度
は必ずしも一定である必要はなく、例えば1270℃
までは1℃/分の速度とし、その後3℃/分の速
度にするなど、徐冷の途中で変化させることも、
表面層の深さ及び微視的な組織状態を制御するの
に好都合である。また、脱炭処理に際しては、上
記した脱炭性のガスを雰囲気ガスとして用いても
よいし、焼結合金のカーボン含有率が高ければ雰
囲気を真空とすることもできる。 また、一般的に結合相含有率の高い焼結合金、
あるいはC含有率の高い焼結合金においては上記
脱炭処理による結合相の表面における富化現象が
速やかに生ずるので、使用する焼結合金により上
記各条件は適宜にコントロールされる。すなわ
ち、脱炭雰囲気の強弱、温度、時間などの他、徐
冷する場合は冷却速度を小さくするほど表面層の
結合相富化量は多くなることから、冷却速度につ
いてもコントロールが必要となる。なお、この脱
炭操作を更に強い脱炭雰囲気で特に急激に行えば
表面近くの結合相富化域において結合相と硬質相
とが表面に平行に、交互に層状となつて出現す
る。 また本発明における表面調質焼結合金は炭素を
含む各種の合金系、すなわち、WC−Co系の最も
単純な超硬合金にも、窒素を含まない炭化物系サ
ーメツトにも、そして当然窒素を含むサーメツト
にも適用できるという画期的なものである。 上述のことからわかるように本発明における表
面調質焼結合金を作製する場合、脱炭操作は必ず
しも焼結後に行う必要はない。すなわち焼結の工
程中、温度が一旦結合相の固液共存温度以下に下
がつた後再び結合相の固液共存温度まで上昇させ
脱炭させてもよいし、焼結の工程中、結合相の固
液共存温度において脱炭させても本発明における
表面調質焼結合金が得られる。 一方結合相の固液共存温度において焼結合金表
面に浸炭を行えば、表面の炭素量は第7図の矢印
bと反対方向に増加し、結合相液相線ABに達
し、上述の現象と反対の現象が起きる。このよう
な浸炭処理を行つた後に上述の脱炭の操作を行え
ば結合相濃度最小部の谷をより一層深く、且つ安
定的に製造することができる。浸炭処理として
は、例えばH2+CH4の減圧混合ガス中で行うこ
とができる。このとき、脱炭処理前の合金中のカ
ーボン含有率により表面層の結合相富化量が変動
するため、浸炭処理条件も適宜にコントロールさ
れる。また、上記脱炭処理前の浸炭処理を行うこ
とにより、結合相濃度分布は、上述の如く一旦最
小値をとつた後増加し再び内部の平均的結合相濃
度を超えて小さな最大値をとつた後に内部の平均
的結合相濃度となることがあるが、実質上全く問
題とならない。なお、表面層の結合相濃度分布に
おいて、最小値を設けると、特に発熱量の大きい
用途において塑性変形の抑止作用となる。 また、このようにして得られた表面調質焼結合
金の表面に耐摩耗性にすぐれた被覆膜を被覆して
なる本発明は、表面調質焼結合金の表面層が被覆
膜の弱点である脆さを補つて、被覆膜のすぐれた
耐摩耗性を充分に発揮できるように作用するもの
である。 (実施例) 実施例 1 原料用粉末として、市販のWC,WC−TiC固
溶体(WC/TiC=70/30重量比)、TaCおよび
Coの各粉末(粒度1.5〜3μm)を用い、85%WC
−5%TiC−3%TaC−7%Co(重量%)の組成
となるように配合した後、アセトンを溶媒とし
て、48時間の湿式ボールミルを行つた。ミル後、
乾燥を経て、JISによる抗折力片形状となるよう
にプレス成形した後、真空中、1400℃で1時間焼
結した。これらを表面研摩後、2分して、一方の
グループは1330℃で10分間、80%H2−20%CH4
の混合ガス20torr中で浸炭した後、1310℃で2分
間、90%H2−10%CO2の混合ガス10torr中で脱炭
処理を行い、その後真空中で炉冷した。これら試
料について、その垂直断面における、W,Ti,
Ta,Coの元素濃度分布を、表面からの深さの関
数でEPMA分析したところ、第5図に示す結果
を得た。ここで各元素の濃度は、試料中心の各濃
度を1として規格化して示している。これより、
Co量は試料の表面で最大となり、内部に向つて
連続的に減少して最小値を示した後、内部値とな
る。そしてW,Ti,Ta量は、Co量の変化に対応
して、逆の傾向を示した。他方、未処理の試料に
ついては、試料の内外で各元素濃度はすべて一定
値を示した。 ついで、上記処理を施した試料と、未処理の試
料とに、化学蒸着法により、TiCを5μm被覆し
た。そしてJISによる抗折力を測定したところ、
それぞれ20個の試料の平均値で、未処理のもの
が、145Kg/mm2であつたのに対し、表面処理を施
したものは205Kg/mm2と高強度を示した。 実施例 2 市販の各種原料用粉末を用いて、常法の製法に
従い、配合組成が86%WC−4%TiC−3%TaC
−1%NbC−6%Co(重量%)のSNMN 432形
状の圧粉体を複数個用意した。そしてこれらのう
ちの一部は、焼結時の昇温中、1200℃で30分間、
30torrの窒素ガス中で窒化処理した後、1420℃で
1時間真空中で焼結した。残りの圧粉体はすべ
て、窒化処理工程を経ずに1420℃で1時間真空焼
結を行つた。そして一部を除いて、第1表に示す
ような処理を行つた。処理後、各試料の垂直断面
におけるCo量の分布を表面からの深さの関数で
EPMA分析したところ、試料の中央の値を100%
として、第1表に示すような分布が確認された。 ついで、全試料を化学蒸着法により、TiC1μ
m、TiCN4μm、Al2O31μmを順次被覆して、被
覆超硬合金を得た。これらについて、下記に示す
条件で外周旋削による耐欠損性試験および耐摩耗
性試験を行い、それぞれ第8図および第9図に示
す結果を得た。 (1) 耐欠損性試験 被削材 S48C(HB 255)等間隔スロツト入。 切削速度 100m/分 切込み量 1.5mm 送り量 0.3mm/回転 切削油なし (乾式切削) (2) 耐摩耗性試験 被削材 S48C(HB240) 切削速度 180m/分 切込み量 1.5mm 送り量 0.24mm/回転 切削油なし (乾式切削)
(Industrial Application Field) The present invention provides a coated surface-treated sintered alloy which is formed by forming a coating film on the surface of a surface-treated sintered alloy that is effective as a coated sintered alloy used as a cutting tool member or a wear-resistant tool member. This relates to quality sintered alloys. (Prior technology) So-called coated sintered alloys, which are made by coating sintered alloys such as cemented carbide with a thin layer of more wear-resistant TiC, TiCN, TiN, Al 2 O 3 , etc., are It combines the toughness of the alloy and the excellent wear resistance of the coating film, and is already in widespread practical use. Although the above-mentioned coating film has excellent wear resistance, it is extremely hard and brittle, so it is easy to crack during use, which causes the crack to spread to the base material and lead to chipping of the cutting edge. There was a problem. Japanese Patent Application Laid-Open No. 54-87719 is an excellent prior art proposed to solve this problem.
It is already in practical use. This prior art is a cemented carbide that has a nitrogen-containing B-1 type crystal structure phase (hereinafter referred to as β phase) and a WC phase as hard phases, and an iron group metal as a binder phase. 5 to 5 of the cemented carbide
The amount of β phase in the 200 μm surface layer is reduced compared to other parts. Cemented carbide with such a special structure is produced by vacuum sintering a green compact consisting of B-1 carbonitride, which essentially contains nitrogen, WC, and iron group metals, and then denitrifying the surface. It is said that it is manufactured by In fact, the phenomenon of deβ removal of the surface layer by this method is
It was studied in detail by Professor Hisashi Suzuki of the University of Tokyo at the time (Journal of the Japan Institute of Metals, Vol. 45, No. 1, pp. 95-99).
Page and "Powders and Powder Metallurgy" Volume 29 No. 2 No. 20
(pages 23 to 23) De-β removal of the surface layer has been confirmed,
As mentioned above, the beta-free cemented carbide is used as a base material for coated cemented carbide. (Problems to be Solved by the Invention) However, it is known that when the surface layer of the cemented carbide obtained by this method is used as a base material for a coated cemented carbide, the fracture resistance is still insufficient. Ta. In other words, Figure 1 is taken from the figure on page 302 of "Cemented Carbide and Sintered Hard Materials" (Maruzen) edited by Hisashi Suzuki. However, when the amount of Co, which is the binder phase, is large, it is possible to suppress the propagation of cracks from the surface and improve fracture resistance. , Co is enriched within several tens of micrometers from the surface, and the surface is rather depleted of Co, with other examples showing that the average concentration inside is at the same level or even lower. is known. Therefore, as a natural consequence, if such a surface layer de-β cemented carbide is used as the base material of the coated cemented carbide, the propagation of cracks that occur in the brittle coating film into the base material can be prevented by preventing the cracks from propagating into the base material surface layer. The deterrent effect will be diminished. The purpose of the present invention is to solve the technical problems of the above-mentioned prior art, and to provide a coated surface-tempered sintered alloy formed by forming a hard film on the surface of a base material having a novel structure useful for coated sintered alloys. It is about providing. (Means for Solving the Problems) The present invention provides at least one of carbides, carbonitrides, carbonates, carbonitrides, or mutual solid solutions of metals from groups 4a, 5a, and 6a of the periodic table. In the coated sintered alloy, a coating film is formed on the surface of the sintered alloy, which is composed of 80 to 97wt% of a hard phase containing iron group metals, and the remainder is a binder phase containing at least one type of iron group metal. The sintered alloy is made of a surface-treated sintered alloy in which the relative concentration of the binder phase of the sintered alloy reaches its maximum value at the surface of the sintered alloy and then decreases toward the inside from the surface of the sintered alloy to at least 5 μm. The coating film contains carbides, nitrides, carbonates, nitrides and mutual solid solutions of metals from groups 4a, 5a and 6a of the periodic table, silicon carbide, silicon nitride, aluminum oxide, aluminum oxynitride, aluminum nitride, cubic This is a surface-treated sintered alloy characterized by being made of a single layer or multiple layers of at least one of crystalline boron nitride and diamond. The surface-treated sintered alloy of the present invention will be explained in more detail using FIG. The relative concentration of the binder phase decreases from a to b toward the internal point b up to at least 5 μm, and after the relative concentration of the bonded phase further inside changes as shown in Fig. 2 or as shown in Fig. 2, the average internal Examples include a case in which the concentration of the bonded phase reaches point c, or in an extreme example, a case in which the relative concentration of the bonded phase decreases from a to b and then immediately reaches point c. Among these, in the layer from the surface of the sintered alloy to the inner average concentration of the binder phase, the so-called surface layer where the relative concentration of the binder phase of the sintered alloy fluctuates, as shown in Fig. 3, for example. After the relative concentration of the binder phase reaches its maximum value (a) at the surface of the sintered alloy, it smoothly decreases from a point (b) at least 5 μm inside the sintered alloy to the average binder phase concentration inside (c). , or after the relative concentration of the binder phase has reached its maximum value (a) at the surface of the sintered alloy, as shown in Figure 4, for example, at an internal point at least 5 μm from the surface of the sintered alloy. It further decreases from (b) to a minimum value (d) that is smaller than the average bonded phase concentration inside, and then increases smoothly toward the inside until it reaches the average bonded phase concentration inside (c). The case is of practical importance. FIG. 5 shows, as an example, the relative concentration distribution of each element from the surface to the inside of the sintered alloy, assuming that the average concentration in the interior of the constituent elements of the surface-treated sintered alloy of the present invention is 1. It is something. That is, as is clear from FIG. 5, the concentration of Co, which is the binder phase, on the surface of the surface-treated sintered alloy of the present invention reaches a maximum value that is higher than the average Co concentration inside, and then decreases. However, it reaches a minimum value that is smaller than the average Co concentration inside, and then increases until it reaches the average Co concentration inside. The hard phase of the surface-treated sintered alloy in the present invention is
If the amount exceeds 97% by weight, the binder phase becomes relatively less than 3% by weight, resulting in a significant decrease in strength as a coated surface-tempered sintered alloy, and conversely, the hard phase of the surface-tempered sintered alloy If it is less than 80% by weight, the binder phase will be relatively large, exceeding 20% by weight, and the life of the coated surface-tempered sintered alloy will be significantly reduced due to its plastic deformation resistance and wear resistance. , 80~
It was set at 97% by weight. In addition, if the relative concentration of the binder phase in the surface-treated sintered alloy of the present invention reaches its maximum value at the surface and then decreases toward the inside within a distance of less than 5 μm from this surface, the maximum binder phase amount at the surface Although it is related to
It was determined that the thickness decreases inward to 5 μm. Next, as a method for manufacturing the above-mentioned surface-treated sintered alloy in the present invention, 4a, 5a and 5a of the periodic table are used.
Consisting of a hard phase containing at least one of group 6a metal carbides, carbonitrides, carbonates, carbonitrides, or mutual solid solutions thereof, and a binder phase containing at least one iron group metal. During the manufacturing process of the sintered alloy, after or during the sintering process, the surface of the sintered alloy is decarburized at a temperature within the solid-liquid coexistence temperature range of the binder phase. A sintered alloy can be obtained in which the relative concentration reaches a maximum value at the surface of the sintered alloy, and then decreases toward the inside by at least 5 μm from the surface of the sintered alloy.
At this time, preferably after sintering the sintered alloy or during the sintering process, the surface of the sintered alloy is decarburized at a slow rate at a temperature within the solid-liquid coexistence temperature range of the binder phase. A surface-treated sintered bond in which the relative concentration of the bonding phase of the bonded gold is maximum at the surface of the sintered alloy, and decreases toward the inside for at least 5 μm from the surface, reaching the average concentration of the bonding phase inside. obtaining gold, and preferably decarburizing the surface of the sintered alloy at a rapid rate or decarburizing the surface of the sintered alloy after carburizing the surface of the sintered alloy. As a result, the relative concentration of the binder phase of the sintered alloy is maximum at the surface of the sintered alloy, and at least 5 μm from the surface.
The surface-treated sintered bond decreases toward the inside until it reaches a minimum value smaller than the average binder phase concentration inside, and then increases smoothly toward the inside until it reaches the average binder phase concentration inside. It's something you can earn money from. Furthermore, the present invention uses the above-mentioned surface-treated sintered alloy as a base material, and the surface of the base material has, for example,
Carbides, nitrides, carbonates, nitrides and their mutual solid solutions of metals of groups 4a, 5a and 6a, silicon carbide, silicon nitride, aluminum oxide, aluminum oxynitride, aluminum nitride, cubic boron nitride, in diamond. The present invention provides a coated surface-tempered sintered alloy formed with at least one type of single-layer or multilayer coating film. This coated surface-tempered sintered alloy can be formed by forming a coating film on the surface of the above-mentioned surface-tempered sintered alloy using the conventional chemical vapor deposition method (CVD method) or physical vapor deposition method (PVD method). You can get it by doing this. Of course, a surface layer formed by combining a conventional surface layer with a β-free phase and a surface layer with the above-mentioned binder phase concentration distribution,
Specifically, a state in which a hard phase with a B-1 type crystal structure does not exist in the surface layer, or even if it does exist, it is in a state in which it is smaller than in the interior of the sintered alloy excluding the surface layer, or in other words, The surface layer is a phase in which the hard phase of the B-1 type crystal structure is reduced compared to the inside of the sintered alloy excluding the surface layer, that is, a non-β layer, and the surface layer has the above-mentioned binder phase concentration distribution. It is also preferable to form a coating film on the surface of the sintered alloy having the following properties to further improve the fracture resistance of the surface layer. In this case, not only the distribution of the binder phase shown in Fig. 3 but also the distribution of the binder phase shown in Fig. 4 can be easily obtained, and the coated sintered alloy can be used as a cutting tool member. When used, it has the advantage of improving the strength of the cutting edge. The metals of groups 4a, 5a, and 6a of the periodic table mentioned here are Ti, Zr, Hf (group 4a metals), V, Nb, and Ta.
(Group 5a metals) and Cr, Mo, W (Group 6a metals). It represents the average concentration of the bonded phase within a stable region within the bonded gold where the relative concentration of the bonded phase hardly changes. Expressed another way,
It represents the average concentration of the binder phase inside the sintered alloy excluding the surface layer. The depth of the surface layer of the sintered alloy varies depending on the shape of the sintered alloy and the conditions for surface treatment. Both can be controlled over a wide range, such as when the diameter is 2 mm. Practically speaking, it is preferable to determine the shape of the sintered alloy, the material and structure of the coating film, and the intended use. (Function) The present invention provides a sintered alloy that essentially contains carbon, and the surface of the sintered alloy is decarburized by reheating the sintered alloy to the solid-liquid coexistence temperature of the binder phase in a decarburizing atmosphere. This was based on the knowledge that only the binder phase can be enriched in the surface layer by using the method. Although the mechanism by which this bonded phase enrichment phenomenon occurs is not necessarily clear, it is thought to be based on the following principle. For convenience of explanation, the simple W-
This will be explained using a cross-sectional phase diagram at 16% Co in the Co-C ternary phase diagram. The sintered alloy that is the raw material may be produced by any known method, but the sintered alloy produced in this way has a solid-liquid coexistence temperature of the binder phase shown in the shaded area in Figure 6. heated to a temperature within the range. At this time, if the atmosphere in the furnace is made into a decarburizing atmosphere by, for example, introducing CO 2 gas or creating a high vacuum, decarburization will occur on the surface of the sintered alloy, and the carbon concentration on the surface will change to the shaded area in Figure 6. From the liquidus line AB of the bonded phase to the solidus line of the bonded phase in the enlarged figure 7
It decreases in the direction of CD, as shown by arrow b, and reaches the solidus line CD, where the liquid phase solidifies and a volume decrease occurs accordingly. As a result, the liquid phase is replenished from inside, but this also reaches near the surface and is decarburized, reaching the solidus CD
The process is repeated until the surface is enriched with the binder phase. The reason why the concentration of the bonded phase becomes smaller as shown in Figure 1 on the surface after β removal as disclosed in the prior art Japanese Patent Application Laid-Open No. 54-87719 is explained in the research by Professor Suzuki et al. (Vol. 45, p. 98)
According to the above, it is thought that this is due to evaporative diffusion during sintering, but in the case of the present invention, there is no evaporative diffusion, and as a result, the maximum concentration at the surface can be maintained because of the solidification of the surface bonding phase due to surface decarburization. This is thought to be due to the fact that evaporation could be avoided. Now, when producing the surface-treated sintered alloy of the present invention, the liquid phase supplied to the surface is naturally procured fastest from a portion relatively close to the surface, so if the decarburization treatment is performed quickly, the liquid phase is A shortage of liquid phase occurs in the vicinity, creating a minimum point of bonded phase concentration.
On the other hand, if the decarburization process is performed slowly, this minimum point can be virtually eliminated. For example, H 2 +
When decarburizing WC-5%Co alloy using CO 2 atmospheric gas, the CO 2 gas concentration in the atmospheric gas is 10% or more, the atmospheric gas pressure is 10 torr or more, the temperature is 1330°C or less,
If the treatment time is within 3 minutes, it is a rapid decarburization treatment and can create a minimum value in the relative concentration distribution of the binder phase. On the other hand, the CO 2 concentration in the atmospheric gas is 10% or less,
If the atmospheric gas pressure is 10 torr or less, the temperature is 1330° C. or more, and the treatment time is 3 minutes or more, decarburization is slow and there is substantially no minimum value in the relative concentration distribution of the binder phase.
Furthermore, after sintering or during the sintering process, the solid-liquid coexistence temperature range of the binder phase can be passed through while slowly cooling at a rate of 10° C./min or less. At this time, the cooling rate does not necessarily have to be constant; for example, 1270℃
It is also possible to change the speed during slow cooling, such as setting the speed to 1°C/min until then and then increasing the speed to 3°C/min.
It is advantageous to control the depth and microscopic texture of the surface layer. Further, in the decarburization treatment, the above-mentioned decarburizing gas may be used as the atmospheric gas, or the atmosphere may be a vacuum if the carbon content of the sintered alloy is high. In general, sintered alloys with high binder phase content,
Alternatively, in a sintered alloy with a high C content, the enrichment phenomenon on the surface of the binder phase occurs quickly due to the decarburization treatment, so each of the above conditions is appropriately controlled depending on the sintered alloy used. That is, in addition to the strength, temperature, and time of the decarburizing atmosphere, it is also necessary to control the cooling rate, since in slow cooling, the smaller the cooling rate, the greater the amount of binder phase enrichment in the surface layer. Note that if this decarburization operation is carried out particularly rapidly in a stronger decarburization atmosphere, the binder phase and the hard phase appear in alternating layers parallel to the surface in the binder phase enriched region near the surface. Furthermore, the surface-treated sintered alloy of the present invention can be used in various alloy systems containing carbon, including the simplest cemented carbide of the WC-Co system, as well as carbide-based cermets that do not contain nitrogen, and of course contain nitrogen. This is an epoch-making technology that can also be applied to cermets. As can be seen from the above, when producing the surface-treated sintered alloy of the present invention, the decarburization operation does not necessarily need to be performed after sintering. In other words, during the sintering process, the temperature may once fall below the solid-liquid coexistence temperature of the binder phase and then be raised again to the solid-liquid coexistence temperature of the binder phase to decarburize, or during the sintering process, the temperature The surface-treated sintered alloy of the present invention can be obtained even if decarburized at a solid-liquid coexistence temperature of . On the other hand, if the surface of the sintered alloy is carburized at the solid-liquid coexistence temperature of the binder phase, the amount of carbon on the surface increases in the direction opposite to the arrow b in Fig. 7, reaching the binder phase liquidus line AB, resulting in the above-mentioned phenomenon. The opposite phenomenon occurs. If the above-described decarburization operation is performed after such carburizing treatment, the valley at the minimum binder phase concentration can be made even deeper and stably produced. The carburizing treatment can be carried out, for example, in a reduced pressure mixed gas of H 2 +CH 4 . At this time, since the amount of binder phase enrichment in the surface layer varies depending on the carbon content in the alloy before decarburization, the carburizing treatment conditions are also appropriately controlled. Furthermore, by performing the carburizing treatment before the decarburization treatment, the binder phase concentration distribution once reached a minimum value as described above, then increased, and again exceeded the average internal binder phase concentration and reached a small maximum value. Although the internal bonded phase concentration may later become average, it does not pose any problem. Note that setting a minimum value in the binder phase concentration distribution of the surface layer has the effect of suppressing plastic deformation, especially in applications where a large amount of heat is generated. Further, in the present invention, in which the surface of the surface-treated sintered alloy obtained in this manner is coated with a coating film having excellent wear resistance, the surface layer of the surface-treated sintered alloy is It compensates for the weak point of brittleness and allows the coating film to fully exhibit its excellent wear resistance. (Example) Example 1 Commercially available WC, WC-TiC solid solution (WC/TiC=70/30 weight ratio), TaC and
Using various Co powders (particle size 1.5 to 3 μm), 85% WC
After blending to have a composition of -5% TiC - 3% TaC - 7% Co (wt%), wet ball milling was performed for 48 hours using acetone as a solvent. After the mill,
After drying, it was press-molded into a JIS transverse rupture strength piece shape, and then sintered in a vacuum at 1400°C for 1 hour. After surface polishing, these were divided into two parts, and one group was heated at 1330℃ for 10 minutes in 80% H 2 -20% CH 4
After carburizing in a mixed gas of 20 torr, decarburization was performed at 1310° C. for 2 minutes in a mixed gas of 90% H 2 -10% CO 2 of 10 torr, and then furnace cooling was performed in a vacuum. For these samples, W, Ti,
EPMA analysis of the elemental concentration distribution of Ta and Co as a function of depth from the surface yielded the results shown in Figure 5. Here, the concentration of each element is normalized and shown with each concentration at the center of the sample being 1. Than this,
The amount of Co reaches its maximum at the surface of the sample, decreases continuously toward the inside, reaches its minimum value, and then reaches its internal value. The amounts of W, Ti, and Ta showed opposite trends in response to changes in the amount of Co. On the other hand, for the untreated sample, the concentrations of each element both inside and outside the sample showed constant values. Next, the treated sample and the untreated sample were coated with TiC to a thickness of 5 μm by chemical vapor deposition. Then, when we measured the transverse rupture strength according to JIS,
The untreated sample had an average strength of 145 Kg/mm 2 , while the surface-treated sample had a high strength of 205 Kg/mm 2 , an average of 20 samples. Example 2 Using various commercially available raw material powders, a blending composition of 86% WC - 4% TiC - 3% TaC was prepared according to a conventional manufacturing method.
A plurality of SNMN 432-shaped compacts containing -1% NbC - 6% Co (wt%) were prepared. Some of these were heated at 1200℃ for 30 minutes during the temperature increase during sintering.
After nitriding in nitrogen gas at 30 torr, sintering was performed in vacuum at 1420°C for 1 hour. All remaining compacts were vacuum sintered at 1420°C for 1 hour without undergoing a nitriding process. The treatments shown in Table 1 were carried out with some exceptions. After treatment, the distribution of Co content in the vertical cross section of each sample was determined as a function of depth from the surface.
EPMA analysis showed that the central value of the sample was 100%
The distribution shown in Table 1 was confirmed. Next, all samples were coated with TiC1μ by chemical vapor deposition.
A coated cemented carbide was obtained by sequentially coating with 1 μm of TiCN, 4 μm of TiCN, and 1 μm of Al 2 O 3 . These were subjected to a fracture resistance test and a wear resistance test by peripheral turning under the conditions shown below, and the results shown in FIGS. 8 and 9, respectively, were obtained. (1) Fracture resistance test workpiece S48C (H B 255) with equally spaced slots. Cutting speed 100m/min Depth of cut 1.5mm Feed rate 0.3mm/rotation No cutting oil (dry cutting) (2) Wear resistance test Work material S48C (H B 240) Cutting speed 180m/min Depth of cut 1.5mm Feed rate 0.24 mm/rotation No cutting oil (dry cutting)

【表】【table】

【表】 上記結果より、本発明試料は耐摩耗性を低下す
ることなく、耐欠損性を大きく向上させ、かつ耐
欠損性のばらつきの非常に小さいすぐれた特性を
有することが分る。 実施例 3 実施例2と同様の製法に従い、配合組成が88%
WC−2%TiC−4%TaC−5%Co−1%Ni(重
量%)のTNMN332形状の試料複数個を、すべ
て1400℃×1時間の真空焼結により作製した。そ
してこれらの試料を3分して、第2表に示す各条
件で表面処理を行つた。試料の垂直断面における
Co+Ni量の分布を表面からの深さの関数で
EPMA分析した結果を、試料の中央の値を100%
として、表中に示した。 ついで、これら試料を化学蒸着法によりTiC2μ
m、TiCN2μm、TiN2μm順次被覆した。そして
実施例2と同じ条件で耐欠損性試験を行つたとこ
ろ、第10図に示す結果を得た。これにより、表
面における結合相の分布が耐欠損性のバラツキに
対して大きな影響を及ぼし、表面で最大の結合相
量を示すときに耐欠損性が極めて安定することが
分る。
[Table] From the above results, it can be seen that the samples of the present invention have excellent properties in which the fracture resistance is greatly improved without decreasing the wear resistance, and the variation in fracture resistance is extremely small. Example 3 Following the same manufacturing method as Example 2, the composition was 88%
A plurality of TNMN332-shaped samples of WC-2%TiC-4%TaC-5%Co-1%Ni (wt%) were all produced by vacuum sintering at 1400°C for 1 hour. These samples were then divided into three parts and subjected to surface treatment under the conditions shown in Table 2. In the vertical section of the sample
Distribution of Co+Ni content as a function of depth from the surface
The results of EPMA analysis are calculated as 100% of the central value of the sample.
as shown in the table. Next, these samples were coated with TiC2μ by chemical vapor deposition.
2 μm of TiCN and 2 μm of TiN were sequentially coated. Then, a fracture resistance test was conducted under the same conditions as in Example 2, and the results shown in FIG. 10 were obtained. This shows that the distribution of the binder phase on the surface has a large effect on the variation in fracture resistance, and that the fracture resistance is extremely stable when the amount of binder phase is maximum on the surface.

【表】 実施例 4 実施例2〜3と同様の製法に従い、配合組成が
86%WC−3%TiC−1%TiN−3%TaC−7%
Co(重量%)のTNMG332形状の圧粉体を複数個
用意した。これらのうち、第3表に示した本発明
試料及びに用いる圧粉体は、真空中、1420℃
1時間保持で焼結後、同一炉での冷却工程中、第
3表に示すような処理を行つた。そして、第3表
に示した比較試料〓に用いる圧粉体は、上述と同
条件で焼結後、直ちに冷却した。このようにして
得た各試料の垂直断面におけるCo量を表面から
の深さの関数としてEPMA分析し、その結果を
試料の中央(内部)におけるCoの値を100%とし
て第3表中に示した。なお、全試料とも表面から
20μmの深さまではWC−Co相からなり、B−1
型結晶構造の硬質相が消失していた。 ついで、全試料を化学蒸着法により、TiC4μ
m、Al2O32μmを順次被覆して、被覆超硬合金を
得た。こうして得た被覆超硬合金を実施例2に示
す耐欠損性試験の条件のうち、送り量のみ変えた
試験、すなわち送り量を0.15mm/回転から始め
て、同一送りで刃先への衝撃回数が4000回に達し
ても欠損しない場合は0.05mm/回転ずつ送り量を
上げていき、欠損したときの送り量によつて優劣
を判定する試験を行つたところ、比較試験〓は、
欠損時の送り量が0.2〜0.3mm/回転と低く、かつ
バラツキがあつたのに対し、本発明試料は、バ
ラツキが小さく、0.35〜0.4mm/回転の送り量で
欠損、また本発明試料は最大送り量0.4mm/回
転でも欠損しなかつた。 一方、被削材としてS48C(HB230)丸棒を用い
て、切削速度200m/min、切込み量1.5mm、送り
量0.3mm/回転で10分間乾式連続旋削を行つて、
各試料の刃先の塑性変形量を求めたところ、比較
試料〓が0.03mmであつたのに対し、本発明試料
は0.03mm、本発明試料は0.04mmであつた。 以上の結果、本発明の被覆超硬合金は、比較の
被覆超硬合金に比べて、耐塑性変形がほぼ同等
で、耐欠損性が顕著にすぐれることが分つた。
[Table] Example 4 According to the same manufacturing method as Examples 2 and 3, the composition was
86%WC-3%TiC-1%TiN-3%TaC-7%
A plurality of TNMG332-shaped powder compacts of Co (wt%) were prepared. Among these, the samples of the present invention shown in Table 3 and the green compacts used in the samples were heated at 1420°C in vacuum.
After sintering by holding for 1 hour, the treatments shown in Table 3 were performed during the cooling process in the same furnace. The compacts used in the comparative samples shown in Table 3 were sintered under the same conditions as described above and immediately cooled. The amount of Co in the vertical section of each sample thus obtained was analyzed by EPMA as a function of depth from the surface, and the results are shown in Table 3, with the Co value at the center (inside) of the sample as 100%. Ta. In addition, for all samples, from the surface
It consists of WC-Co phase up to a depth of 20 μm, and B-1
The hard phase of the type crystal structure had disappeared. Then, all samples were coated with TiC4μ by chemical vapor deposition.
A coated cemented carbide was obtained by sequentially coating with 2 μm of Al 2 O 3 and 2 μm of Al 2 O 3 . The coated cemented carbide obtained in this way was subjected to a fracture resistance test under the conditions shown in Example 2, in which only the feed rate was changed, i.e., the feed rate started at 0.15 mm/rotation, and the number of impacts on the cutting edge was 4000 at the same feed rate. If no breakage occurred even after reaching the number of rotations, the feed amount was increased by 0.05 mm/rotation, and a test was conducted to determine superiority or inferiority based on the feed amount when the breakage occurred.
The feed rate at the time of breakage was low at 0.2 to 0.3 mm/rotation, and there was some variation, whereas the sample of the present invention showed small variation and broke at a feed rate of 0.35 to 0.4 mm/rotation, and the sample of the present invention No breakage occurred even at the maximum feed rate of 0.4 mm/rotation. On the other hand, using S48C (H B 230) round bar as the work material, dry continuous turning was performed for 10 minutes at a cutting speed of 200 m/min, depth of cut of 1.5 mm, and feed rate of 0.3 mm/rotation.
When the amount of plastic deformation of the cutting edge of each sample was determined, it was 0.03 mm for the comparative sample, 0.03 mm for the sample of the present invention, and 0.04 mm for the sample of the present invention. As a result, it was found that the coated cemented carbide of the present invention has substantially the same plastic deformation resistance and significantly superior fracture resistance as compared to the comparative coated cemented carbide.

【表】 実施例 5 実施例1及び実施例2で用いた市販の各種原料
用粉末を用いて、第4表に示した組成となるよう
に配合した後、実施例1と同様にして焼結合金を
得た。(但し、焼結温度のみ、本発明品12及び比
較品17,18が1420℃、本発明品13,14,15及び比
較品19,20が1400℃、本発明品16及び比較品21,
22が1360℃である。) こうして得たそれぞれの焼結合金の内、本発明
品12〜16及び比較品17,20,22を第4表に示した
条件で浸炭処理及び脱炭処理を施し、他の比較品
18,19,21は未処理の状態とした。 次に、本発明品12〜16及び比較品17〜22の焼結
合金のそれぞれの表面に実施例2と同様の被覆膜
を形成した後、実施例2で行つた耐欠損性試験及
び耐摩耗性試験(切削時間20分)を行つて、その
結果を第5表に示した。 また、本発明品12〜16及び比較品17〜22におけ
る焼結合金の表面部を実施例2と同様に調べて、
それぞれの焼結合金の内部の結合相濃度を100と
したときに対するそれぞれの焼結合金の表面の
Co量及び結合相濃度が最小となつている表面か
らの深さを求めて第5表に併記した。 第5表の結果から、本発明品12〜16は、本発明
から外れた比較品及び従来の比較品17〜22に比べ
て、耐摩耗性と耐欠損性の両方がバランスよくす
ぐれているものである。
[Table] Example 5 The various commercially available raw material powders used in Examples 1 and 2 were mixed to have the composition shown in Table 4, and then sintered in the same manner as in Example 1. got money. (However, only the sintering temperature was 1420°C for inventive product 12 and comparative products 17 and 18, 1400°C for inventive product 13, 14, 15 and comparative products 19 and 20, and 1400°C for inventive product 16 and comparative products 21,
22 is 1360℃. ) Among the sintered alloys obtained in this way, inventive products 12 to 16 and comparative products 17, 20, and 22 were carburized and decarburized under the conditions shown in Table 4, and other comparative products
18, 19, and 21 were left untreated. Next, a coating film similar to that in Example 2 was formed on the surface of each of the sintered alloys of Inventive Products 12 to 16 and Comparative Products 17 to 22, and then the fracture resistance test and resistance test conducted in Example 2 were performed. A wear test (cutting time 20 minutes) was conducted and the results are shown in Table 5. In addition, the surface parts of the sintered alloys of the present invention products 12 to 16 and comparative products 17 to 22 were examined in the same manner as in Example 2,
The surface of each sintered alloy when the binder phase concentration inside each sintered alloy is 100.
The depth from the surface at which the amount of Co and the concentration of the binder phase were minimum were determined and listed in Table 5. From the results in Table 5, it can be seen that products 12 to 16 of the present invention are superior in both wear resistance and chipping resistance in a well-balanced manner compared to comparative products deviating from the present invention and conventional comparative products 17 to 22. It is.

【表】【table】

【表】 (効果) 上述の如く、本発明における表面調質焼結合金
は結合相の相対濃度がその表面において実質的に
最大となつているために脆い被覆膜に発生した亀
裂も母材表面において進行を阻止され、工具の欠
損を防止するという効果がある。 更に必要によつては本発明における表面調質焼
結合金の結合相濃度が内部の平均的結合相濃度よ
りも小さい最小値の部分を表面から適当な深さの
ところに作ることができるので、表面の結合相濃
度最大部によつて亀裂の内部への進展を阻止する
のみならず、高速重切削においてしばしば問題と
なる刃先の塑性変形に対してはこの結合相濃度最
小部ががつちりと受け止め、塑性変形及びそれか
ら発生する刃先損傷を防止するという効果があ
る。
[Table] (Effects) As mentioned above, in the surface-treated sintered alloy of the present invention, the relative concentration of the binder phase is substantially at its maximum at the surface, so that cracks that occur in the brittle coating film can be removed from the base material. Progress is blocked on the surface, which has the effect of preventing tool breakage. Furthermore, if necessary, it is possible to create a portion at an appropriate depth from the surface where the binder phase concentration of the surface-treated sintered alloy of the present invention is smaller than the average binder phase concentration inside. The part with the highest concentration of binder phase on the surface not only prevents cracks from propagating into the interior, but also the part with the lowest binder phase concentration firmly prevents plastic deformation of the cutting edge, which is often a problem in high-speed heavy cutting. This has the effect of preventing plastic deformation and resulting damage to the cutting edge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来技術の焼結合金の表面から内部
におけるCo,W,Tiの相対濃度分布を示す。第
2図、第3図及び第4図は、本発明における表面
調質焼結合金の結合相の相対濃度分布の代表例を
示す。第5図は、実施例1で求めた本発明におけ
る表面調質焼結合金のCo,W,Ti,Taの相対濃
度分布を示す。第6図は、WC−16wt%Coの断
面相図を示す。第7図は、第6図における結合相
の固液共存域の拡大図で、ABが結合相の液相
線、CDが結合相の固相線を示す。第8図は、実
施例2における耐欠損性試験結果のグラフ、第9
図は、実施例2における耐摩耗性試験結果のグラ
フ、第10図は、実施例3における耐欠損性試験
結果のグラフをそれぞれ示す。
FIG. 1 shows the relative concentration distribution of Co, W, and Ti from the surface to the inside of a conventional sintered alloy. FIG. 2, FIG. 3, and FIG. 4 show typical examples of the relative concentration distribution of the binder phase of the surface-treated sintered alloy according to the present invention. FIG. 5 shows the relative concentration distribution of Co, W, Ti, and Ta in the surface-treated sintered alloy of the present invention determined in Example 1. FIG. 6 shows a cross-sectional phase diagram of WC-16wt%Co. FIG. 7 is an enlarged view of the solid-liquid coexistence region of the bonded phase in FIG. 6, where AB indicates the liquidus line of the bonded phase and CD indicates the solidus line of the bonded phase. Figure 8 is a graph of the fracture resistance test results in Example 2;
The figure shows a graph of the wear resistance test results in Example 2, and FIG. 10 shows the graph of the fracture resistance test results in Example 3.

Claims (1)

【特許請求の範囲】 1 周期律表の4a,5a及び6a族金属の炭化物、
炭窒化物、炭酸化物、炭窒酸化物又はこれらの相
互固溶体の中の少なくとも1種を含む硬質相80〜
97wt%と、残りが鉄族金属の中の少なくとも1
種を含む結合相とからなる焼結合金の表面に被覆
膜を形成してなる被覆焼結合金において、該焼結
合金の結合相の相対濃度が焼結合金の表面で最大
値をとつた後、焼結合金の表面から少なくとも
5μmまでは内部に向つて減少してなる表面調質
焼結合金からなり、該被覆膜が周期律表の4a,
5a及び6a族金属の炭化物、窒化物、炭酸化物、
窒酸化物及びこれらの相互固溶体、炭化ケイ素、
窒化ケイ素、酸化アルミニウム、酸窒化アルミニ
ウム、窒化アルミニウム、立方晶窒化ホウ素、ダ
イヤモンドの中の少なくとも1種の単層又は多層
でなることを特徴とする表面調質焼結合金。 2 上記結合層の相対濃度が焼結合金の表面から
少なくとも5μmの内部において、内部の平均的
結合相濃度に滑らかに近ずいていることを特徴と
する特許請求の範囲の請求項第1項記載の被覆表
面調質焼結合金。 3 上記結合相の相対濃度が焼結合金の表面から
少なくとも5μmの内部において、内部の平均的
結合相濃度よりも小さい最小値をとつた後、さら
に内部に向つては内部の平均的結合相濃度まで滑
らかに増加していることを特徴とする特許請求の
範囲の請求項第1項記載の被覆表面調質焼結合
金。 4 周期律表の4a,5a及び6a族金属の炭化物、
炭窒化物、炭酸化物、炭窒酸化物又はこれらの相
互固溶体の中の少なくとも1種を含む硬質相80〜
97wt%と、残りが鉄族金属の中の少なくとも1
種を含む結合相とからなる焼結合金の表面に被覆
膜を形成してなる被覆焼結合金において、該焼結
合金の結合相の相対濃度が焼結合金の表面で最大
値をとつた後、焼結合金の表面から少なくとも
5μmまでは内部に向つて減少し、該焼結合金の
硬質相が炭化タングステンと周期律表の4a,5a
及び6a族金属の炭化物、炭窒化物、炭酸化物、
炭窒酸化物又はこれらの相互固溶体の中の少なく
とも1種のB−1型結晶構造の相とからなり、か
つ該焼結合金の表面から少なくとも5μmまでの
内部の表面層における該B−1型結晶構造の硬質
相が該表面層を除いた内部における該B−1型結
晶構造の硬質相に比べて減少してなる表面調質焼
結合金からなり、該被覆膜が周期律表の4a,5a
及び6a族金属の炭化物、窒化物、炭酸化物、窒
酸化物及びこれらの相互固溶体、炭化ケイ素、窒
化ケイ素、酸化アルミニウム、酸窒化アルミニウ
ム、窒化アルミニウム、立方晶窒化ホウ素、ダイ
ヤモンドの中の少なくとも1種の単層又は多層で
なることを特徴とする被覆表面調質焼結合金。
[Scope of Claims] 1. Carbide of group 4a, 5a and 6a metals of the periodic table,
Hard phase containing at least one of carbonitrides, carbonates, carbonitrides, or mutual solid solutions thereof80~
97wt% and the remainder at least one of the iron group metals
In a coated sintered alloy formed by forming a coating film on the surface of a sintered alloy consisting of a binder phase containing seeds, the relative concentration of the binder phase of the sintered alloy reaches its maximum value on the surface of the sintered alloy. After that, at least
The coating film consists of a surface-treated sintered alloy that decreases inward to 5 μm, and the coating film is 4a of the periodic table.
carbides, nitrides, carbonates of group 5a and 6a metals;
Nitrogen oxides and their mutual solid solutions, silicon carbide,
A surface-treated sintered alloy comprising a single layer or multiple layers of at least one of silicon nitride, aluminum oxide, aluminum oxynitride, aluminum nitride, cubic boron nitride, and diamond. 2. Claim 1, characterized in that the relative concentration of the bonding layer smoothly approaches the average bonding phase concentration inside the sintered alloy within at least 5 μm from the surface of the sintered alloy. coated surface tempered sintered alloy. 3 After the relative concentration of the binder phase reaches a minimum value smaller than the average binder phase concentration inside at least 5 μm from the surface of the sintered alloy, the average binder phase concentration inside the sintered alloy increases further inward. The coated surface-tempered sintered alloy according to claim 1, characterized in that the coated surface-tempered sintered alloy has a smooth increase in temperature. 4 carbides of metals from groups 4a, 5a and 6a of the periodic table;
Hard phase containing at least one of carbonitrides, carbonates, carbonitrides, or mutual solid solutions thereof80~
97wt% and the remainder at least one of the iron group metals
In a coated sintered alloy formed by forming a coating film on the surface of a sintered alloy consisting of a binder phase containing seeds, the relative concentration of the binder phase of the sintered alloy reaches its maximum value on the surface of the sintered alloy. After that, at least
The thickness decreases inward to 5 μm, and the hard phase of the sintered alloy is tungsten carbide and 4a and 5a of the periodic table.
and carbides, carbonitrides, carbonates of group 6a metals,
and at least one B-1 type crystal structure phase among carbonitride oxides or mutual solid solutions thereof, and the B-1 type in the inner surface layer up to at least 5 μm from the surface of the sintered alloy. It is made of a surface-treated sintered alloy in which the hard phase of the crystal structure is reduced compared to the hard phase of the B-1 type crystal structure in the interior excluding the surface layer, and the coating film is 4a of the periodic table. ,5a
and at least one of group 6a metal carbides, nitrides, carbonates, nitrides, and mutual solid solutions thereof, silicon carbide, silicon nitride, aluminum oxide, aluminum oxynitride, aluminum nitride, cubic boron nitride, and diamond. A coated surface-tempered sintered alloy characterized by comprising a single layer or multiple layers of.
JP63115094A 1988-05-12 1988-05-12 Surface heat-treated sintered alloy, its manufacture and coated surface heat-treated sintered alloy with hard film Granted JPH01287245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63115094A JPH01287245A (en) 1988-05-12 1988-05-12 Surface heat-treated sintered alloy, its manufacture and coated surface heat-treated sintered alloy with hard film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63115094A JPH01287245A (en) 1988-05-12 1988-05-12 Surface heat-treated sintered alloy, its manufacture and coated surface heat-treated sintered alloy with hard film

Publications (2)

Publication Number Publication Date
JPH01287245A JPH01287245A (en) 1989-11-17
JPH0372696B2 true JPH0372696B2 (en) 1991-11-19

Family

ID=14654056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63115094A Granted JPH01287245A (en) 1988-05-12 1988-05-12 Surface heat-treated sintered alloy, its manufacture and coated surface heat-treated sintered alloy with hard film

Country Status (1)

Country Link
JP (1) JPH01287245A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT408666B (en) * 1999-04-22 2002-02-25 Weinberger Eisenwerk CASTING MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
JP4703123B2 (en) * 2004-03-23 2011-06-15 京セラ株式会社 Method for producing surface-coated TiCN-based cermet
JP6052502B2 (en) * 2013-03-25 2016-12-27 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134719A (en) * 1978-04-13 1979-10-19 Mitsubishi Metal Corp Coated super hard alloy member
JPS55158268A (en) * 1979-05-26 1980-12-09 Sumitomo Electric Ind Ltd Coated super hard alloy parts
JPS63169356A (en) * 1987-01-05 1988-07-13 Toshiba Tungaloy Co Ltd Surface-tempered sintered alloy and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134719A (en) * 1978-04-13 1979-10-19 Mitsubishi Metal Corp Coated super hard alloy member
JPS55158268A (en) * 1979-05-26 1980-12-09 Sumitomo Electric Ind Ltd Coated super hard alloy parts
JPS63169356A (en) * 1987-01-05 1988-07-13 Toshiba Tungaloy Co Ltd Surface-tempered sintered alloy and its production

Also Published As

Publication number Publication date
JPH01287245A (en) 1989-11-17

Similar Documents

Publication Publication Date Title
KR910003480B1 (en) Surface-refined sintered alloy body and method for making the same
JP5587858B2 (en) Cemented carbide tool and method for producing the same
KR100271068B1 (en) Cemented carbide with binder phase enriched surface zone
CA1319497C (en) Surface-coated cemented carbide and a process for the production of the same
US6293739B1 (en) Coated cemented carbide cutting tool
US5306326A (en) Titanium based carbonitride alloy with binder phase enrichment
JPH08134629A (en) Hyperfine particle laminated film and laminated high hardness material for tool with same
JP2762745B2 (en) Coated cemented carbide and its manufacturing method
JP2003311510A (en) Coated cutting tool for turning steel
CA2404294A1 (en) Cemented carbide tool and method of making
JP2000515588A (en) Coated turning insert and method of manufacturing the same
JP3743984B2 (en) Composite high hardness material for tools
EP1469101A2 (en) Coated cutting tool insert
JP4330859B2 (en) Coated cemented carbide and method for producing the same
JP4373074B2 (en) Coated cutting tool insert made of cemented carbide and coating
KR100778265B1 (en) Coated cemented carbide with binder phase enriched surface zone
JPH0372696B2 (en)
JP4105410B2 (en) Multi-component carbonitride powder, method for producing the same, and sintered body using the same
JPH1121651A (en) Cutting tool made of surface coated cemented carbide, excellent in thermal shock resistance
JP2684688B2 (en) Surface-coated tungsten carbide based cemented carbide for cutting tools
JPH10237650A (en) Wc base cemented carbide and its production
JP3850085B2 (en) Coated cermet for cutting tools
JP2828511B2 (en) Surface coated TiCN based cermet
JPS5914534B2 (en) Tough cermet with a softened surface layer
JPH04294907A (en) Hard layer coated tungsten carbide group sintered hard alloy-made cutting tool

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 17