JPH0364869A - Secondary cell - Google Patents

Secondary cell

Info

Publication number
JPH0364869A
JPH0364869A JP1198737A JP19873789A JPH0364869A JP H0364869 A JPH0364869 A JP H0364869A JP 1198737 A JP1198737 A JP 1198737A JP 19873789 A JP19873789 A JP 19873789A JP H0364869 A JPH0364869 A JP H0364869A
Authority
JP
Japan
Prior art keywords
electrode
sodium
alloy
negative electrode
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1198737A
Other languages
Japanese (ja)
Inventor
Hiroshi Konuma
博 小沼
Riichi Shishikura
利一 獅々倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hitachi Ltd filed Critical Showa Denko KK
Priority to JP1198737A priority Critical patent/JPH0364869A/en
Publication of JPH0364869A publication Critical patent/JPH0364869A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a nonaqueous electrolyte secondary cell having excellent performance by using a complex electrode of an alloy of sodium, bismouth, lead, cadmium, tin and a carbon material as well as a binder for a negative electrode. CONSTITUTION:A complex of an alloy consisting of sodium, bismouth, lead, cadmium, tin and a carbon material as well as a binder is used for a negative electrode. That is that activity of sodium is lowered by the sodium alloy to suppress side reaction to an electrolyte, while a conductive carbon material is dispersed in an electrode to impregnate the electrode with the electrolyte for suppressing a shape change and a breakdown of the electrode accompanying charge and discharge of with a binder. Various kinds of excellent performance such as high energy concentration, a long cycle life and a low self-discharge coefficient, etc., are obtained accordingly.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野1 本発明は、電池電圧が高く、自己放電が小さく、サイク
ル寿命が長く、かつ充電放電の際のクーロン効率の良好
な高エネルギー密度を有する二次電池に関する。
[Industrial Application Field 1] The present invention relates to a secondary battery having high energy density, high battery voltage, low self-discharge, long cycle life, and good coulombic efficiency during charging and discharging.

【従来の技術] アルカリ金属の一つであるリチウム金属を負極に用いた
二次電池の考え方は古くからあり、例えば、文献M、 
Hughes、 et al、、 Journal o
f PowerSources、、 12. P、83
〜144(1984)にその総説が載っている。その中
で、リチウム金属はあまりにも活性なため、溶媒と反応
し、絶縁被膜を形成し、さらにデンドライト成長を起こ
し、二次電池用負極への適用の難しさが示されている。 その対策としてリチウム金属を合金化したり、導電性高
分子と複合化したりする試みがなされているが、これら
はA、 N、 DeyのJ、 Eelectroche
+m。 Soc、、 118. No、1口、 P、1547〜
1549(1971)や、特開昭59−132576号
公報、同60−262351号公報、同61−2454
74号公報、同62−140358号公報等に記載され
ている。 また、ナトリウム系負極を用い、上記と同様に合金化や
導電性高分子との複合化を行っているが、これらについ
ては、Allied社またはAlliAllled−3
i Inc、が出願したU S P 4,668,59
6、同4、753.858等に記載されている。 【発明が解決しようとする課題l ところで、アルカリ金属を負極に用いた室温作動用二次
電池は、上記のように、各方面で研究されているにもか
かわらずアルカリ金属と電解液との反応性を完全に抑制
するに至らず、いまだ汎用の二次電池に匹敵するほどの
市場を得たものはない。 しかし、一部に極小容量型(1mAh乃至lOmAh 
)のリチウム系二次電池は上市されている。 またカナダのMOLI ENERGY Lr[TEDが
正極にMoS、を用い、負極にLi箔を用いた比較的高
容量(600+sAh )の二次電池を商品化したが、
充放電サイクルの可逆性、高速充放電特性、過放電特性
のいずれも同形状のニッケル・カドミウム系二次電池を
凌駕するに至らず、エネルギー密度が改善されたに留っ
ており、汎用性に乏しい。 このLi系負極が実用化されにくいのは、上記したよう
にリチウムと電解液との反応及びそれに由来するデンド
ライト成長による短絡現象が最大の原因である。 リチウムをナトリウム合金に代えることで電極電位が0
.2Vないし0.4V程度貴側にシフトするので、電解
液との反応性は若干緩和されるが充分ではない。 本発明者らは、上記問題点を解決すべく鋭意研究した結
果、負極の電極構成物質に優れた組み合わせを発見した
0本発明は、上記の発見に基づいてなされたもので、各
種性能の優れた二次電池を提供するものである。 【課題を解決するための手段J 本発明者は、上記問題点を解決するため検討したところ
、負極にナトリウム、ビスマス、鉛、カドミウム、スズ
からなる合金と炭素材料と結着剤との複合体!極を用い
ることにより、性能が優れた非水電解液二次電池が得ら
れることを見い出し、本発明を完成するに至った。また
このとき、ナトリウム、コバルト酸化物を主成分とする
正極が好適に使用できる。 前記合金は、ナトリウムとウッド合金との合金であり、
ウッド合金の各元素の割合がビスマス30〜50重量%
、鉛lO〜50重量%、カドミウム5〜30重量%、ス
ズ5〜30重量%の範囲で含むものであっでもよい、各
元素の割合が前記範囲外のときは、本発明の顕著な効果
が得られ難い。 しかし、単純にナトリウム合金のみを電極として使用す
るだけでは、負極の利用率、可逆性を向上させるには至
らず、本発明の如く炭素材料との複合体電極にする必要
がある。用いる炭素材料としては、カーボンブラックま
たは黒鉛が適する。 上記カーボンブラックには、サーマルブラック、ファー
ネスブラック、アセチレンブラック等があるがいずれで
もよく特に制限はない、また黒鉛としては、天然黒鉛で
も人造黒鉛でもよく、また気相成長法により合成した繊
維状黒鉛でもよい。 しかし、炭素材料の量があまり多過ぎると電極容量、密
度を下げる。適した量としては負極重量当り、3%ない
し20%がよい。 さらに複合電極が使用中に崩壊しないようにするため、
結着剤を添加する必要があるが、電極や電解液との反応
性がないことが必要で、通常ポリエチレン、ポリプロピ
レンの繊維または粉体を電極中によく分散させて加熱溶
着させて用いる。また、より効果的な負極材の結着剤と
しては、例えばオレフィン系共重合体ゴム、例えばエチ
レン−プロピレンゴム(EPR) 、エチレン−ブテン
ゴム(EBR) 、エチレン−プロピレン−ジエンゴム
(EPDM)等が挙げられるが特にEPDMが好ましい
。この結着剤も多く使用すると、かえって電極性能を損
なう、適した量としては負極重量当り、1%ないし8%
である。 このような、負極を用いた場合、好適な電解液としては
、ナトリウム塩を1.2−ジメトキシエタンとエーテル
系化合物との混合溶媒に溶解したものがよい。 エーテル系化合物との混合系で用いる場合その種類に特
に制限はないが、当然のことながら電極活物質と強く反
応するものは使用することはできない。 混合される非水溶媒としては5例えばエトキシ−メトキ
シエタン、グイグライム、トリグライム、テトラグライ
ム、ペンタグライム、テトラヒドロフラン、2−メチル
テトラヒドロフプン、1.4−3メチルジオキソラン、
ジオキサン等のエーテル化合物で、特にダイグライム、
トリグライム、テトラグライムが好ましい。 次いで1本発明の電池に適した正極について説明する。 上記適した正極とは、本発明の電池に用いる負極に対し
て少なくとも 1.5V以上の電圧を有し、かつ可逆的
にナトリウムイオンを吸蔵、放出できる物であることが
必要であり、無機酸化物としては、例えばComa、M
n0z、WO,、Maxi、Mo03、V2O5等、無
機カルコゲナイドとしては、例えばT I S a、M
o5ss、N1PSes等、無機ハライドとしては、例
えばRuC1z、 RuBra、Fe0C1等がある。 これらの中で、重量当り及び体積当りの電気容量、密度
が大きく、可逆性がよいものとしてCoax、 Moa
t、Mo03が挙げられるが、特に、COO2が好まし
い。このCon□はNa3を層間に含んだ形で存在して
いるいわゆる層間化合物の形を取り、層間は、Na”の
量により広がったり、縮んだりする。 但し、Na″″は酸素間どうしのイオン反発を抑制する
働きもあり、Na”量が増えると必ずしもホスト格子の
C軸が延びるとは限らず、a軸及びb軸が若干延びる程
度である。そのため、CoO□をホストに持つナトリウ
ム・コバルト酸化物の充放電に伴う形状変化は比較的小
さく、他の無機物に比べ崩壊することが少ない、さらに
、ナトリウム・コバルト酸化物は電子伝導性が大きいた
め、導電助材を殆ど必要としない。そのため、少ない導
電助材量または全ぐ導電助材を使用しなくても電極とし
て充分に性能が発揮される。 〔作用J 本発明において、負極にナトリウム、ビスマス、鉛、カ
ドミウム、スズからなる合金と炭素材料と結着剤との複
合体を用いる理由は、まずナトリウムの合金でナトリウ
ムの活性を低下せしめ、電解液との副反応を抑えるとと
もに、導電性の炭素材料を電極中にほどよく分散させる
ことにより電極中に電解液を含浸させ、さらに実効表面
積を増大させ、実効電流密度を下げ、かつ、結着剤で充
放電にともなう電極の形状変化や崩壊を抑制するためで
ある。 上記複合体負極に用いるナトリウム合金が多成分合金で
あるのは、合金中の各元素の分散がアルカリ金属イオン
の吸収、貯蔵の分散につながり、なおかつ、多成分化す
ることにより、これらの金属相聞の界面が増大し、アル
カリ金属イオンをより多く貯蔵することが可能になると
考えられるからである。 【実施例J 次に実施例により本発明の詳細な説明する。 実施例1 負極は、BiとCdとpbとSnの原子比が0.5:0
.125:0.25:0−125であるウッド合金に対
してNaが原子比で1:3.0である合金を微細に粉砕
したあと、あらかじめ混合しておいたアセチレンブラッ
クとEPDM (結着剤)の重量比が3:1の混合物を
加えNa合金が88%、上記混合物が12%になるよう
に混ぜて負極活物質とし、直径15mn+、厚さ300
μm程度になるよう円板状に加圧成形して作製した。 また、正極はNazOzとGO$04を酸素雰囲気下で
加熱反応させ、Nao、 ycoO*を合成し、それを
粉砕した後、予め混合しておいたアセチレンブラックと
テトラフルオロエチレン(結着剤)の重量比が3:lの
混合物を加え、 Nao、tCOO*が95%、混合物
が5%になるように混ぜて、正極活物質とし、直径15
1I■、厚さ400μ■程度になるよう円板状に加圧成
形して作製した。 電解液は、1.2−ジメトキシエタンにNaPF5を1
.0モル/βになるように溶かしたものを用いた。正極
と負極の間にポリプロピレン製マイクロポーラスフィル
ムとポリプロピレン製不織布をセパレータとして用い、
第1図に示すような周知のコイン型セルを組み立てた。 この電池の組立直後の電圧は、2.46Vであった。こ
の電池を放電方向に電流2.0+iAで電池電圧が2.
OVになるまで放電し、次いで同じ電流値で電池電圧が
3.OVになるまで充電し、以後放電・充電を繰り返し
て、この電池の放電容量及び可逆性を調べたところ、最
大放電容量は13.5wAh 、放電容量が最大値の8
0%に低下するまでのサイクル寿命は640回であった
。 さらに上記と全く同じ電池を組み立て、充電状態にして
、室温、1ケ月間放置して自己放電率を調べたところ、
4.8%であった。また正極、負極を短絡し3日間放置
後、充放電を試みたところ、何の異常も見られず、正常
に作動できた。 実施例2 負極は、BiとCdとpbとSnの原子比が0.4:ロ
、15:0.25:0.20であるウッド合金に対して
Naが原子比で1:3.0である合金を用いた以外は実
施例1と同様のものを用いた。 電池は第1図のようなコイン型セルを組み、実施例1と
同様の実験を行った。 その結果、最大放電容量は13.11wAh 、放電容
量が最大値の80%に低下するまでのサイクル寿命は6
64回、自己放電率は5.2%で過放電試験を行っても
異常は見られなかった。 実施W43 正極は市販のMo5sとアセチレンブラックとポリテト
ラフルオロエチレンを重量比で80:15:5になるよ
う混ぜて実施例1と同じように成型したものを用い、負
極は実施例1と全く同様のものを用いた。 また、電解液は、テトラグライムと1.2−ジメトキシ
エタンの体積比がl:4の混合溶媒にNaPFaを1.
0モル/βになるよう溶解したものを用いた。 電池は第1図のようなコイン型セルを組み、実施例1と
同様の実験を行った。但し、放電終止電圧のみを1.5
Vまで下げて行った。 その結果、最大放電容量は12.5mAh 、 tel
電容電炉量大値の80%に低下するまでのサイクル寿命
は670回、自己放電率は6.3%で過放電試験を行っ
ても異常は見られなかった。 実施例4 負極は、BiとCdとpbとSnの原子比が0.4:0
.125:0.25:0.125であるウッド合金に対
してNaが原子比でl:2.5である合金を用いた以外
は実施例1と同様のものを用いた。 電池は第1図のようなコイン型セルを組み、実施例1と
同様の実験を行った。 その結果、最大放電容量は14.1mAh 、サイクル
寿命は595回、自己放電率は4.7%、また過放電試
験を行っても異常は見られなかった。 【発明の効果】 以上述べたように1本発明の二次電池は、エネルギー密
度が高く、サイクル寿命が長く、自己放電率も低い等、
多くの優れた性能を有するので、これを電源とする分野
に寄与することが極めて大きい。
[Prior art] The idea of a secondary battery using lithium metal, which is one of the alkali metals, as a negative electrode has been around for a long time.
Hughes, et al., Journal o
f PowerSources, 12. P.83
~144 (1984) contains a review. Among them, lithium metal is so active that it reacts with solvents, forms an insulating film, and causes dendrite growth, making it difficult to apply to negative electrodes for secondary batteries. As a countermeasure, attempts have been made to alloy lithium metal or composite it with conductive polymers, but these have been proposed by A. N. Dey, J.
+m. Soc,, 118. No, 1 mouth, P, 1547~
1549 (1971), JP-A No. 59-132576, JP-A No. 60-262351, JP-A No. 61-2454.
It is described in Publication No. 74, Publication No. 62-140358, etc. In addition, sodium-based negative electrodes are alloyed or composited with conductive polymers in the same way as above, but these are manufactured by Allied or AlliAlled-3.
U.S.P. 4,668,59 filed by i Inc.
6, 4, 753.858, etc. [Problems to be Solved by the Invention] By the way, as mentioned above, despite research in various fields, secondary batteries for room temperature operation using an alkali metal as the negative electrode are However, no battery has yet achieved a market comparable to that of general-purpose secondary batteries. However, some of them are extremely small capacity type (1mAh to 1OmAh).
) lithium-based secondary batteries are on the market. Additionally, Canada's MOLI ENERGY Lr [TED has commercialized a relatively high capacity (600+sAh) secondary battery using MoS for the positive electrode and Li foil for the negative electrode.
None of the charge/discharge cycle reversibility, high-speed charge/discharge characteristics, or overdischarge characteristics exceed those of nickel-cadmium secondary batteries of the same shape, and the energy density has only been improved, making it more versatile. poor. The main reason why this Li-based negative electrode is difficult to put into practical use is the short-circuit phenomenon caused by the reaction between lithium and the electrolyte and the resulting dendrite growth, as described above. By replacing lithium with sodium alloy, the electrode potential can be reduced to 0.
.. Since the voltage is shifted to the more noble side by about 2V to 0.4V, the reactivity with the electrolyte is somewhat alleviated, but it is not sufficient. As a result of intensive research to solve the above-mentioned problems, the present inventors have discovered an excellent combination of electrode constituent materials for the negative electrode. The present invention provides a secondary battery. [Means for Solving the Problems J] In order to solve the above-mentioned problems, the present inventor investigated and found that the negative electrode is a composite of an alloy consisting of sodium, bismuth, lead, cadmium, and tin, a carbon material, and a binder. ! The inventors have discovered that a nonaqueous electrolyte secondary battery with excellent performance can be obtained by using electrodes, and have completed the present invention. Moreover, at this time, a positive electrode containing sodium or cobalt oxide as a main component can be suitably used. The alloy is an alloy of sodium and a wood alloy,
The proportion of each element in the wood alloy is bismuth 30-50% by weight.
, lead IO to 50% by weight, cadmium 5 to 30% by weight, and tin 5 to 30% by weight.When the proportions of each element are outside the above ranges, the remarkable effects of the present invention are not achieved. Hard to obtain. However, simply using only a sodium alloy as an electrode does not improve the utilization rate and reversibility of the negative electrode, and it is necessary to use a composite electrode with a carbon material as in the present invention. Carbon black or graphite is suitable as the carbon material to be used. The above-mentioned carbon black includes thermal black, furnace black, acetylene black, etc., but any of them may be used and there is no particular restriction.Also, the graphite may be natural graphite or artificial graphite, or fibrous graphite synthesized by a vapor phase growth method. But that's fine. However, if the amount of carbon material is too large, the electrode capacity and density will be reduced. A suitable amount is 3% to 20% based on the weight of the negative electrode. Furthermore, to prevent the composite electrode from collapsing during use,
Although it is necessary to add a binder, it is necessary that it has no reactivity with the electrode or electrolyte, and is usually used by thoroughly dispersing polyethylene or polypropylene fibers or powder in the electrode and welding it by heating. In addition, examples of more effective binders for negative electrode materials include olefin copolymer rubbers such as ethylene-propylene rubber (EPR), ethylene-butene rubber (EBR), and ethylene-propylene-diene rubber (EPDM). EPDM is particularly preferred. If too much of this binder is used, the electrode performance will be impaired.The appropriate amount is 1% to 8% per negative electrode weight.
It is. When such a negative electrode is used, a suitable electrolytic solution is one in which a sodium salt is dissolved in a mixed solvent of 1,2-dimethoxyethane and an ether compound. When used in a mixed system with an ether-based compound, there are no particular restrictions on the type, but as a matter of course, those that strongly react with the electrode active material cannot be used. Non-aqueous solvents to be mixed include 5 such as ethoxy-methoxyethane, guiglyme, triglyme, tetraglyme, pentaglyme, tetrahydrofuran, 2-methyltetrahydrofurn, 1,4-3methyldioxolane,
Ether compounds such as dioxane, especially diglyme,
Triglyme and tetraglyme are preferred. Next, a positive electrode suitable for the battery of the present invention will be explained. The above-mentioned suitable positive electrode must have a voltage of at least 1.5 V or more with respect to the negative electrode used in the battery of the present invention, and must be capable of reversibly occluding and releasing sodium ions, and must be one that has an inorganic oxidation For example, Coma, M
Examples of inorganic chalcogenides include n0z, WO, Maxi, Mo03, V2O5, etc.
Examples of inorganic halides such as o5ss and N1PSes include RuC1z, RuBra, and Fe0C1. Among these, Coax and Moa have high electric capacity and density per weight and volume, and have good reversibility.
t, Mo03, and COO2 is particularly preferred. This Con It also works to suppress repulsion, and an increase in the amount of Na does not necessarily lengthen the C-axis of the host lattice, but only slightly lengthens the a-axis and b-axis. Therefore, the change in shape of sodium and cobalt oxides with CoO□ as hosts during charging and discharging is relatively small, and they are less prone to collapse than other inorganic substances. Furthermore, because sodium and cobalt oxides have high electronic conductivity, , almost no conductive aids are required. Therefore, sufficient performance can be exhibited as an electrode even if the amount of conductive additive is small or even if no conductive additive is used at all. [Function J] The reason why a composite of an alloy consisting of sodium, bismuth, lead, cadmium, and tin, a carbon material, and a binder is used for the negative electrode in the present invention is that the sodium alloy first lowers the activity of sodium and In addition to suppressing side reactions with the liquid, dispersing the conductive carbon material in the electrode allows the electrode to be impregnated with the electrolyte, further increasing the effective surface area, lowering the effective current density, and improving binding. This is to suppress changes in shape and collapse of the electrodes due to charging and discharging. The reason why the sodium alloy used in the above composite negative electrode is a multi-component alloy is that the dispersion of each element in the alloy leads to the dispersion of absorption and storage of alkali metal ions, and by becoming multi-component, the interaction of these metals is This is because it is thought that the interface between the two layers increases, making it possible to store more alkali metal ions. [Example J] Next, the present invention will be explained in detail with reference to an example. Example 1 The negative electrode has an atomic ratio of Bi, Cd, pb, and Sn of 0.5:0
.. After finely pulverizing an alloy with an atomic ratio of Na of 1:3.0 to a wood alloy of 125:0.25:0-125, premixed acetylene black and EPDM (binder ) was added in a weight ratio of 3:1 and mixed so that the Na alloy was 88% and the above mixture was 12% to form a negative electrode active material, with a diameter of 15 mm + and a thickness of 300 mm.
It was produced by pressure molding into a disc shape to a thickness of approximately μm. In addition, the positive electrode is made by heating and reacting NazOz and GO$04 in an oxygen atmosphere to synthesize Nao and ycoO*, which are then crushed, and then mixed with acetylene black and tetrafluoroethylene (binder), which have been mixed in advance. Add a mixture with a weight ratio of 3:l and mix so that Nao and tCOO* are 95% and the mixture is 5% to form a positive electrode active material.
It was prepared by pressure molding into a disc shape so that it had a thickness of about 1I and a thickness of about 400μ. The electrolyte was 1.2-dimethoxyethane with 1 part of NaPF5.
.. A solution dissolved so that the concentration was 0 mol/β was used. A polypropylene microporous film and a polypropylene nonwoven fabric are used as separators between the positive and negative electrodes.
A well-known coin-shaped cell as shown in FIG. 1 was assembled. The voltage of this battery immediately after assembly was 2.46V. This battery is discharged with a current of 2.0+iA and a battery voltage of 2.
Discharge until it reaches OV, then at the same current value the battery voltage reaches 3. When the discharge capacity and reversibility of this battery were investigated by charging it until it reached OV and then repeating discharging and charging, the maximum discharge capacity was 13.5wAh, and the maximum discharge capacity was 8.
The cycle life until it decreased to 0% was 640 times. Furthermore, when we assembled the exact same battery as above, left it in a charged state for one month at room temperature, and examined the self-discharge rate.
It was 4.8%. Further, when the positive and negative electrodes were short-circuited and left for 3 days, charging and discharging was attempted, and no abnormalities were observed, and the battery operated normally. Example 2 The negative electrode was made of a wood alloy in which the atomic ratio of Bi, Cd, PB, and Sn was 0.4:2 and 15:0.25:0.20, and Na was in the atomic ratio of 1:3.0. The same material as in Example 1 was used except that a certain alloy was used. The battery was a coin-shaped cell as shown in FIG. 1, and the same experiment as in Example 1 was conducted. As a result, the maximum discharge capacity was 13.11wAh, and the cycle life until the discharge capacity decreased to 80% of the maximum value was 6.
The self-discharge rate was 5.2%, and no abnormality was found even when an overdischarge test was conducted 64 times. Implementation W43 The positive electrode was made by mixing commercially available Mo5s, acetylene black, and polytetrafluoroethylene at a weight ratio of 80:15:5 and molded in the same manner as in Example 1, and the negative electrode was exactly the same as in Example 1. I used the one from In addition, the electrolytic solution was a mixed solvent of tetraglyme and 1,2-dimethoxyethane with a volume ratio of 1:4, and 1.1% NaPFa.
A solution dissolved so that the concentration was 0 mol/β was used. The battery was a coin-shaped cell as shown in FIG. 1, and the same experiment as in Example 1 was conducted. However, only the discharge end voltage is 1.5.
I lowered it to V. As a result, the maximum discharge capacity is 12.5mAh, tel
The cycle life until the capacity decreased to 80% of the maximum value of the electric furnace capacity was 670 cycles, the self-discharge rate was 6.3%, and no abnormality was observed even when an overdischarge test was performed. Example 4 The negative electrode has an atomic ratio of Bi, Cd, pb, and Sn of 0.4:0
.. The same material as in Example 1 was used except that an alloy in which the atomic ratio of Na was l:2.5 with respect to the wood alloy which was 125:0.25:0.125 was used. The battery was a coin-shaped cell as shown in FIG. 1, and the same experiment as in Example 1 was conducted. As a result, the maximum discharge capacity was 14.1 mAh, the cycle life was 595 times, the self-discharge rate was 4.7%, and no abnormality was observed even when an overdischarge test was performed. [Effects of the Invention] As described above, the secondary battery of the present invention has high energy density, long cycle life, low self-discharge rate, etc.
Since it has many excellent performances, it will greatly contribute to the field of using it as a power source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例において、電池性能を調べるのに使用し
たコイン型二次電池の縦断面図である。 1・・・:・・正極。 2・・・・・・集電用金網、 3−・・・・・ポリプロピレン製不織布、4・・・・・
・ポリプロピレン製マイクロポーラスフィルム、 5・・・・・・絶縁バッキング、 6・・・・・・負極。
FIG. 1 is a longitudinal cross-sectional view of a coin-shaped secondary battery used to examine battery performance in Examples. 1...:...Positive electrode. 2...Wire mesh for current collection, 3-...Polypropylene nonwoven fabric, 4...
- Polypropylene microporous film, 5... Insulating backing, 6... Negative electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)負極にナトリウム、ビスマス、鉛、カドミウム、
スズからなる合金と炭素材料と結着剤とからなる複合体
電極を用いることを特徴とする二次電池。
(1) Sodium, bismuth, lead, cadmium, negative electrode
A secondary battery characterized by using a composite electrode made of an alloy made of tin, a carbon material, and a binder.
(2)ナトリウム、コバルト酸化物の活物質を正極に用
いたことを特徴とする特許請求の範囲第1項記載の二次
電池。
(2) The secondary battery according to claim 1, characterized in that an active material of sodium and cobalt oxide is used for the positive electrode.
JP1198737A 1989-07-31 1989-07-31 Secondary cell Pending JPH0364869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1198737A JPH0364869A (en) 1989-07-31 1989-07-31 Secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1198737A JPH0364869A (en) 1989-07-31 1989-07-31 Secondary cell

Publications (1)

Publication Number Publication Date
JPH0364869A true JPH0364869A (en) 1991-03-20

Family

ID=16396144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1198737A Pending JPH0364869A (en) 1989-07-31 1989-07-31 Secondary cell

Country Status (1)

Country Link
JP (1) JPH0364869A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040114A1 (en) * 2005-09-30 2007-04-12 Sanyo Electric Co., Ltd. Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040114A1 (en) * 2005-09-30 2007-04-12 Sanyo Electric Co., Ltd. Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US5130211A (en) Electrolyte solution sequestering agents for electrochemical cells having carbonaceous electrodes
US5051325A (en) Secondary battery
JP3439082B2 (en) Non-aqueous electrolyte secondary battery
CN108886168A (en) Additive for non-aqueous electrolytic solution, the non-aqueous electrolytic solution for lithium secondary battery and the lithium secondary battery including the non-aqueous electrolytic solution
JP2000235856A (en) Lithium secondary battery
JPH06342673A (en) Lithium secondary battery
JPH06302320A (en) Nonaqueous electrolyte secondary battery
JP2000156224A (en) Nonaqueous electrolyte battery
JP3637690B2 (en) Non-aqueous electrolyte secondary battery
JP2839627B2 (en) Rechargeable battery
US6465131B1 (en) Lithium secondary cell with a stannous electrode material
JPH02207464A (en) Secondary battery
KR20220113449A (en) cathode active material
JPH0364869A (en) Secondary cell
JPH03196467A (en) Secondary battery
JPH02207465A (en) Secondary battery
JPH02207463A (en) Secondary battery
JPH0652860A (en) Lithium secondary battery
JP3434557B2 (en) Non-aqueous solvent secondary battery
JPH03289061A (en) Secondary battery
JP2023177123A (en) Positive electrode active material for fluoride ion battery and fluoride ion battery
JPH03102763A (en) Secondary battery
JPH0424829B2 (en)
JPH03167767A (en) Secondary battery
JPH09147861A (en) Lithium secondary battery