JPH0372343B2 - - Google Patents

Info

Publication number
JPH0372343B2
JPH0372343B2 JP57225283A JP22528382A JPH0372343B2 JP H0372343 B2 JPH0372343 B2 JP H0372343B2 JP 57225283 A JP57225283 A JP 57225283A JP 22528382 A JP22528382 A JP 22528382A JP H0372343 B2 JPH0372343 B2 JP H0372343B2
Authority
JP
Japan
Prior art keywords
catalyst
wastewater
weight
tio
wet oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57225283A
Other languages
Japanese (ja)
Other versions
JPS59115744A (en
Inventor
Sanemi Kimoto
Yoshiaki Harada
Tomonori Ueda
Hiroshi Fuja
Kenichi Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP57225283A priority Critical patent/JPS59115744A/en
Publication of JPS59115744A publication Critical patent/JPS59115744A/en
Publication of JPH0372343B2 publication Critical patent/JPH0372343B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、廃水の湿式酸化処理に使用される担
体触媒に関する。 化学的酸素要求物質(以下COD成分という)、
懸濁物質或いは場合によつては更にアンモニア等
をも含む廃水の処理については、種々の方法が提
案されている。本発明者等もこの様な廃水の処理
につき長年研究を重ねた結果、触媒金属の種類、
湿式酸化に使用する酸素の濃度及び供給量、処理
すべき廃水のPH、湿式酸素反応中のPH低下等が、
処理効率、使用する機器類の腐食、触媒の寿命等
に大きく影響することを見出しており、これ等の
知見に基いてすでに特許出願を行なつている(特
願昭51−95507号、特願昭52−110257号、特願昭
56−165168号等)。本発明者は、これ等先願方法
の優れた効果、特にその高い処理効率を更に改善
すべく種々研究を続けた結果、触媒金属のみなら
ず、担体の種類によつても処理効率が影響される
こと、同一種類の担体においても担体の製造方法
の相違、結晶構造の相違等により排水の処理効
率、触媒の耐久性及び活性、使用触媒の再生処理
後の活性回復程度等が大きく異なる場合があるこ
と等を見出した。特にFe等の金属を触媒活性成
分とし、酸化チタン(以下TiO2という)を担体
とする湿式酸化触媒においては、TiO2を担体と
して使用する他の分野の触媒についての知見をそ
のまま適用することが出来ないことも判明した。
本発明は、湿式酸化触媒における担体としての
TiO2の上記の如き特異性を解明した結果に基い
て完成されたものである。 すなわち、本発明は、下記の湿式酸化処理用担
持触媒を提供するものである: 廃水の湿式酸化処理用担持触媒であつて、鉄、
コバルト、ニツケル、銅およびタングステンの1
種または2種以上を触媒有効成分とし、且つアナ
ターゼ型結晶とルチル型結晶との組成比が前者1
重量部に対し後者0.2〜2.0重量部である酸化チタ
ンを担体とすることを特徴とする触媒。 本発明においては、触媒中のTiO2担体のアナ
ターゼ型結晶構造部分を1重量部とし、ルチル型
結晶構造部分を0.2〜2.0重量部とする。ルチル型
結晶が0.2重量部未満であるか或いは2.0重量部を
上回る場合には、後記実施例および比較例に示す
結果から明らかな様に、湿式酸化処理時のアンモ
ニア分解率及びCOD分解率が低い、触媒の耐久
性及び触媒の強度が劣る、再生処理後の活性回復
が十分でない等の一又は二以上の欠点がある。ア
ナターゼ型結晶1重量部に対しルチル型結晶0.2
〜2.0重量部とした場合には、触媒の耐久性が高
まり、長時間経過後にも、アンモニアおよび
COD成分の高度の分解率が維持される。なお、
TiO2担体中のルチル型結晶の割合が本発明の範
囲外であつても、触媒の使用時間が短い場合に
は、かなり優れたアンモニアおよびCOD成分の
分解率が達成されるが、時間の経過とともに耐久
性の低下に伴つて分解率が低下するので、実用性
に劣るものとなる。 本発明で使用する担体は、例えば、次のように
して製造することが出来る。まず、酸化チタン
(TiO2)および酸化鉄(FeO)を主成分とするイ
ルメナイト鉱石を粉砕し、硫酸に溶解させて、硫
酸チタン(TiOSO4)とし、次いで、これにアル
カリを加えて水酸化チタン(TiO(OH)2)とした
後、少量の塩化バリウムを加え、600〜700℃で1
〜3時間焼成する。得られた焼成物を粉砕し、常
法に従つて、バインダーなどの添加物を配合し、
混練し、所定の形状および寸法に造粒した後、乾
燥し、750〜1200℃程度、より好ましくは800〜
1000℃程度で、1〜5時間程度焼成することによ
り、担体を得る。この際、焼成温度が高い、また
焼成時間が長い程、ルチル型結晶の割合が増大す
るので、焼成温度および焼成時間を適宜調整する
ことにより、所望のルチル型結晶/アナターゼ型
結晶比を有する担体を得ることが出来る。 また、湿式酸化触媒は、上記のようにして得た
担体を常法に従つて触媒活性金属の化合物溶液に
浸漬し、乾燥および/または焼成し、必要ならば
さらに還元或いはアルカリ処理することにより、
得られる。 本発明触媒においては、触媒活性成分の量は、
担体重量の0.05〜25%程度(金属として)であ
り、0.5〜3.0%とすることがより好ましい。 本発明触媒は、廃水を100〜370℃程度に加熱し
且つ廃水が液相を保持する圧力に保持しつつ、酸
素の存在下に廃水中のCOD成分及び/又は懸濁
物質及び/又はアンモニア等を分解する廃水の湿
式酸化処理用の触媒として特に好適である。 実施例 1 アナターゼ型結晶構造部分とルチル型結晶構造
部分の重量組成比が第1表に示す通りである
TiO2担持触媒(径4mm球形触媒)を円筒型反応
塔に充填して、廃水の湿式酸化処理を行なつた。 酒精工場からの排水(COD9400ppm、
TOD19000ppm、PH10.0)を空間速度2.01/hr(空
塔基準)で円筒型反応塔最下部に供給した。液の
質量速度は25tan/m2・hrであり、又処理済水の
PHが約7.0となる様に反応塔内には苛性ソーダ溶
液を連続的に供給した。一方、空気を空間速度
901/hr(空塔基準、標準状態換算)として反応塔
下部に供給した。 反応塔内部を温度250℃、圧力70Kg/m2・Gに
保持し、湿式酸化後の気液混合相を順次反応塔上
部から抜き出し、間接冷却後、気液分離器に導い
た。 分離された気相及び液相中の各残留成分の絶対
量からCOD成分の除去率を求めた結果を第1表
に示す。尚、第1表に示す数値は、湿式酸化反応
開始100時間後の結果である。 この比較的短時間経過後の廃水処理において
は、TiO2担体中のルチル型結晶の割合が本発明
の範囲外であつても、かなり優れたアンモニアお
よびCOD成分の分解率が達成されていることが
明らかである。 なお、第1表および以下の各表において、「↓」
なる記号は、「上に同じ」なることを意味するも
のである。また、COD分解率の数値は、それぞ
れ“%”を示す。
The present invention relates to a supported catalyst used in wet oxidation treatment of wastewater. Chemical oxygen demand substances (hereinafter referred to as COD components),
Various methods have been proposed for treating wastewater containing suspended solids or even ammonia. As a result of many years of research into the treatment of such wastewater, the present inventors have discovered that the types of catalyst metals,
The concentration and supply amount of oxygen used in wet oxidation, the pH of the wastewater to be treated, the drop in pH during the wet oxygen reaction, etc.
We have discovered that it has a significant effect on processing efficiency, corrosion of the equipment used, and the lifespan of the catalyst, and have already filed a patent application based on these findings (Japanese Patent Application No. 51-95507, No. 52-110257, special request
56-165168 etc.). As a result of continuing various studies to further improve the excellent effects of the previously applied methods, especially the high processing efficiency, the present inventor found that the processing efficiency is influenced not only by the catalyst metal but also by the type of support. In addition, even with the same type of carrier, the wastewater treatment efficiency, the durability and activity of the catalyst, the degree of activity recovery after regeneration of the catalyst used, etc. may vary greatly due to differences in the manufacturing method of the carrier, differences in crystal structure, etc. I found out some things. In particular, in wet oxidation catalysts that use metals such as Fe as catalytic active components and titanium oxide (hereinafter referred to as TiO 2 ) as a carrier, it is possible to directly apply the knowledge of catalysts in other fields that use TiO 2 as a carrier. It turned out that it wasn't possible.
The present invention is directed to the use of
This was completed based on the results of elucidating the above-mentioned specificity of TiO 2 . That is, the present invention provides the following supported catalyst for wet oxidation treatment: A supported catalyst for wet oxidation treatment of wastewater, which contains iron,
1 of cobalt, nickel, copper and tungsten
a species or two or more species as catalytic active ingredients, and the composition ratio of anatase type crystals and rutile type crystals is 1 for the former.
A catalyst characterized in that the latter is 0.2 to 2.0 parts by weight of titanium oxide as a carrier. In the present invention, the anatase type crystal structure portion of the TiO 2 support in the catalyst is 1 part by weight, and the rutile type crystal structure portion is 0.2 to 2.0 parts by weight. When the amount of rutile crystals is less than 0.2 parts by weight or more than 2.0 parts by weight, the ammonia decomposition rate and COD decomposition rate during wet oxidation treatment are low, as is clear from the results shown in Examples and Comparative Examples below. However, there are one or more drawbacks such as poor catalyst durability and catalyst strength, and insufficient activity recovery after regeneration treatment. 0.2 parts by weight of rutile crystal per 1 part by weight of anatase crystal
When the content is ~2.0 parts by weight, the durability of the catalyst increases, and even after a long period of time, ammonia and
A high degree of decomposition rate of COD components is maintained. In addition,
Even if the proportion of rutile crystals in the TiO 2 support is outside the range of the present invention, fairly good decomposition rates of ammonia and COD components can be achieved if the catalyst is used for a short time; At the same time, as the durability decreases, the decomposition rate also decreases, making it less practical. The carrier used in the present invention can be produced, for example, as follows. First, ilmenite ore, whose main components are titanium oxide (TiO 2 ) and iron oxide (FeO), is crushed and dissolved in sulfuric acid to form titanium sulfate (TiOSO 4 ). Next, an alkali is added to this to form titanium hydroxide. (TiO(OH) 2 ), add a small amount of barium chloride, and heat at 600 to 700℃.
Bake for ~3 hours. The obtained baked product is pulverized, and additives such as a binder are added according to a conventional method.
After kneading and granulating into a predetermined shape and size, dry and heat to about 750-1200℃, more preferably 800-1200℃.
A carrier is obtained by baking at about 1000°C for about 1 to 5 hours. At this time, the higher the firing temperature and the longer the firing time, the higher the proportion of rutile crystals, so by appropriately adjusting the firing temperature and time, it is possible to obtain a carrier having a desired rutile crystal/anatase crystal ratio. can be obtained. In addition, the wet oxidation catalyst can be prepared by immersing the carrier obtained as described above in a compound solution of a catalytically active metal in a conventional manner, drying and/or calcining, and further reducing or alkali treatment if necessary.
can get. In the catalyst of the present invention, the amount of the catalytically active component is
The amount is about 0.05 to 25% (as metal) of the weight of the carrier, and more preferably 0.5 to 3.0%. The catalyst of the present invention heats wastewater to about 100 to 370°C and maintains the pressure at which the wastewater maintains a liquid phase, while in the presence of oxygen COD components and/or suspended solids and/or ammonia etc. in the wastewater. It is particularly suitable as a catalyst for wet oxidation treatment of wastewater to decompose. Example 1 The weight composition ratio of the anatase type crystal structure part and the rutile type crystal structure part is as shown in Table 1.
A cylindrical reaction tower was filled with a TiO 2 supported catalyst (spherical catalyst with a diameter of 4 mm), and wet oxidation treatment of wastewater was performed. Wastewater from liquor factories (COD9400ppm,
TOD 19000 ppm, PH 10.0) was supplied to the bottom of the cylindrical reaction tower at a space velocity of 2.01/hr (based on the empty column). The mass velocity of the liquid is 25tan/ m2・hr, and the
A caustic soda solution was continuously supplied into the reaction tower so that the pH was approximately 7.0. On the other hand, the space velocity of air
It was supplied to the lower part of the reaction tower at a rate of 901/hr (empty column standard, standard state conversion). The inside of the reaction tower was maintained at a temperature of 250° C. and a pressure of 70 Kg/m 2 ·G, and the gas-liquid mixed phase after wet oxidation was sequentially extracted from the upper part of the reaction tower and, after indirect cooling, led to a gas-liquid separator. Table 1 shows the results of determining the COD component removal rate from the absolute amounts of each residual component in the separated gas and liquid phases. The values shown in Table 1 are the results 100 hours after the start of the wet oxidation reaction. In wastewater treatment after a relatively short period of time, a fairly excellent decomposition rate of ammonia and COD components was achieved even though the proportion of rutile crystals in the TiO 2 carrier was outside the scope of the present invention. is clear. In addition, in Table 1 and each table below, "↓"
The symbol ``is the same as above''. In addition, the numerical values of COD decomposition rate each indicate "%".

【表】 比較例 1 アナターゼ型結晶構造部分とルチル型結晶構造
部分の重量組成比が第2表に示す通りである
TiO2担体に触媒活性成分を担持させた触媒を使
用する以外は実施例1と同様にして廃水の湿式酸
化処理を行なつた。 結果は第2表に示す通りであつた。COD分解
率が、実施例1に比して劣つていることが明らか
である。
[Table] Comparative Example 1 The weight composition ratio of the anatase type crystal structure part and the rutile type crystal structure part is as shown in Table 2.
Wet oxidation treatment of wastewater was carried out in the same manner as in Example 1 except that a catalyst in which a catalytically active component was supported on a TiO 2 carrier was used. The results were as shown in Table 2. It is clear that the COD decomposition rate is inferior to that of Example 1.

【表】 実施例 2 触媒活性成分としてタングステンまたは銅を使
用し且つTiO2担体中のアナターゼ型構造結晶部
分とルチル型結晶構造部分との重量組成比が第3
表に示す通りである担持触媒を使用する以外は実
施例1と同様にして廃水の湿式酸化処理を行なつ
た。 反応開始後4000時間経過後の結果を第3表に示
す。 第3表に示す結果から、TiO2担体中のアナタ
ーゼ型結晶構造部分とルチル型結晶構造部分との
重量組成比が本発明の範囲外である場合には、触
媒の耐久性が劣るので、4000時間という長時間の
使用後にCOD分解率がかなり低下し、90%を下
回つていることが明らかである。
[Table] Example 2 Tungsten or copper was used as the catalytic active component, and the weight composition ratio of the anatase type crystal structure part and the rutile type crystal structure part in the TiO 2 support was the third.
Wet oxidation treatment of wastewater was carried out in the same manner as in Example 1 except that the supported catalysts shown in the table were used. Table 3 shows the results 4000 hours after the start of the reaction. From the results shown in Table 3, if the weight composition ratio of the anatase type crystal structure part and the rutile type crystal structure part in the TiO 2 support is outside the range of the present invention, the durability of the catalyst will be poor. It is clear that after a long time of use, the COD decomposition rate decreases considerably and is below 90%.

【表】 実施例 3 触媒活性成分がコバルト、鉄またはニツケルで
あり且つTiO2担体中のアナターゼ型結晶構造部
分とルチル型結晶構造部分との重量組成比が第4
表に示す通りである担持触媒を使用する以外は実
施例1と同様にして廃水の湿式酸化処理を行なつ
た。 反応開始後4000時間経過後の触媒の相対強度を
第4表に示す。すなわち、各触媒の強度を木屋式
圧壊強度計を用いて測定した後、触媒活性成分が
コバルトであり且つルチル/アナターゼ比=0.2
である試料No.2の強度を100とする相対強度を求
めた。 第4表に示す結果から、触媒活性成分の如何を
問わず、TiO2担体中のアナターゼ型構造部分と
ルチル型構造部分との重量組成比が本発明の範囲
外である場合には、触媒の耐久性が劣ることが明
らかである。
[Table] Example 3 The catalytic active component is cobalt, iron, or nickel, and the weight composition ratio of the anatase type crystal structure part and the rutile type crystal structure part in the TiO 2 support is 4th.
Wet oxidation treatment of wastewater was carried out in the same manner as in Example 1 except that the supported catalysts shown in the table were used. Table 4 shows the relative strengths of the catalysts 4000 hours after the start of the reaction. That is, after measuring the strength of each catalyst using a Kiya type crushing strength meter, it was determined that the catalytic active component was cobalt and the rutile/anatase ratio was 0.2.
The relative strength was determined with the strength of sample No. 2 as 100. From the results shown in Table 4, regardless of the catalyst active component, if the weight composition ratio of the anatase type structure part and the rutile type structure part in the TiO 2 support is outside the range of the present invention, the catalyst It is clear that the durability is inferior.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 廃水の湿式酸化処理用担持触媒であつて、
鉄、コバルト、ニツケル、銅およびタングステン
の1種または2種以上を触媒有効成分とし、且つ
アナターゼ型結晶とルチル型結晶との組成比が前
者1重量部に対し後者0.2〜2.0重量部である酸化
チタンを担体とすることを特徴とする触媒。
1. A supported catalyst for wet oxidation treatment of wastewater,
Oxidation in which one or more of iron, cobalt, nickel, copper, and tungsten is used as a catalytic active ingredient, and the composition ratio of anatase type crystals and rutile type crystals is 1 part by weight of the former and 0.2 to 2.0 parts by weight of the latter. A catalyst characterized by using titanium as a carrier.
JP57225283A 1982-12-21 1982-12-21 Wet type oxidation processing catalyst Granted JPS59115744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225283A JPS59115744A (en) 1982-12-21 1982-12-21 Wet type oxidation processing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225283A JPS59115744A (en) 1982-12-21 1982-12-21 Wet type oxidation processing catalyst

Publications (2)

Publication Number Publication Date
JPS59115744A JPS59115744A (en) 1984-07-04
JPH0372343B2 true JPH0372343B2 (en) 1991-11-18

Family

ID=16826902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225283A Granted JPS59115744A (en) 1982-12-21 1982-12-21 Wet type oxidation processing catalyst

Country Status (1)

Country Link
JP (1) JPS59115744A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103159365B (en) * 2013-04-02 2014-06-25 宜宾天原集团股份有限公司 Method and device for increasing concentration of iron ions in artificial rutile mother solution
CN103159263B (en) * 2013-04-02 2014-09-10 宜宾天原集团股份有限公司 Treatment method of artificial rutile mother solution
CN106582777A (en) * 2016-12-27 2017-04-26 郑州天舜电子技术有限公司 Catalyst for treating coked phenol wastewater and preparation method of catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152591A (en) * 1979-05-16 1980-11-27 Osaka Gas Co Ltd Treatment of waste water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152591A (en) * 1979-05-16 1980-11-27 Osaka Gas Co Ltd Treatment of waste water

Also Published As

Publication number Publication date
JPS59115744A (en) 1984-07-04

Similar Documents

Publication Publication Date Title
US4210628A (en) Removal of nitrogen oxides
US5055282A (en) Method of decomposing ammonia using a ruthenium catalyst
CN106732509A (en) The preparation method of modified aluminium oxide supports, catalytic ozone oxidation catalyst and its application
JPS62431A (en) Manufacture of 1,2-dichloroethane
JP2003520662A (en) Supported metal catalyst, method for its production and its application in direct production of hydrogen peroxide
JP2002511017A (en) Use of Ce / Zr mixed oxide phase for the production of styrene by dehydrogenation of ethylbenzene
JPS62168547A (en) Silver catalyst and its production
JPH0372343B2 (en)
US2769018A (en) Catalytic oxidation of polynuclear hydrocarbons
JPH0372342B2 (en)
CA1069487A (en) Hydrogenation catalyst
US3031265A (en) Method for making cyanogen
CN113000052B (en) Wet oxidation catalyst and preparation method and application thereof
JPH0239297B2 (en)
CN108147466A (en) The method that sulfur-containing smoke gas prepares manganese sulfate in smelting furnace is absorbed using sulfur adsorbent
JPS61257291A (en) Treatment of waste water containing ammonium nitrate
US3794682A (en) Hydration of nitriles
JPS62207716A (en) Manufacture of copper hydroxide
US2330553A (en) Ferric oxide and its preparation
JP2017124366A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using catalyst
JP2016190221A (en) Selenate reduction catalyst, production method of selenate reduction catalyst and reduction method of selenate solution
JPS6354641B2 (en)
JP3083463B2 (en) Regeneration method of catalyst for wet oxidation treatment
JPH03122010A (en) Catalytic oxidative degradation of ammonia
JPH02191590A (en) Method for removing hydroxylammonium salt from waste water containing the same