JPH0365580A - Composite heat-insulation material - Google Patents

Composite heat-insulation material

Info

Publication number
JPH0365580A
JPH0365580A JP19878989A JP19878989A JPH0365580A JP H0365580 A JPH0365580 A JP H0365580A JP 19878989 A JP19878989 A JP 19878989A JP 19878989 A JP19878989 A JP 19878989A JP H0365580 A JPH0365580 A JP H0365580A
Authority
JP
Japan
Prior art keywords
graphite
insulation material
heat
felt
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19878989A
Other languages
Japanese (ja)
Inventor
Kosuke Sato
佐藤 好右
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI DENPA KOGYO KK
Original Assignee
FUJI DENPA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI DENPA KOGYO KK filed Critical FUJI DENPA KOGYO KK
Priority to JP19878989A priority Critical patent/JPH0365580A/en
Publication of JPH0365580A publication Critical patent/JPH0365580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the scattering of graphite fiber pieces and improve the life of a heat-insulation material by impregnating at least one surface of a graphite fiber heat-insulation material with graphite deposited by CVD process. CONSTITUTION:A graphite fiber heat-insulation material 1 such as formed graphite felt is inserted into a vacuum vessel 2, supported in the form of a cylinder with upper and lower supporting members 3, 4, and methane gas is supplied to the inner space R through the supporting member 4 and exhausted through an exhaustion port 5. A high-frequency current is passed to an induction coil 6 wound around a ring-shaped iron core 7 placed in a space surrounded by the heat-insulation material 1 to heat the inner surface of the heat-insulation material 1 opposite to the coil 6 and the iron core 7. Methane gas is decomposed by this process and the deposited graphite is impregnated into the heat-insulation material to form an integrated product.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素繊維断熱材の片面に炭素を浸透析出させた
複合体断熱材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a composite insulation material in which carbon is immersed and dialyzed on one side of a carbon fiber insulation material.

〔従来の技術〕[Conventional technology]

炭素繊維断熱材は高温度域での使用を目的として黒鉛化
されたものも多く、黒鉛繊維断熱材とも呼ばれている。
Many carbon fiber insulation materials are graphitized for use in high temperature ranges, and are also called graphite fiber insulation materials.

これには黒鉛繊維をニードルプレスした黒鉛繊維フェル
トと、この黒鉛繊維フェルトを積層し、これに樹脂含浸
を行い、成形焼成した黒鉛成形フェルトとがある。炉の
断熱材としては黒鉛焼成フェルトのみか、これと黒鉛繊
維フェルト(以下黒鉛フェルトと称す)の組み合わせた
ものが用いられている。
These include graphite fiber felt made by needle pressing graphite fibers, and graphite molded felt made by laminating these graphite fiber felts, impregnating them with resin, shaping and firing them. As the heat insulating material for the furnace, graphite calcined felt alone or a combination of graphite fiber felt (hereinafter referred to as graphite felt) is used.

黒鉛繊維断熱材と黒鉛発熱体を用いた炉はセラミックス
や金属系の焼結炉としてその用途は広い。
Furnaces using graphite fiber insulation and graphite heating elements have a wide range of uses as sintering furnaces for ceramics and metals.

しかしながら、黒鉛繊維断熱材はその物性上、次の如き
欠点がある。
However, graphite fiber insulation has the following drawbacks due to its physical properties.

(1)黒鉛繊維の小片が炉内に飛び、炉内部を汚したり
、発熱体の短絡事故の原因となる。
(1) Small pieces of graphite fiber fly into the furnace, contaminating the inside of the furnace, and causing a short circuit in the heating element.

(2)黒鉛繊維は直径が10μm程度であり、黒鉛フェ
ルトや黒鉛成形フェルトにしても表面積が非常に大きく
  炉中の02やH2O、その他黒鉛と反応するガスと
は容易に反応し、消耗する。
(2) Graphite fibers have a diameter of about 10 μm, and even graphite felt or graphite molded felt have a very large surface area.They easily react with O2, H2O, and other gases that react with graphite in the furnace, and are consumed.

(3)機械的強度が低く、機械的に損傷しやすい。(3) It has low mechanical strength and is easily damaged mechanically.

従って、従来この黒鉛繊維断熱材の欠点を種々の方法で
補っている。
Therefore, various methods have been used to compensate for the drawbacks of graphite fiber insulation materials.

すなわち、上記(1)の欠点に対しては(1−1)黒鉛
成形フェルトの表面に有機溶剤にまぜた黒鉛粉を塗布し
て焼成する。
That is, to solve the above drawback (1), (1-1) graphite powder mixed with an organic solvent is applied to the surface of graphite molded felt and fired.

(1−2)黒鉛成形フェルトの表面に黒鉛繊維で織った
黒鉛クロスを張り付ける。
(1-2) Attach a graphite cloth woven from graphite fibers to the surface of the graphite molded felt.

などの方法を採用している。Methods such as these are adopted.

また上記(2)の欠点に対しては (2−1)黒鉛繊維断熱材の炉内画側に黒鉛板を張り付
けて反応性ガスの黒鉛繊維への直接の接触を抑える。
In addition, to address the drawback of (2) above, (2-1) a graphite plate is pasted on the furnace interior side of the graphite fiber insulation material to suppress direct contact of the reactive gas with the graphite fibers.

(2−2)炉内に黒鉛のケースを置き、その中に試料を
置くことにより、試料から発生する黒鉛との反応性のガ
スが直接黒鉛m維に接触するのを避け、黒鉛1111と
反応させずに黒鉛ケースと反応させる。
(2-2) By placing a graphite case in the furnace and placing the sample inside, the gas that is reactive with graphite generated from the sample is prevented from coming into direct contact with the graphite fibers, and reacts with graphite 1111. React with the graphite case without letting it react.

また上記(3)の欠点に対しては (3−1)黒鉛材で補強する。Also, regarding the drawback of (3) above, (3-1) Reinforce with graphite material.

等の方法が採用されている。The following methods have been adopted.

〔発明が解決しようとする!!!題〕[Invention tries to solve! ! ! Title]

黒鉛繊維断熱材の物性上の欠点を補う従来の方法ではさ
らに種々の問題がある。
Conventional methods for compensating for the deficiencies in physical properties of graphite fiber insulation materials have various problems.

即ち、前記(1−1)項に記載の方法においては黒鉛粉
膜が薄< (100μmオーダー)消耗しやすく、かつ
この膜が剥離しやすいものであり、また(1−2)項に
記載の方法においては黒鉛クロスが薄く、またポーラス
であるため消耗や剥離等で黒鉛クロスの効果が発揮され
る期間が極めて短いものである。
That is, in the method described in item (1-1) above, the graphite powder film is thin < (on the order of 100 μm) and is easily consumed, and this film is easily peeled off. In this method, since the graphite cloth is thin and porous, the period during which the graphite cloth is effective due to wear and tear is extremely short.

さらに(2−1)項に記載の方法においては黒鉛板で黒
鉛繊維断熱材の表面を完全に覆うことは困難で、かつ黒
鉛板の熱容量が大きく、炉の熱効率、稼働率が悪くなる
Furthermore, in the method described in item (2-1), it is difficult to completely cover the surface of the graphite fiber insulation material with the graphite plate, and the heat capacity of the graphite plate is large, resulting in poor thermal efficiency and operation rate of the furnace.

また(2−2)項記載の方法では、黒鉛ケースの熱容量
が大きく、炉の熱効率、稼働率が悪くなる。
Furthermore, in the method described in item (2-2), the heat capacity of the graphite case is large, resulting in poor thermal efficiency and operating rate of the furnace.

本発明は、上述の如き欠点を解消すべく黒鉛繊維の飛散
を防止し、かつ断熱材の寿命を大幅に向上させることを
目的としてなしたものである。
The present invention has been made with the object of preventing the scattering of graphite fibers and significantly improving the life of the heat insulating material in order to eliminate the above-mentioned drawbacks.

〔課題を解決するための手段) 本発明は上記目的を達成するためになしたもので、黒鉛
成形フェルト(或いは黒鉛フェルト)の少なくとも片面
にCVD法により析出した黒鉛を浸透させて一体となす
[Means for Solving the Problems] The present invention has been made to achieve the above object, and is made by infiltrating at least one side of a graphite molded felt (or graphite felt) with graphite deposited by a CVD method.

〔実施例〕〔Example〕

以下本発明を図示の実施例にもとづいて説明する。 The present invention will be explained below based on the illustrated embodiments.

第1図は従来の黒鉛成形フェルトを示す外観図で、これ
は厚みtの黒鉛成形フェルトを角形に切断したもので、
所要の繊維径、長さ、断面形状を有する黒鉛繊維をもっ
て各繊維を互いに絡めて厚さtを有する板状の所要の大
きさに形成される。この各繊維間は互いに絡めているが
、その成形のために成形材である樹脂を炭化させて各繊
維の交点部分を接合して一体としている。
Figure 1 is an external view showing a conventional graphite molded felt, which is a graphite molded felt with a thickness of t cut into squares.
Graphite fibers having a required fiber diameter, length, and cross-sectional shape are entwined with each other to form a plate-like sheet having a thickness t and a desired size. These fibers are entwined with each other, and in order to form the fibers, the resin used as the molding material is carbonized and the intersections of the fibers are joined to form a single body.

従って黒鉛成形フェルトlはその表面、内部ともに均質
となしたもの、すなわち黒鉛繊維はX。
Therefore, the graphite molded felt l is homogeneous both on the surface and inside, that is, the graphite fiber is X.

Y、  Zの三方向に均質に配された集合成形体となっ
ている。
It is an aggregate molded body uniformly arranged in three directions, Y and Z.

このようにして得た黒鉛成形フェルト1の片面、すなわ
ちこれを使用したとき、炉の内側となる面に黒鉛成形フ
ェルト1の表面から予め定めた適当な深さaまでCVD
法(Ches+1cal Vapour Deposi
tion)で析出した黒鉛を黒鉛繊維間に浸透させ一体
とする。従ってこの黒鉛の含浸透により黒鉛成形フェル
トの炉の内側となる表面は黒鉛材のようになり、その反
対側面すなわち炉の外側にあたる側は従来の黒鉛成形フ
ェルトのままとなっている。従ってこの黒鉛を含浸透さ
せる深さaは黒鉛繊維と黒鉛との複合体となっている。
One side of the graphite molded felt 1 thus obtained, that is, the surface that will be inside the furnace when used, is subjected to CVD to a predetermined appropriate depth a from the surface of the graphite molded felt 1.
Ches+1cal Vapor Deposit
The graphite precipitated in the process of ion) is infiltrated between the graphite fibers and integrated. Therefore, due to this impregnation of graphite, the surface of the graphite molded felt that will be inside the furnace becomes like a graphite material, and the opposite side, that is, the side that is outside the furnace, remains like a conventional graphite molded felt. Therefore, the depth a to which graphite is impregnated is a composite of graphite fibers and graphite.

上記CVD法による黒鉛を析出する方法はメタンガス(
CH4)の熱分解が一般的に用いられる。黒鉛成形フェ
ルト表面をメタンガスの熱分解温度まで加熱してこれに
メタンガスを流すことにより黒鉛繊維内に黒鉛を析出す
ることができるものである。
The method of depositing graphite by the above CVD method is methane gas (
Thermal decomposition of CH4) is commonly used. By heating the surface of the graphite molded felt to the thermal decomposition temperature of methane gas and flowing methane gas therethrough, graphite can be precipitated within the graphite fibers.

さらに、この黒鉛を析出する方法として抵抗加熱方式、
誘導加熱方式とがある。第3図は誘導加熱方式により本
発明複合体断熱材を製造する装置の一例を示すものであ
る。
Furthermore, resistance heating method is used as a method to precipitate this graphite.
There is an induction heating method. FIG. 3 shows an example of an apparatus for producing the composite heat insulating material of the present invention using an induction heating method.

これは真空容器2内に黒鉛成形フェルト1を挿入し、上
下の支持体3.4にて支持させる。
In this case, a graphite molded felt 1 is inserted into a vacuum container 2 and supported by upper and lower supports 3.4.

この時、支持される黒鉛成形フェル)1は筒状となし、
かつこの筒状に支持された黒鉛成形フェルトにて囲周さ
れた内部空間Rへ下部の支持体4を介してメタンガスを
供給し、真空容器2の一部例えば周側部に設けた排気口
5より排気する。
At this time, the supported graphite molded fer) 1 is cylindrical,
Methane gas is supplied to the internal space R surrounded by the graphite molded felt supported in a cylindrical shape via the lower support 4, and an exhaust port 5 provided in a part of the vacuum container 2, for example, on the peripheral side. Exhaust more.

また上下の支持体3.4間においてかつこれに支持され
た黒鉛成形フェルト1の内側面と対向するようにして中
央に誘導コイル6を備えたリング状の鉄芯7を配設し、
この鉄芯7を上下両支持体3.4間を昇降移動させるよ
うになっている。勿論誘導コイル6には高周波電源に接
続されている。
Further, a ring-shaped iron core 7 having an induction coil 6 at the center is disposed between the upper and lower supports 3.4 and facing the inner surface of the graphite molded felt 1 supported by the upper and lower supports 3.4,
This iron core 7 is moved up and down between the upper and lower supports 3.4. Of course, the induction coil 6 is connected to a high frequency power source.

このように構成された誘導炉を用いて黒鉛成形フェルト
表面に黒鉛を析出させるには、黒鉛成形フェルトを容器
内所定位置に支持し、かつ高周波電流を誘導コイルに流
すとリング状の誘導コイルにて励磁される磁気は鉄芯に
て集束され、誘導コイルと鉄芯と相対する黒鉛成形フェ
ルトの内面が加熱される。この状態でメタンガスを流下
させると成形フェルト内に黒鉛が析出される。この時、
高周波電流の強さ、通電時間、メタンガス流量等を調整
することにより、黒鉛を析出含浸される層11の深さa
が定められるものである。
In order to deposit graphite on the surface of graphite molded felt using an induction furnace configured in this way, the graphite molded felt is supported at a predetermined position in the container, and when a high frequency current is passed through the induction coil, a ring-shaped induction coil is formed. The magnetism excited by the magnet is focused on the iron core, and the inner surface of the graphite molded felt facing the induction coil and the iron core is heated. When methane gas is allowed to flow down in this state, graphite is precipitated within the formed felt. At this time,
The depth a of the layer 11 where graphite is precipitated and impregnated can be determined by adjusting the intensity of the high-frequency current, the current application time, the methane gas flow rate, etc.
is determined.

このようにして誘導コイル、鉄芯を黒鉛成形フェルトの
上下方向に移動させることによりフェルト片面において
その全面に黒鉛析出含浸層が形成されるものである。
In this way, by moving the induction coil and the iron core in the vertical direction of the graphite molded felt, a graphite precipitated impregnated layer is formed on the entire surface of one side of the felt.

なお、黒鉛繊維表面に黒鉛を析出させても同様の効果を
得ることができる。
Note that the same effect can be obtained by depositing graphite on the surface of graphite fibers.

〔発明の効果〕〔Effect of the invention〕

本発明によるときは、黒鉛成形フェルトの表面にCVD
法にて析出しに黒鉛を浸透させた層を所定深さにして一
体に成形しているため、これを炉内の断熱材として使用
しても、炉の内側表面よりの黒鉛繊維片の飛散を防止す
ると共に、断熱材の寿命を大幅に延ばすことができる等
の利点を有する。
According to the present invention, CVD is applied to the surface of graphite molded felt.
Since the layer in which graphite is precipitated and penetrated by the method is integrally molded to a predetermined depth, even if this layer is used as a heat insulating material inside the furnace, graphite fiber pieces will not scatter from the inner surface of the furnace. It has the advantage of not only preventing this, but also greatly extending the life of the heat insulating material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の黒鉛成形フェルトの外観図、第2図は本
発明の黒鉛成形フェルトの外観図、第3図は黒鉛成形フ
ェルト表面に析出黒鉛を含浸させる装置の一例を示す断
面説明図である。 lは黒鉛繊維フェルト、11は黒鉛含浸透層、2は真空
容器、3,4は支持体、6は誘導コイル、 7は鉄芯。
Fig. 1 is an external view of a conventional graphite molded felt, Fig. 2 is an external view of the graphite molded felt of the present invention, and Fig. 3 is a cross-sectional explanatory diagram showing an example of a device for impregnating the surface of the graphite molded felt with precipitated graphite. be. 1 is a graphite fiber felt, 11 is a graphite impregnated layer, 2 is a vacuum container, 3 and 4 are supports, 6 is an induction coil, and 7 is an iron core.

Claims (1)

【特許請求の範囲】[Claims] (1)黒鉛繊維断熱材(例えば黒鉛成形フェルト)の少
なくとも片面にCVD法により析出した黒鉛を浸透させ
て一体となしたことを特徴とする複合体断熱材。
(1) A composite heat insulating material comprising a graphite fiber heat insulating material (for example, graphite molded felt) in which at least one side is impregnated with graphite precipitated by a CVD method.
JP19878989A 1989-07-31 1989-07-31 Composite heat-insulation material Pending JPH0365580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19878989A JPH0365580A (en) 1989-07-31 1989-07-31 Composite heat-insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19878989A JPH0365580A (en) 1989-07-31 1989-07-31 Composite heat-insulation material

Publications (1)

Publication Number Publication Date
JPH0365580A true JPH0365580A (en) 1991-03-20

Family

ID=16396935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19878989A Pending JPH0365580A (en) 1989-07-31 1989-07-31 Composite heat-insulation material

Country Status (1)

Country Link
JP (1) JPH0365580A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073243A1 (en) * 1999-05-26 2000-12-07 Kureha Kagaku Kogyo K. K. Composite carbonaceous heat insulator
WO2023008392A1 (en) * 2021-07-29 2023-02-02 イビデン株式会社 Thermal insulation material and method for producing thermal insulation material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073243A1 (en) * 1999-05-26 2000-12-07 Kureha Kagaku Kogyo K. K. Composite carbonaceous heat insulator
WO2023008392A1 (en) * 2021-07-29 2023-02-02 イビデン株式会社 Thermal insulation material and method for producing thermal insulation material

Similar Documents

Publication Publication Date Title
US4279952A (en) Multilayer insulating material and process for production thereof
US6686048B1 (en) Composite carbonaceous heat insulator
US7754332B2 (en) Thermal insulation structures comprising layers of expanded graphite particles compressed to different densities and thermal insulation elements made from these structures
JPH09504263A (en) Vapor phase chemical permeation method of substances into porous substrates at controlled surface temperature
CA2343246A1 (en) Electrode substrate for electrochemical cells based on low-cost manufacturing processes
WO2011060621A1 (en) Process and device for improving properties of carbon paper with chemical vapor infiltration coating quickly applied by pressure-gradient method
JP2020513486A (en) Carbon fiber manufacturing equipment using microwave
JPH0365580A (en) Composite heat-insulation material
WO1997048662B1 (en) Densification of a porous structure (iii)
US5846611A (en) Chemical vapor infiltration process of a material within a fibrous substrate with creation of a temperature gradient in the latter
CA2174309C (en) Chemical vapour infiltration process of a material within a fibrous substrate with creation of a temperature gradient in the latter
US5981002A (en) Method for densifying the edges and surfaces of a preform using a liquid precursor
JP4338844B2 (en) Molded insulation and heat shield
US20110064891A1 (en) Methods of rapidly densifying complex-shaped, asymmetrical porous structures
CN100516000C (en) Dual heating mode flash sintering method combining current heating with radiant heating
EP1054847B1 (en) Partially densified carbon preform
JP4394345B2 (en) Non-oxide ceramic sintering furnace and non-oxide ceramic sintered body manufacturing method
US6416824B2 (en) Densification
KR101467665B1 (en) THE MANUFACTURING METHOD FOR C-SiC COMPOSITES
CN112225577A (en) Carbon/carbon composite material and preparation method and application thereof
JP2849606B2 (en) Gas phase impregnation method and its apparatus
JPH0714798Y2 (en) Press members for high temperature and high pressure press
JP2024032606A (en) Method of producing silicon carbide based composite
JP2002114573A (en) Method for manufacturing conductive carbon porous body and conductive carbon porous body manufactured by the method
JPS63967A (en) Manufacture of electrode base plate for fuel cell