JPH0368453A - Method for reactivating ruthenium catalyst - Google Patents

Method for reactivating ruthenium catalyst

Info

Publication number
JPH0368453A
JPH0368453A JP1202857A JP20285789A JPH0368453A JP H0368453 A JPH0368453 A JP H0368453A JP 1202857 A JP1202857 A JP 1202857A JP 20285789 A JP20285789 A JP 20285789A JP H0368453 A JPH0368453 A JP H0368453A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
ruthenium
activity
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1202857A
Other languages
Japanese (ja)
Other versions
JP2886563B2 (en
Inventor
Mitsuji Ono
満司 小野
Hajime Nagahara
肇 永原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1202857A priority Critical patent/JP2886563B2/en
Publication of JPH0368453A publication Critical patent/JPH0368453A/en
Application granted granted Critical
Publication of JP2886563B2 publication Critical patent/JP2886563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

PURPOSE:To easily reactivate a ruthenium catalyst by keeping the deactivated catalyst lower than the hydrogen partial pressure used in the hydrogenation reaction of an unsaturated org. compd. and more than 50 deg.C lower than the reaction temp. CONSTITUTION:A ruthenium catalyst deactivated in the hydrogenation reaction of an unsaturated org. compd. is kept lower than the hydrogen partial pressure in the hydrogenation reaction and more than 50 deg.C lower than the reaction temp. to reactivate the catalyst. Ruthenium black, metallic ruthenium fine particles having extremely small average crystallite diameter, etc., are exemplified as the ruthenium catalyst. The reactivation temp. is appropriately controlled more than about 40 deg.C lower than the reaction temp., and the time of reactivation ranges usually from several minutes to several days.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、不飽和有機化合物の水素化反応に使用される
ルテニウム触媒を有効に利用する方法を与えるものであ
る。更に詳しくは該水素化反応にくり返しもしくは連続
的に使用されることによって活性が低下したルテニウム
触媒の活性回復方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention provides a method for effectively utilizing a ruthenium catalyst used in the hydrogenation reaction of unsaturated organic compounds. More specifically, the present invention relates to a method for restoring the activity of a ruthenium catalyst whose activity has decreased due to repeated or continuous use in the hydrogenation reaction.

ルテニウム触媒はその高い活性や特異な反応選択性を利
用して、不飽和有機化合物の水素化、オレフィン、ケト
ン、アルデヒドなどの水素化、特に芳香族化合物の核水
素化や部分核水素化に使用されている。
Utilizing its high activity and unique reaction selectivity, ruthenium catalysts are used for the hydrogenation of unsaturated organic compounds, hydrogenation of olefins, ketones, aldehydes, etc., and especially for the nuclear hydrogenation and partial nuclear hydrogenation of aromatic compounds. has been done.

〔従来の技術〕[Conventional technology]

不飽和有機化合物の水素化反応に使用される触媒の活性
低下は、反応環境(温度・反応熱)による触媒自身の活
性点の物理的変化(例えばシンタリング)を原因とする
もの、もしくは、被毒物質(例えばイオウ化合物、異種
金属など)の蓄積を原因とするものが代表的な例として
掲げられる。
The decrease in activity of catalysts used in the hydrogenation reaction of unsaturated organic compounds is caused by physical changes (e.g. sintering) in the active sites of the catalyst itself due to the reaction environment (temperature, heat of reaction), or due to Typical examples include those caused by the accumulation of toxic substances (e.g. sulfur compounds, foreign metals, etc.).

これらの原因を回避する目的で、反応温度を調節したり
、被毒物質の混入を防止する何らかの措置をとることは
工業的にも広く行なわれている。ルテニウム触媒につい
ても同様の現象が存在し、特に被毒物質が反応に影響を
もたらすものとしては、例えば特開昭60−25573
8号公報にイオウ化合物による被毒の例が、又、特開昭
6267033号公報においては鉄による被毒の例が記
載されている。又、イオウ化合物により、被毒したルテ
ニウム触媒の再生方法については特開昭62−6575
1号公報にその例がみられる。
In order to avoid these causes, it is widely practiced industrially to adjust the reaction temperature and to take some measures to prevent the contamination of poisonous substances. A similar phenomenon exists with ruthenium catalysts, and examples of poisoning substances that affect the reaction include, for example, JP-A No. 60-25573.
No. 8 describes an example of poisoning by sulfur compounds, and JP-A-6267033 describes an example of poisoning by iron. Furthermore, a method for regenerating a ruthenium catalyst poisoned by a sulfur compound is disclosed in Japanese Patent Application Laid-Open No. 62-6575.
An example of this can be found in Publication No. 1.

又、特開平1−159059号公報において、不飽和有
機化合物の水素化反応によって活性が低下したルテニウ
ム触媒を、液相において酸素と接触させることによって
活性を回復させる方法が開示されている。
Furthermore, Japanese Patent Application Laid-Open No. 1-159059 discloses a method for restoring the activity of a ruthenium catalyst whose activity has been reduced by a hydrogenation reaction of an unsaturated organic compound by bringing it into contact with oxygen in the liquid phase.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、本発明者らの詳細な検討によれば、不飽
和有機化合物の水素化にくり返しもしくは連続的に使用
されるルテニウム触媒においては、かかる触媒の物理的
変化や、被毒などとは全く別の原因によると思われる活
性低下が発生することが確認された。この様な現象は理
論的に明確に説明することは困難であるが、触媒の物理
的変化や被毒状態の観測から推定されるよりも大きな活
性低下が観測されること、及び反応が水素の共存下に行
なわれるものであることなどより、水素とルテニウム触
媒の相互作用がもたらす何らかの反応阻害因子が、反応
条件下において経時的に増大していくものと思われる。
However, according to detailed studies by the present inventors, in ruthenium catalysts used repeatedly or continuously for hydrogenation of unsaturated organic compounds, such physical changes and poisoning of the catalysts are completely independent. It was confirmed that a decrease in activity occurred, which was thought to be due to the cause. Although it is difficult to clearly explain such a phenomenon theoretically, it is clear that a greater decrease in activity is observed than that estimated from observations of physical changes in the catalyst and the poisoning state, and that the reaction is caused by hydrogen Since the reaction is carried out in the coexistence of hydrogen and ruthenium catalysts, it is thought that some kind of reaction inhibiting factor brought about by the interaction between hydrogen and the ruthenium catalyst increases over time under the reaction conditions.

この様な活性低下は、高価なルテニウム触媒を使用する
に当っては大きな問題であり、活性を効率良く回復せし
め、再使用する方法が強く望まれる。
Such a decrease in activity is a major problem when using expensive ruthenium catalysts, and a method for efficiently recovering the activity and reusing the catalyst is strongly desired.

また、特開平1−159059号公報においては、比較
的効率の良い活性回復を果たしているが、もともと水素
が多く存在する反応系から、酸素の存在する活性回復操
作に移行することは、水素と酸素の共存による爆鳴気形
成を避けるために操作上細心の注意を払わなくてはなら
ず、簡便性の面で必ずしも充分とはいえない。又、酸素
との接触によりルテニウム触媒の表面が一部酸化され、
表面状態の不可逆的変化を誘起することも考えられ、必
ずしも好ましい方法ではない。
In addition, in JP-A-1-159059, relatively efficient activity recovery is achieved, but it is difficult to shift from a reaction system in which a large amount of hydrogen originally exists to an activity recovery operation in which oxygen is present. Extreme care must be taken in operation to avoid the formation of explosive gas due to the coexistence of the above, and it cannot necessarily be said that it is sufficient in terms of simplicity. In addition, the surface of the ruthenium catalyst is partially oxidized by contact with oxygen,
This is not necessarily a preferable method since it may induce irreversible changes in the surface state.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記の如き従来技術が有する問題点をな
くすることを目的にルテニウム触媒の活性回復方法を鋭
意検討した結果、驚くほど簡便な方法を見い出し、本発
明に到達したものである。
The present inventors have conducted intensive studies on methods for restoring the activity of ruthenium catalysts with the aim of eliminating the problems of the prior art as described above, and as a result, have discovered a surprisingly simple method and have arrived at the present invention. .

即ち、本発明は、不飽和有機化合物の水素化反応に使用
されることによって活性が低下したルテニウム触媒を、
該水素化反応条件における水素分圧よりも低い水素分圧
下、かつ該水素化反応条件における温度より50℃を下
回らない温度に保持することを特徴とするルテニウム触
媒の活性回復方法である。
That is, the present invention uses a ruthenium catalyst whose activity has decreased due to its use in the hydrogenation reaction of unsaturated organic compounds.
This is a method for restoring the activity of a ruthenium catalyst, characterized by maintaining the hydrogen partial pressure at a lower hydrogen partial pressure than the hydrogen partial pressure under the hydrogenation reaction conditions and at a temperature not lower than 50° C. than the temperature under the hydrogenation reaction conditions.

上記の方法により、ルテニウム触媒の再使用を極めて有
効に行うことができる。
By the above method, the ruthenium catalyst can be reused very effectively.

以下、本発明を詳述する。The present invention will be explained in detail below.

本発明におけるルテニウム触媒とは、不飽和有機化合物
の水素化、オレフィン、アルデヒド、ケトンなどの水素
化、特に芳香族化合物の核水素化や部分核水素化反応に
用いられる触媒であって、ルテニウム単独もしくは他の
金属を含むもの、さらにはこれらが適当な担体に担持さ
れたものなどを指し、水素化反応の触媒作用が主にルテ
ニウムに依存するものであればそれらを含むものである
In the present invention, the ruthenium catalyst is a catalyst used for hydrogenation of unsaturated organic compounds, hydrogenation of olefins, aldehydes, ketones, etc., especially nuclear hydrogenation and partial nuclear hydrogenation reactions of aromatic compounds, and is a catalyst that is used for hydrogenation of unsaturated organic compounds, hydrogenation of olefins, aldehydes, ketones, etc., and especially for nuclear hydrogenation and partial nuclear hydrogenation reactions of aromatic compounds. It also refers to those containing other metals, or those supported on a suitable carrier, and includes them if the catalytic action of the hydrogenation reaction mainly depends on ruthenium.

ルテニウムは、水素化反応においてはその一部もしくは
すべてが金属状態に還元されて存在している。ルテニウ
ム触媒の具体的な例としては、ルテニウムブラックや平
均結晶子径の極めて小さい(例えば数十人〜数百人)金
属ルテニウム微粒子、及びこれらに異種金属やその化合
物を含ませたもの、あるいは適当な担体にルテニウムを
担持したものを挙げることができる。担体としては、各
種金属酸化物、例えばシリカ、シリカ−アルミナ、アル
ミナ、ジルコニア、ハフニア、クロミア、チタニア、酸
化鉄、酸化コバルト、酸化ニオブ、酸化ガリウム、酸化
タンタル、希土類金属酸化物、酸化亜鉛などが挙げられ
、その他に、無機塩類、活性炭、樹脂などであっても良
い。
In the hydrogenation reaction, ruthenium exists with some or all of it reduced to a metallic state. Specific examples of ruthenium catalysts include ruthenium black, metallic ruthenium fine particles with an extremely small average crystallite size (for example, several tens to hundreds of crystallites), those containing different metals or their compounds, or suitable materials. Examples include those in which ruthenium is supported on a carrier. Examples of carriers include various metal oxides, such as silica, silica-alumina, alumina, zirconia, hafnia, chromia, titania, iron oxide, cobalt oxide, niobium oxide, gallium oxide, tantalum oxide, rare earth metal oxides, and zinc oxide. In addition, inorganic salts, activated carbon, resins, etc. may also be used.

本発明者らの検討によれば、かかる反応に長時間にわた
って使用されたルテニウム触媒は、−iに活性の低下を
きたすことが判った。活性低下の程度は熱論、反応条件
、特に温度や水素圧によって異なるが、触媒自身の物理
的変化や被毒物質の蓄積による影響などが考え難い反応
環境、条件においてもかかる活性低下は徐々に進行する
。活性低下が徐々に進行することはおそらくは水素とル
テニウム触媒の相互作用がもたらす何らかの反応阻害因
子が経時的に増大していることと対応していると考えら
れる。この様な現象は長時間にわたる注意深い検討によ
って確認できるものであり、上記の如き活性低下触媒の
再生方法については従来簡便で好ましい方法はなかった
According to studies by the present inventors, it has been found that a ruthenium catalyst used for such a reaction for a long time causes a decrease in the activity of -i. The degree of activity decrease varies depending on thermal theory and reaction conditions, especially temperature and hydrogen pressure, but even in reaction environments and conditions where physical changes in the catalyst itself or the accumulation of poisonous substances are unlikely to occur, such activity decreases gradually. do. The gradual decrease in activity probably corresponds to the fact that some kind of reaction inhibiting factor brought about by the interaction between hydrogen and the ruthenium catalyst increases over time. Such a phenomenon can be confirmed through careful study over a long period of time, and there has hitherto been no simple and preferable method for regenerating a catalyst with decreased activity as described above.

本発明においてはかかる活性の低下したルテニウム触媒
を、該水素化反応条件における水素分圧よりも低い水素
分圧下、かつ該水素化反応条件における温度より50℃
を下回らない温度に保持するという極めて簡便な方法に
よりその活性を大幅に回復させる。
In the present invention, the ruthenium catalyst with reduced activity is used under a hydrogen partial pressure lower than the hydrogen partial pressure under the hydrogenation reaction conditions, and at 50° C. below the hydrogen partial pressure under the hydrogenation reaction conditions.
Its activity can be greatly restored by an extremely simple method of keeping it at a temperature that does not go below.

かかる活性の低下したルテニウム触媒を、該水素化反応
条件における水素分圧よりも低い水素分圧下に保つ方法
としては、気相、液相のいずれの条件下においても可能
である。最も好ましい方法は該水素化反応と同じ相状態
下で行なう方法であり、この方法によれば該水素化反応
に用いられた反応器内部に、活性の低下したルテニウム
触媒を保持したまま連続的に再生処理を行なうことも可
能であり、再生終了後、反応器内を再び該水素化反応条
件に保ち、そのまま使用することもできる。
The ruthenium catalyst with reduced activity can be maintained under a hydrogen partial pressure lower than the hydrogen partial pressure under the hydrogenation reaction conditions under either gas phase or liquid phase conditions. The most preferable method is to carry out the reaction under the same phase conditions as the hydrogenation reaction. According to this method, the ruthenium catalyst with reduced activity is kept in the reactor used for the hydrogenation reaction and the ruthenium catalyst is continuously heated. It is also possible to perform a regeneration treatment, and after the completion of regeneration, the inside of the reactor can be maintained again under the hydrogenation reaction conditions and used as is.

本発明方法における水素分圧は、水素化反応条件におけ
る水素分圧よりも低ければ良いが、その差が小さいと活
性回復のために長時間を要する場合もあるので、好まし
くは水素化反応条件における水素分圧のA以下、理想的
にはゼロもしくはそれに近い状態が好ましい。
It is sufficient that the hydrogen partial pressure in the method of the present invention is lower than the hydrogen partial pressure under the hydrogenation reaction conditions, but if the difference is small, it may take a long time to recover the activity. It is preferable that the hydrogen partial pressure is below A, ideally zero or close to it.

操作温度は、該水素化反応条件における温度より50℃
を下回らない範囲であり、好ましくは40℃を下回らな
い範囲、更に好ましくは30℃を下回らない範囲である
。操作温度が該水素化反応条件における温度を上回る温
度で実施してもよいが、あまりに高温では触媒自身の活
性点の不可逆的変化が発生することもあるので触媒自身
の特性に合った上限温度を選ぶべきである。例えば、芳
香族炭化水素の部分水素化反応触媒として用いられる金
属ルテニウム微粒子においては、250℃を超えない温
度、好ましくは200℃を超えない温度に保つことが、
触媒の物理的変性を防ぐ意味で好ましい、一方、操作温
度が該水素化反応条件における温度より50℃を下回る
場合においては、活性回復のために著しく長時間の処理
が必要となるため実用的でない。
The operating temperature is 50°C lower than the temperature under the hydrogenation reaction conditions.
preferably not below 40°C, more preferably not below 30°C. The operation may be carried out at a temperature higher than the temperature under the hydrogenation reaction conditions, but if the temperature is too high, irreversible changes in the active sites of the catalyst itself may occur, so the upper limit temperature should be determined according to the characteristics of the catalyst itself. You should choose. For example, for metal ruthenium fine particles used as a catalyst for partial hydrogenation of aromatic hydrocarbons, it is necessary to maintain the temperature at a temperature not exceeding 250°C, preferably not exceeding 200°C.
This is preferable in terms of preventing physical modification of the catalyst, but on the other hand, if the operating temperature is lower than the temperature under the hydrogenation reaction conditions by 50°C, it is not practical because a significantly long treatment time is required to recover the activity. .

かかる活性回復操作における保持時間は、処理しようと
する触媒の活性低下の度合や目標とする活性回復の程度
により適宜窓めれば良いが、通常数分ないし数日である
The holding time in such activity recovery operation may be adjusted as appropriate depending on the degree of activity reduction of the catalyst to be treated and the targeted degree of activity recovery, but is usually several minutes to several days.

〔発明の効果〕〔Effect of the invention〕

本発明により、不飽和有機化合物の水素化反応に使用さ
れることによって活性が低下したルテニウム触媒を極め
て簡便に、かつ触媒自身の物理的変性をきたすことなく
、大幅にその活性を回復させることができ、高価なルテ
ニウム触媒を効率的に再使用することができる。
According to the present invention, it is possible to significantly restore the activity of a ruthenium catalyst whose activity has decreased due to its use in the hydrogenation reaction of unsaturated organic compounds, very easily and without physically modifying the catalyst itself. This enables efficient reuse of expensive ruthenium catalysts.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳述するが、これら実
施例によって本発明が何ら限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

参考例 のゝ 金属ルテニウム微粒子と助触媒からなる水素化触媒7g
、酸化ジルコニウム粉末35g、及び硫酸亜鉛(Zn5
Oi ・7)1zO)の18重量%水溶液1.0OO1
11を、油水分離槽を付属槽として有し、内面にテフロ
ンコーティングを施した種型流通反応装置に仕込み、1
50℃、水素加圧下50Kg/cta” Gにおいて、
イオウなどの触媒被毒物質を含まないベンゼンを117
Hrで供給して連続的にベンゼンの部分水素化反応を行
なった。この際、反応系内の触媒を含む水相は常に一定
の組成となる様にし、油水分離槽からは、ベンゼン、シ
クロヘキセン、シクロヘキサンからなる反応生成物を連
続的に取り出した。流通反応開始100時間後の反応t
c績はベンゼン転化率59%、シクロヘキセン選択率7
0%であり、その後、活性は経時的に低下し、600時
間後においてベンゼン転化率38%、シクロヘキセン選
択率79%となった。
Reference example: 7g of hydrogenation catalyst consisting of metal ruthenium fine particles and co-catalyst
, 35g of zirconium oxide powder, and zinc sulfate (Zn5
18% by weight aqueous solution of Oi ・7)1zO) 1.0OO1
11 was charged into a seed-type flow reactor having an oil-water separation tank as an attached tank and whose inner surface was coated with Teflon.
At 50℃ and 50Kg/cta"G under hydrogen pressure,
117 Benzene that does not contain catalyst poisoning substances such as sulfur
A partial hydrogenation reaction of benzene was carried out continuously by supplying Hr. At this time, the aqueous phase containing the catalyst in the reaction system was kept at a constant composition, and a reaction product consisting of benzene, cyclohexene, and cyclohexane was continuously taken out from the oil-water separation tank. Reaction t 100 hours after starting the flow reaction
The result is a benzene conversion rate of 59% and a cyclohexene selectivity of 7.
After that, the activity decreased over time, and after 600 hours, the benzene conversion rate was 38% and the cyclohexene selectivity was 79%.

実施例1 前記参考例に記す流通反応時間600時間後に、ベンゼ
ンの供給を止め、反応を停止した。50℃まで冷却した
のち槽内に残存する油相を除去し、再度昇温して150
℃として、系内圧を水素雰囲気下4にg/cm!Gに保
ちながら4時間攪拌を続は活性回復操作を行なった。操
作終了後、水素及びベンゼンの供給を再開し、前記と同
じ条件下にベンゼンの部分水素化反応を連続的に行なっ
たところ、流通反応再開24時間後の反応成績はベンゼ
ン転化率57%、シクロヘキセン選択率71%となった
Example 1 After 600 hours of flow reaction time described in the reference example, the supply of benzene was stopped and the reaction was stopped. After cooling to 50℃, the remaining oil phase in the tank was removed, and the temperature was raised again to 150℃.
℃, and the system internal pressure is 4g/cm under hydrogen atmosphere! The mixture was stirred for 4 hours while maintaining the temperature at G, followed by an activity recovery operation. After the operation was completed, the supply of hydrogen and benzene was resumed, and the partial hydrogenation reaction of benzene was continuously carried out under the same conditions as above.The reaction results 24 hours after restarting the flow reaction were as follows: 57% benzene conversion, cyclohexene The selection rate was 71%.

実施例2 実施例1における活性回復操作温度を110℃、系内圧
を0.5 Kg/c+w″G、操作時間を24時間とす
る以外は、実施例1と同様の操作を行なった。流通反応
再開24時間後の反応成績は、ベンゼン転化率46%、
シクロヘキセン選択率76%であった。
Example 2 The same operation as in Example 1 was carried out, except that the activity recovery operation temperature in Example 1 was 110°C, the system internal pressure was 0.5 Kg/c+w''G, and the operation time was 24 hours. Flow reaction The reaction results 24 hours after restarting were as follows: Benzene conversion rate was 46%.
The cyclohexene selectivity was 76%.

比較例 実施例2における活性回復操作温度を80℃とする以外
は、実施例2と同様の操作を行なった。
Comparative Example The same operation as in Example 2 was performed except that the activity recovery operation temperature in Example 2 was changed to 80°C.

流通反応再開24時間後の反応成績はベンゼン転化率3
9%、シクロヘキセン選択率78%であった。
24 hours after restarting the flow reaction, the reaction result was a benzene conversion rate of 3.
9%, and the cyclohexene selectivity was 78%.

Claims (1)

【特許請求の範囲】[Claims] 1、不飽和有機化合物の水素化反応に使用されることに
よって活性が低下したルテニウム触媒を、該水素化反応
条件における水素分圧よりも低い水素分圧下、かつ該水
素化反応条件における温度より50℃を下回らない温度
に保持することを特徴とするルテニウム触媒の活性回復
方法。
1. A ruthenium catalyst whose activity has been reduced by being used in the hydrogenation reaction of an unsaturated organic compound is heated under a hydrogen partial pressure lower than the hydrogen partial pressure under the hydrogenation reaction conditions and at a temperature 50°C higher than the hydrogen partial pressure under the hydrogenation reaction conditions. A method for restoring the activity of a ruthenium catalyst, characterized by maintaining the temperature at a temperature not lower than ℃.
JP1202857A 1989-08-07 1989-08-07 Method for recovering activity of ruthenium catalyst Expired - Lifetime JP2886563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1202857A JP2886563B2 (en) 1989-08-07 1989-08-07 Method for recovering activity of ruthenium catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1202857A JP2886563B2 (en) 1989-08-07 1989-08-07 Method for recovering activity of ruthenium catalyst

Publications (2)

Publication Number Publication Date
JPH0368453A true JPH0368453A (en) 1991-03-25
JP2886563B2 JP2886563B2 (en) 1999-04-26

Family

ID=16464346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1202857A Expired - Lifetime JP2886563B2 (en) 1989-08-07 1989-08-07 Method for recovering activity of ruthenium catalyst

Country Status (1)

Country Link
JP (1) JP2886563B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016249A1 (en) * 1995-11-01 1997-05-09 Asahi Kasei Kogyo Kabushiki Kaisha Method for reactivating ruthenium catalyst
WO2008015135A2 (en) * 2006-07-31 2008-02-07 Basf Se Process for regenerating ruthenium catalysts for the ring hydrogenation of phthalates
WO2008015103A3 (en) * 2006-07-31 2008-04-10 Basf Ag Process for regenerating ruthenium catalysts which are suitable for hydrogenation
WO2010013548A1 (en) * 2008-07-30 2010-02-04 旭化成ケミカルズ株式会社 Method for producing cycloolefin and production apparatus
JP4610664B1 (en) * 2009-07-09 2011-01-12 Jx日鉱日石エネルギー株式会社 Method for producing regenerated hydrotreating catalyst and method for producing petroleum product

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947859B2 (en) 2005-08-26 2011-05-24 Asahi Kasei Chemicals Corporation Process for production of cycloolefin
EP2368634B1 (en) 2008-12-22 2022-06-08 Asahi Kasei Kabushiki Kaisha Process for preparing ruthenium catalyst for use in production of cycloolefin, and process and apparatus for producing cycloolefin
CN109158113A (en) * 2018-07-18 2019-01-08 北京华和拓科技开发有限责任公司 A kind of partial hydrogenation of benzene catalyst recovery system and its implementation

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016249A1 (en) * 1995-11-01 1997-05-09 Asahi Kasei Kogyo Kabushiki Kaisha Method for reactivating ruthenium catalyst
US6077983A (en) * 1995-11-01 2000-06-20 Asahi Kasei Kogyo Kabushiki Kaisha Method for reactivating ruthenium catalyst
US8598060B2 (en) 2006-07-31 2013-12-03 Basf Se Method of regenerating ruthenium catalysts for the ring hydrogenation of phthalates
WO2008015135A3 (en) * 2006-07-31 2008-03-13 Basf Ag Process for regenerating ruthenium catalysts for the ring hydrogenation of phthalates
WO2008015103A3 (en) * 2006-07-31 2008-04-10 Basf Ag Process for regenerating ruthenium catalysts which are suitable for hydrogenation
US8895791B2 (en) 2006-07-31 2014-11-25 Basf Se Method of regenerating ruthenium catalysts suitable for hydrogenation
WO2008015135A2 (en) * 2006-07-31 2008-02-07 Basf Se Process for regenerating ruthenium catalysts for the ring hydrogenation of phthalates
CN102112418A (en) * 2008-07-30 2011-06-29 旭化成化学株式会社 Method for producing cycloolefin and production apparatus
JP5254338B2 (en) * 2008-07-30 2013-08-07 旭化成ケミカルズ株式会社 Method and apparatus for producing cycloolefin
WO2010013548A1 (en) * 2008-07-30 2010-02-04 旭化成ケミカルズ株式会社 Method for producing cycloolefin and production apparatus
US9174894B2 (en) 2008-07-30 2015-11-03 Asahi Kasei Chemicals Corporation Method for producing cycloolefin and production apparatus thereof
JP2011016939A (en) * 2009-07-09 2011-01-27 Jx Nippon Oil & Energy Corp Process for producing regenerated hydrotreating catalyst and process for producing petrochemical product
WO2011004690A1 (en) * 2009-07-09 2011-01-13 新日本石油株式会社 Process for producing regenerated hydrotreating catalyst and process for producing petrochemical product
CN102471699A (en) * 2009-07-09 2012-05-23 吉坤日矿日石能源株式会社 Process for producing regenerated hydrotreating catalyst and process for producing petrochemical product
JP4610664B1 (en) * 2009-07-09 2011-01-12 Jx日鉱日石エネルギー株式会社 Method for producing regenerated hydrotreating catalyst and method for producing petroleum product
US8722558B2 (en) 2009-07-09 2014-05-13 Jx Nippon Oil & Energy Corporation Process for producing regenerated hydrotreating catalyst and process for producing petrochemical product

Also Published As

Publication number Publication date
JP2886563B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
SU888803A3 (en) Method of regenerating molybdenum-containing catalyst
AU2013278857B2 (en) Regeneration of spent paraffin dehydrogenation catalyst
US4311611A (en) Process for regenerating an antimony containing oxide catalyst
JP4970634B2 (en) Supported catalysts that can be used in organic compound conversion reactions
CN100398501C (en) Fischer-tropsch catalyst enhancement
EP0913194B1 (en) Method for reactivating ruthenium catalyst
JPH04244233A (en) Method for reactivation of inactivated hydroge- nated catalyst
JPH0368453A (en) Method for reactivating ruthenium catalyst
AU2002358297B2 (en) Regeneration of supported catalysts for carbon monoxide hydrogenation
JPH09173843A (en) Selective hydrogenation catalyst and method using this catalyst
JP2634828B2 (en) Partial nuclear hydrogenation of aromatic compounds
US20200230579A1 (en) A platinum-gallium based alkane dehydrogenation catalyst containing an oxidation promoter
US20040092768A1 (en) Method for the production of acrylic acid or methacrylic acid by gas phase oxidation of propane or isobutane
CA2076324C (en) Process for the activation of a catalyst
EP2365875A2 (en) Catalyst regeneration method
US2671763A (en) Regeneration of nickel-sulfidealumina type catalysts
TW201542512A (en) Process for producing an unsaturated hydrocarbon
KR100490014B1 (en) Process for regenerating a monolith hydrogenation catalytic reactor
JP4436757B2 (en) Method for hydrogenating aromatic compounds in hydrocarbon feedstocks containing thiophene compounds
JP3831444B2 (en) Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method
US3013980A (en) Reactivation of spent isomerization catalysts
JP3830203B2 (en) Method for regenerating platinum-tin catalyst
Hino et al. Dehydrocyclization of hexane to benzene catalyzed by reduced zirconium oxide treated with sulfate, selenate, and tellurate ions
CA1061316A (en) Process for redispersion of noble metal catalysts
EP4076745A1 (en) A method for activating a catalytically active material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11