JPH0367481A - Exothermic body - Google Patents

Exothermic body

Info

Publication number
JPH0367481A
JPH0367481A JP20327189A JP20327189A JPH0367481A JP H0367481 A JPH0367481 A JP H0367481A JP 20327189 A JP20327189 A JP 20327189A JP 20327189 A JP20327189 A JP 20327189A JP H0367481 A JPH0367481 A JP H0367481A
Authority
JP
Japan
Prior art keywords
oxide layer
heat
heating element
resistant coating
exothermic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20327189A
Other languages
Japanese (ja)
Other versions
JP2874204B2 (en
Inventor
Mamoru Isoya
守 礒谷
Kazuo Yamashita
山下 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1203271A priority Critical patent/JP2874204B2/en
Publication of JPH0367481A publication Critical patent/JPH0367481A/en
Application granted granted Critical
Publication of JP2874204B2 publication Critical patent/JP2874204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a metal exothermic body of high durability against corrosion due to molten salt or the like by forming an oxide layer on the surface of the exothermic body, and providing a heat resisting film on the oxide layer using a specific binder. CONSTITUTION:An Fe-Cr-Al heating wire is heated at 900 deg.C for 30 minutes for generating an oxide layer 2 on the surface thereof. A heat resisting film 3 using a binder mainly composed of polyprosiloxane or polytitanocarbosilane or the like is provided on the surface of the oxide layer 2, thereby making an exothermic body 5. According to the aforesaid construction, an exothermic body of high durability against corrosion due to molten salt or the like can be manufactured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、調理器や暖房機器および電気炉等に利用する
発熱体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heating element used in cooking appliances, heating equipment, electric furnaces, and the like.

従来の技術 従来の調理器や暖房機器および電気炉等に用いられてい
た金属発熱体には、Fe−Cr−Al系やNi−Cr系
やFe−Ni−Cr系の金属発熱体等が使われていた。
Conventional technology The metal heating elements used in conventional cooking appliances, heating equipment, electric furnaces, etc. include Fe-Cr-Al, Ni-Cr, and Fe-Ni-Cr metal heating elements. I was worried.

発明が解決しようとする課題 しかしながら、従来の金属発熱体を用いた場合以下のよ
うな課題があった。
Problems to be Solved by the Invention However, when conventional metal heating elements were used, the following problems occurred.

Fe−Cr−Al系やNi−Cr系やFe−Ni−Cr
系の金属発熱体は、耐熱性が高く空気中での酸化による
断線は起こりにくいが、調理器や暖房機器および電気炉
等に用いた場合、食品や被加熱物からの塩分等が付着し
た状態で高温にさらされると溶融塩等による腐蝕が進み
抵抗の増加や断線がおこる。
Fe-Cr-Al system, Ni-Cr system, Fe-Ni-Cr
Metal heating elements have high heat resistance and are unlikely to break due to oxidation in the air, but when used in cookers, heating equipment, electric furnaces, etc., they may be contaminated with salt from food or heated objects. When exposed to high temperatures, corrosion due to molten salts progresses, resulting in increased resistance and wire breakage.

本発明は上記課題を解決し、溶融塩等による腐蝕に対す
る耐久性の高い発熱体を提供するものである。
The present invention solves the above problems and provides a heating element with high durability against corrosion caused by molten salt and the like.

課題を解決するための手段 上記の課題を解決するために本発明の発熱体は、金属発
熱体の表面に酸化物層を設は前記酸化物層の表面にポリ
ボロシロキサンもしくはポリチタノカルボシラン等を主
成分とする結合材を用いた耐熱性被膜物を設けるもので
ある。
Means for Solving the Problems In order to solve the above problems, the heating element of the present invention includes an oxide layer on the surface of the metal heating element, and a polyborosiloxane or polytitanocarbosilane on the surface of the oxide layer. A heat-resistant coating is provided using a binder containing as the main component.

作用 ポリボロシロキサンは、例えば 以下余白 の構造を有する半無機ポリマーである。この結合材は、
“セミ無機ポリマー”としての特性を有し、室温では有
機高分子と同様の性状で、塗料化等の操作性の面で優れ
ている。加熱すると、その有機分は分解してSi、B、
 ○を骨格としてセラミック化する。またポリチタノカ
ルボシランは、Si。
Working polyborosiloxanes are, for example, semi-inorganic polymers having the structure shown below. This binding material is
It has the properties of a "semi-inorganic polymer" and has properties similar to organic polymers at room temperature, making it excellent in terms of operability when used in coatings, etc. When heated, the organic content decomposes into Si, B,
○ is made into a ceramic as a skeleton. Moreover, polytitanocarbosilane is Si.

Ti、B、Oを骨格としてセラミック化する。完全なセ
ラミック化は、共に約600°Cで行われる。
Ceramic is formed using Ti, B, and O as a skeleton. Complete ceramification takes place at about 600°C in both cases.

この様な結合材を用いた前記耐熱性被膜物は、緻密で塩
水等により侵されにくいため、基材である金属発熱体を
保護する。さらに金属発熱体の表面に酸化物層を設ける
ことで酸化物層が金属面を保護しS蝕を防止すると共に
耐熱性被膜物と金属発熱体との密着性が向上し塩水等を
滴下しても耐熱性被膜物が剥離することがなく、溶融塩
等による腐蝕に対する耐性も強くなる。
The heat-resistant coating using such a binder is dense and difficult to be attacked by salt water, etc., and therefore protects the metal heating element that is the base material. Furthermore, by providing an oxide layer on the surface of the metal heating element, the oxide layer protects the metal surface and prevents S corrosion, and improves the adhesion between the heat-resistant coating and the metal heating element, making it easier to drip salt water etc. However, the heat-resistant coating does not peel off, and the resistance to corrosion caused by molten salt and the like is enhanced.

実施例 以下、本発明の一実施例について図添付図面にもとづい
て説明する。
Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings.

実施例(1)、  Fe−Cr−Al系電熱線(10×
0.05X3000mm) 1を900°Cで30分加
熱し表面に酸化物層2を作り、前記酸化物層の表面にポ
リボロシロキサン90重量部、Fe、Mn、Cu複合酸
化物20重量部、Zr0i18重量部、A1.034重
量部、ガラスフリフト40重量部、トルエン50重量部
、キシレン50重量部を分散させた塗料をスプレー塗布
し、100°Cで30分乾燥した後、400℃で30分
焼成し、600°Cで30分焼成し耐熱性の被膜物3を
設けた発熱体を作製し、支持体4に取り付け、100 
V12Aを通電しながら発熱体表面に5%NaC1水溶
液を20mを5分間隔で滴下したところ10回繰り返し
ても、耐熱性被膜物が剥離することなく、かつ抵抗値の
変化は、初期7.6Ω繰り返し後7.8Ωであり抵抗値
の増加率は2.6%に止どまり断線することもなかった
Example (1), Fe-Cr-Al heating wire (10×
0.05 x 3000 mm) 1 at 900°C for 30 minutes to form an oxide layer 2 on the surface, and on the surface of the oxide layer, 90 parts by weight of polyborosiloxane, 20 parts by weight of Fe, Mn, Cu composite oxide, Zr0i18 Part by weight, 1.034 parts by weight of A, 40 parts by weight of glass lift, 50 parts by weight of toluene, and 50 parts by weight of xylene were dispersed in the paint, which was spray applied, dried at 100°C for 30 minutes, and then heated to 400°C for 30 minutes. A heating element was prepared by baking at 600°C for 30 minutes, provided with a heat-resistant coating 3, attached to a support 4, and heated to 100°C.
When a 5% NaCl aqueous solution was dropped onto the surface of the heating element over a distance of 20 m at 5 minute intervals while V12A was being applied, the heat-resistant coating did not peel off even after 10 repetitions, and the change in resistance value was 7.6Ω at the initial stage. After the repetition, it was 7.8Ω, the rate of increase in resistance was only 2.6%, and there was no disconnection.

さらに表1の様に酸化物層を付けないで耐熱性被膜物を
付けて試験した場合、および酸化物層を作製する温度を
400°C〜1000℃と変化させて試験したところ、
酸化物層を付けないで耐熱性被膜物を付けて試験した場
合、通電しながら塩水を滴下すると被膜物表面にクラン
クを生じ耐熱性被膜物が剥離し、さらには断線する。ま
た400°C〜600°Cの範囲で酸化物層を作製した
場合にも耐熱性被膜物が剥離し、更には断線するが、7
00℃〜1000℃の範囲で酸化物層を作製した場合に
は、腐蝕に対する耐性が強くなり、かつ金属発熱体と耐
熱性被膜物との剥離もないことが分かった。
Furthermore, as shown in Table 1, when a heat-resistant coating was applied without an oxide layer, and when the temperature at which the oxide layer was formed was varied from 400°C to 1000°C,
When a test is carried out with a heat-resistant coating without an oxide layer, if salt water is dropped while electricity is applied, a crank occurs on the surface of the coating, causing the heat-resistant coating to peel off, and even break the wire. Also, when an oxide layer is formed at a temperature in the range of 400°C to 600°C, the heat-resistant coating peels off and even breaks.
It was found that when the oxide layer was formed at a temperature in the range of 00°C to 1000°C, the resistance to corrosion was enhanced and there was no peeling between the metal heating element and the heat-resistant coating.

また耐熱性被膜物として高輻射体を用いると発熱体から
放射されるエネルギー量が増加して発熱体の表面温度を
下げることができるので、耐久的に有利であり同じ表面
温度にした場合により多くのエネルギーを得ることがで
きる。
In addition, when a high-emissivity material is used as a heat-resistant coating, the amount of energy radiated from the heating element increases and the surface temperature of the heating element can be lowered, which is advantageous in terms of durability and allows for more energy to be produced at the same surface temperature. energy can be obtained.

また1000°Cより高い温度で加熱すると金属発熱体
の変形が起こり、また大量のエネルギーを必要とするの
で不利である。
Moreover, heating at a temperature higher than 1000° C. causes deformation of the metal heating element and requires a large amount of energy, which is disadvantageous.

酸化物層をここでは加熱により設けたが、酸や酸化剤等
により設けた場合にも同様の効果が得られる。
Although the oxide layer was formed by heating here, the same effect can be obtained when it is formed using an acid, an oxidizing agent, or the like.

表1 注1)#MFj#M、耐熱性被膜吻ともに無し No、
4L  BA仕上番五私注2)No、4L BA(址番
岸杜に耐狸□股−■咬四実施例(2)、  Ni−Cr
系電熱線(線径1.Omm、線長4700m) 6を8
00℃で30分加熱し表面に酸化物層7を作り、前記酸
化物層の表面にポリボロシロキサン90重量部、Fe、
Mrl、Cu複合酸化物20重量部、Z「0218重量
部、A l t 034重量部、ガラスフリット40重
量部、トルエン50重量部、キシレン50重量部を分散
させた塗料をスプレー塗布し、100℃で30分乾燥し
た後、400°Cで30分焼焼成、600″Cで30分
焼焼成耐熱性被膜物8を設けた発熱体を作製し、支持体
10に取り付け、100V12Aを通電しながら発熱体
表面に5%NaC1水溶液を20dを5分間隔で滴下し
たところ10回繰り返しても耐熱性被膜物が剥離するこ
となく、かつ抵抗値の変化は、初期7.7Ω繰り返し後
8.0Ωであり、抵抗値の増加率は3.9%に止どまり
断線することもなかった。
Table 1 Note 1) #MFj#M, no heat-resistant coating proboscis No.
4L BA Finish No. 5 Note 2) No, 4L BA (Raccoon □ Crotch - ■ Bit 4 Example (2), Ni-Cr
System heating wire (wire diameter 1.0mm, wire length 4700m) 6 to 8
An oxide layer 7 is formed on the surface by heating at 00° C. for 30 minutes, and 90 parts by weight of polyborosiloxane, Fe,
A paint in which 20 parts by weight of Mrl, Cu composite oxide, 218 parts by weight of Z'0218 parts by weight, 34 parts by weight of Alt 0, 40 parts by weight of glass frit, 50 parts by weight of toluene, and 50 parts by weight of xylene were dispersed was spray applied and heated at 100°C. After drying for 30 minutes at 400°C, baking at 400°C for 30 minutes, and baking at 600''C for 30 minutes.A heating element provided with a heat-resistant coating 8 was prepared, attached to a support 10, and heated while passing a current of 100V12A. When 20 d of 5% NaCl aqueous solution was dropped on the body surface at 5 minute intervals, the heat-resistant coating did not peel off even after 10 repetitions, and the change in resistance was 8.0 Ω after repeated repetitions of 7.7 Ω initially. The rate of increase in resistance value was only 3.9%, and there was no wire breakage.

また酸化物層を作製する温度を400℃〜1000’C
と変化させて試験したところ、700℃〜1000℃の
範囲で酸化物層を作製した場合に腐蝕に対する耐性が強
くなり、かつ金属発熱体と耐熱性被膜物との剥離もない
ことが分かった。
In addition, the temperature for forming the oxide layer was set at 400°C to 1000'C.
As a result of testing, it was found that when the oxide layer was formed at a temperature in the range of 700°C to 1000°C, the resistance to corrosion was stronger and there was no peeling between the metal heating element and the heat-resistant coating.

またFe−Ni−Cr系電熱線で同様の試験を行ったと
ころ、同様に700’C〜1000°Cの範囲で酸化物
層を作製した場合に腐蝕に対する耐性が強くなり、かつ
金属発熱体と耐熱性被膜物との剥離もないことが分かっ
た。
In addition, when similar tests were conducted on Fe-Ni-Cr heating wires, it was found that when an oxide layer was similarly formed in the range of 700'C to 1000°C, the resistance to corrosion was stronger and the resistance to metal heating elements increased. It was found that there was no peeling from the heat-resistant coating.

発明の効果 以上のように本発明によれば、金属発熱体の表面に酸化
物層を設は前記酸化物層の表面に耐熱性被膜物をするこ
とにより、溶融塩等による腐蝕に対する耐性が強くなる
。また耐熱性被膜物と金属発熱体との密着性が向上し、
塩水等を滴下しても耐熱性被膜物が剥離することがなく
なる。従って食品等の塩分が飛散しやすい調理器や腐蝕
環境にさらされやすい暖房機器および電気炉等に用いる
発熱体として利用できる。
Effects of the Invention As described above, according to the present invention, by providing an oxide layer on the surface of the metal heating element and applying a heat-resistant coating to the surface of the oxide layer, the metal heating element has high resistance to corrosion by molten salt and the like. Become. In addition, the adhesion between the heat-resistant coating and the metal heating element is improved,
Even if salt water or the like is dropped, the heat-resistant coating will not peel off. Therefore, it can be used as a heating element for use in cooking appliances where salt from foods and the like tends to scatter, heating equipment and electric furnaces that are easily exposed to corrosive environments, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(aJ中)および第2図(a)(b)は、それぞ
れ本発明の実施例(1)、 (2)の概略断面図である
。 1.6・・・・・・金属発熱体、2,7・・・・・・酸
化スケール、3.8・・・・・・耐熱性被覆、4.9・
・・・・・支持体、5.10・・・・・・発熱体。
FIG. 1 (in aJ) and FIGS. 2(a) and 2(b) are schematic sectional views of Examples (1) and (2) of the present invention, respectively. 1.6...Metal heating element, 2,7...Oxide scale, 3.8...Heat-resistant coating, 4.9.
...Support, 5.10 ...Heating element.

Claims (1)

【特許請求の範囲】[Claims] 金属発熱体の表面に酸化物層を設け、前記酸化物層の表
面にポリボロシロキサンもしくはポリチタノカルボシラ
ン等を主成分とする結合材を用いた耐熱性被膜物を設け
たことを特徴とする発熱体。
An oxide layer is provided on the surface of the metal heating element, and a heat-resistant coating is provided on the surface of the oxide layer using a binder whose main component is polyborosiloxane or polytitanocarbosilane. heating element.
JP1203271A 1989-08-04 1989-08-04 Heating element Expired - Lifetime JP2874204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1203271A JP2874204B2 (en) 1989-08-04 1989-08-04 Heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1203271A JP2874204B2 (en) 1989-08-04 1989-08-04 Heating element

Publications (2)

Publication Number Publication Date
JPH0367481A true JPH0367481A (en) 1991-03-22
JP2874204B2 JP2874204B2 (en) 1999-03-24

Family

ID=16471286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1203271A Expired - Lifetime JP2874204B2 (en) 1989-08-04 1989-08-04 Heating element

Country Status (1)

Country Link
JP (1) JP2874204B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523997A (en) * 2011-05-19 2014-09-18 ビーエーエスエフ ソシエタス・ヨーロピア Pipe line for sending molten salt

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572387A (en) * 1978-11-25 1980-05-31 Matsushita Electric Ind Co Ltd Heater
JPH01140582A (en) * 1987-11-26 1989-06-01 Showa Electric Wire & Cable Co Ltd Ceramic heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572387A (en) * 1978-11-25 1980-05-31 Matsushita Electric Ind Co Ltd Heater
JPH01140582A (en) * 1987-11-26 1989-06-01 Showa Electric Wire & Cable Co Ltd Ceramic heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523997A (en) * 2011-05-19 2014-09-18 ビーエーエスエフ ソシエタス・ヨーロピア Pipe line for sending molten salt

Also Published As

Publication number Publication date
JP2874204B2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
US3919441A (en) Panel-styled calorific devices and a process for manufacturing the same
JPH0367481A (en) Exothermic body
DE3050177T1 (en)
JP2754814B2 (en) Heater element
JPH0684270B2 (en) Infrared radiation coating
JPS5856236B2 (en) Manufacturing method of far-infrared radiating element
JPS60228683A (en) Surface treatment of heat resistant stainless steel
JPS59199588A (en) Manufacture of infrared radiator
CN1247215A (en) Transitory efficient insulating paint
JPH02204991A (en) Far infrared heater and manufacture thereof
JPH02278688A (en) Heat insulating board or heating board
JPS59226492A (en) Method of producing infrared ray radiator
JPH0390347A (en) Heat-resistant member
JPS6366036B2 (en)
JPS6193510A (en) Inorganic insulated wire
JPS6087A (en) Far infrared ray heater
JPH08141492A (en) Production of surface treated steel sheet excellent in self-cleanability
JPS6196688A (en) Infrared ray radiating body
JPH047377A (en) Heat-generating
JP2000286044A (en) Sheet heating element
JPH04355091A (en) Heating element
JPS6019114B2 (en) infrared radiation heater
JPH0491180A (en) Heat-resistant paint
Zmii Producing the diffusion silicide coatings of designed composition
JPS5633470A (en) Manufacture of gas blowing pipe

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 11