JPH0363536A - Stress sensitive body - Google Patents

Stress sensitive body

Info

Publication number
JPH0363536A
JPH0363536A JP1201062A JP20106289A JPH0363536A JP H0363536 A JPH0363536 A JP H0363536A JP 1201062 A JP1201062 A JP 1201062A JP 20106289 A JP20106289 A JP 20106289A JP H0363536 A JPH0363536 A JP H0363536A
Authority
JP
Japan
Prior art keywords
stress
pas
present
biphenylene
substd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1201062A
Other languages
Japanese (ja)
Inventor
Toshiki Shimada
俊樹 島田
Kiyohide Hayashi
清秀 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP1201062A priority Critical patent/JPH0363536A/en
Publication of JPH0363536A publication Critical patent/JPH0363536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Color Printing (AREA)

Abstract

PURPOSE:To allow the visual decision of a stress by effectively utilizing the color developability, under stretching stress, of polyarylene sulfide (PAS). CONSTITUTION:A fiber, cloth or film consisting of the PAS causes color development at a specific wavelength under the stretching stress. The PAS refers to a polymer having the -R-S-group (where R is phenylene, biphenylene, naphthalene, biphenylene ether or 1 to 6C lower alkyl substd. deriv. thereof) obtd. by bringing a polyhalo-substd. cyclic compd. having an unsaturation group between the adjacent ring atoms and alkaline metal sulfide into reaction in an org. polar rolvent as a repeating unit.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はポリアリーレンアルファイド(以下PSと略す
)よりなる新規な応力感知体に関し、特に伸張応力下で
の発色性を有効に利用した応力感知体に関するものであ
る。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a novel stress sensing body made of polyarylene alphaide (hereinafter abbreviated as PS), and in particular, the present invention relates to a stress sensing body made of polyarylene alphaide (hereinafter abbreviated as PS). It concerns the sensing body.

〈従来の技術〉 従来、伸張応力を感知又は検出する手段としてはストレ
インゲージと呼ばれる応力を電気信号に変換せしめる方
法が一般的に用いられている。
<Prior Art> Conventionally, as a means for sensing or detecting tensile stress, a method called a strain gauge that converts stress into an electrical signal has been generally used.

しかしながらこの方法では応力を感知し計測に用いよう
とする場合には増幅器等を含んだ複雑な電気回路など高
価な設備を必要としていたためその用途が限定される等
の欠点があった。
However, this method has disadvantages such as limited use because it requires expensive equipment such as complicated electric circuits including amplifiers and the like in order to sense stress and use it for measurement.

〈発明が解決しようとする課題〉 本発明は伸張応力を感知するためにストレインゲージの
如き複雑で高価な電気回路の必要性を解消し人間が目視
により応力を判定できるような応力感知体を提供せんと
するものである。
<Problems to be Solved by the Invention> The present invention eliminates the need for a complicated and expensive electric circuit such as a strain gauge to sense tensile stress, and provides a stress sensing body that allows humans to visually determine stress. This is what I am trying to do.

く課題を解決するための手段〉 本発明者らはPASからなる繊維、布帛又はフィルムが
伸張応力下で特定の波長の発色が起こることを見出し本
発明に到達した。
Means for Solving the Problems The present inventors have arrived at the present invention by discovering that fibers, fabrics, or films made of PAS develop color at a specific wavelength under tensile stress.

即ち、本発明はPAS重合体からなる応力感知体であっ
て伸張応力下で特定の波長の光の反射強度が変化する応
力感知体である。PASの形態としては繊維、布帛又は
フィルム等があげられる。
That is, the present invention is a stress sensing body made of a PAS polymer, which changes the reflection intensity of light of a specific wavelength under tensile stress. Examples of the form of PAS include fibers, fabrics, and films.

本発明においてPASとは隣接する環原子間に不飽和基
を有する多ハロ置換の環状化合物とアルカリ金属サルフ
ァイドとを有機極性溶媒中で反応せしめることによって
得られる一R−8−基(ただしR:フェニレン、ビフェ
ニレン、ナフタレン、ビフェニレンエーテルまたはそれ
らの炭素数1〜6の低級アルキル置換誘導体である)を
繰返し単位として有する重合体であり、代表的にはたと
えば米国特許第3354129号明細書に詳しく述べら
れているものが使用できるがPASの絶唱に含められる
ものは全て本発明の対象に含められる。なお本発明にお
いてはRがフェニレン基であるポリフェニレンサルファ
イド(以下PPSという)が特に好ましい。
In the present invention, PAS refers to a monoR-8- group (wherein R: It is a polymer having as a repeating unit phenylene, biphenylene, naphthalene, biphenylene ether or a lower alkyl substituted derivative thereof having 1 to 6 carbon atoms, and is typically described in detail in US Pat. No. 3,354,129. However, anything that can be included in PAS's Zessho is included in the scope of the present invention. In the present invention, polyphenylene sulfide (hereinafter referred to as PPS) in which R is a phenylene group is particularly preferred.

PASが伸張応力下で特定波長の発色を呈する原因に関
しては鋭意検討中であるが明確な結論は得られてない。
The cause of PAS exhibiting coloration at a specific wavelength under tensile stress is currently under active investigation, but no clear conclusion has been reached.

しかしながら特定波長の光の反射強度が変化することは
後述する方法で確認され又人間の目視により容易に判定
可能である。
However, the fact that the reflected intensity of light of a specific wavelength changes can be confirmed by the method described later, and can be easily determined by human visual observation.

伸張応力の変化に伴う発色性は繊維、布帛、フィルム等
の形態で発現しやすく、感知体としての用途もひも、ベ
ルト、テープ類等多岐に渡って展開が可能である。
Coloring properties associated with changes in elongation stress are easily expressed in the form of fibers, fabrics, films, etc., and can be used in a wide variety of applications such as strings, belts, and tapes.

PASの伸張応力下での発色は青緑色に近いものであり
、物理的に検出するには分光光度計での630mμの反
射率を中心に低下が認められ肉眼でも容易に判る。
The color development of PAS under tensile stress is close to blue-green, and in terms of physical detection, a decrease in the reflectance of 630 mμ with a spectrophotometer is observed, which is easily seen with the naked eye.

次に本発明のPASよりなる応力感知体の製造方法につ
いて述べてる。本方法によれば前記した応力感知体が得
られるが、その製造方法は下記の内容に限定されるもの
ではない。
Next, a method for manufacturing a stress sensor made of PAS of the present invention will be described. According to this method, the stress sensing body described above can be obtained, but the manufacturing method thereof is not limited to the following content.

極限粘度0.20以上のPASポリマーを290〜31
0°Cに溶融した後紡糸し、冷却して未延伸糸を得る。
PAS polymer with an intrinsic viscosity of 0.20 or more from 290 to 31
After melting at 0°C, it is spun and cooled to obtain an undrawn yarn.

得られた未延伸糸を紡糸に連続して、あるいは−旦巻き
取った後延伸する。このしこの際、延伸第10−ラーを
PASのガラス転移点上℃に加熱しておき、第20−ラ
ーで2〜4倍に延伸して引取り、つづいて第20−ラー
と第30−ラーとの間で1〜10%弛緩させつつ150
〜200℃に熱したプレートに接触させて熱処理してP
AS延伸糸を得る。
The obtained undrawn yarn is drawn either continuously after spinning or after being wound up once. At this time, the 10th drawing roller is heated to a temperature above the glass transition point of PAS, and the 20th drawing roller is stretched 2 to 4 times and taken off, followed by the 20th drawing and 30th drawing. 150 while relaxing 1-10% between the
Heat-treated by contacting with a plate heated to ~200℃
Obtain AS drawn yarn.

又溶融紡糸に先だっであるいは本発明の応力感知体製造
工程中に必要に応じ光安定剤、酸化防止剤、帯電防止剤
、染色性向上剤或は接着性向上剤等を配合することがで
き、配合の如何によって本発明の特性に重大な影響を与
えるもの以外は、全て利用できる。
In addition, a light stabilizer, an antioxidant, an antistatic agent, a dyeability improver, an adhesion improver, etc. may be added as necessary prior to melt spinning or during the process of manufacturing the stress sensor of the present invention. All of them can be used, except those that have a significant effect on the characteristics of the present invention depending on their formulation.

こうして得たPAS繊維はそのままで応力感知体として
使用することができる。又、合糸、撚糸により糸状とし
たり、又、織編物に加工して使用することも可能である
。さらに公知の方法を用いて短繊維不織布又は長繊維不
織布(いわゆるスパンボンド)としたり、フィルム状に
成型することによって得られるものもすべて応力感知体
として使用可能である。
The PAS fiber thus obtained can be used as it is as a stress sensor. It is also possible to use it by making it into a filament by doubling or twisting it, or by processing it into a woven or knitted fabric. Further, any material obtained by forming short fiber nonwoven fabric or long fiber nonwoven fabric (so-called spunbond) using a known method, or by molding it into a film can also be used as a stress sensor.

次に本発明に係る各数値の測定方法あるいは評価方法に
ついて述べる。
Next, a method for measuring or evaluating each numerical value according to the present invention will be described.

(極限粘度) 1−クロロナフタレンにPAII度が0.5〜1 g/
d fになるように溶解してサンプル溶液を調整し、2
0′Cの温度での氷落下秒数6〜7秒のオスワルド粘度
計を用いて溶液粘度を測定する。
(Intrinsic viscosity) PAII degree of 1-chloronaphthalene is 0.5 to 1 g/
Adjust the sample solution by dissolving it so that d f, 2
The solution viscosity is measured using an Oswald viscometer with an ice fall time of 6-7 seconds at a temperature of 0'C.

測定に際し同一の粘度計を用い0.5g/cl及びIg
/dfの溶液20m1の落下時間より極限粘度を求める
。(分光反射率) 自記分光光度計(日立 EPR−2形)を用いて可視域
400〜760mμにおける標準サンプルに対する試料
の反射率を測定する。
0.5g/cl and Ig using the same viscometer for measurement
The intrinsic viscosity is determined from the falling time of 20 ml of solution of /df. (Spectral Reflectance) The reflectance of the sample with respect to the standard sample in the visible range of 400 to 760 mμ is measured using a self-recording spectrophotometer (Hitachi EPR-2 type).

以上述べてきたようにPASを繊維、布帛、又はフィル
ムに加工した後、伸張応力下で可視域の発色を利用する
ことにより容易に応力を検出できる感知体を提供するこ
とができる。
As described above, after processing PAS into fibers, fabrics, or films, it is possible to provide a sensor that can easily detect stress by utilizing color development in the visible range under tensile stress.

〈実施例〉 実施例1 極限粘度0.22のPPSチップを原料とし孔径0.3
3m諺、孔数24の紡糸口金より300℃で溶融紡糸後
巻取り、引続いて95℃に保たれたル10−ラーと常温
の第20−ラーとで2.8倍に延伸し、さらに第30−
ラーとの間に設けた200℃のホットプレートを用いて
5%の弛緩熱処理を施して70デニール×24フイラメ
ントの延伸フィラメントを得た。得られた延伸フィラメ
ント糸を各種の応力下で伸張した時の分光反射率を第1
図に示す。また630mμの反射率と応力との関係を第
2図に示す。
<Example> Example 1 A PPS chip with an intrinsic viscosity of 0.22 is used as a raw material, and a pore diameter of 0.3
After melt spinning at 300°C from a spinneret with 24 holes, it was wound up, and then stretched to 2.8 times with a 10-layer kept at 95°C and a 20th-layer at room temperature. 30th-
A 5% relaxation heat treatment was performed using a 200° C. hot plate provided between the roller and the roller to obtain a drawn filament of 70 denier×24 filaments. The spectral reflectance when the obtained drawn filament yarn was stretched under various stresses was calculated as
As shown in the figure. Furthermore, the relationship between the reflectance at 630 mμ and the stress is shown in FIG.

第1図および第2図から明らかなように、本発明の応力
感知体は伸張時に特定の波長の反射率が低下するため、
肉眼で感知体の応力状態を知ることができる。
As is clear from FIGS. 1 and 2, when the stress sensing body of the present invention is stretched, the reflectance of a specific wavelength decreases.
The stress state of the sensor can be seen with the naked eye.

〈発明の効果〉 本発明によればPASという軽量かつ安価な有機素材を
用いることにより容易に伸張応力に対して発色が認めら
れ応力感知体として有効な手段となり得るものである。
<Effects of the Invention> According to the present invention, by using a lightweight and inexpensive organic material called PAS, color development is easily observed in response to stretching stress, and it can be an effective means as a stress sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各種(40kg/ d、  50 kg/ w
J)の応力下におけるフィラメント糸の波長と分光反射
率の関係を示す。 第2図はフィラメント糸の応力と630mμの反射率と
の関係を示す。
Figure 1 shows various types (40 kg/d, 50 kg/w
The relationship between the wavelength and spectral reflectance of the filament yarn under the stress of J) is shown. FIG. 2 shows the relationship between the stress of the filament yarn and the reflectance at 630 mμ.

Claims (1)

【特許請求の範囲】[Claims] ポリアリーレンサルファイド重合体からなる応力感知体
Stress sensing body made of polyarylene sulfide polymer.
JP1201062A 1989-08-01 1989-08-01 Stress sensitive body Pending JPH0363536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1201062A JPH0363536A (en) 1989-08-01 1989-08-01 Stress sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1201062A JPH0363536A (en) 1989-08-01 1989-08-01 Stress sensitive body

Publications (1)

Publication Number Publication Date
JPH0363536A true JPH0363536A (en) 1991-03-19

Family

ID=16434751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1201062A Pending JPH0363536A (en) 1989-08-01 1989-08-01 Stress sensitive body

Country Status (1)

Country Link
JP (1) JPH0363536A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106984A (en) * 1999-10-01 2001-04-17 Nitto Denko Corp Adhesive film or sheet for detection of local displacement
JP2017024376A (en) * 2015-07-28 2017-02-02 大日本印刷株式会社 Laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106984A (en) * 1999-10-01 2001-04-17 Nitto Denko Corp Adhesive film or sheet for detection of local displacement
JP2017024376A (en) * 2015-07-28 2017-02-02 大日本印刷株式会社 Laminate

Similar Documents

Publication Publication Date Title
US5286833A (en) Polybenzazole fiber with ultra-high physical properties
KR0142181B1 (en) High strength, high modulus polyamide yarn and its manufacturing method
US5405695A (en) Poly(phenylene Sulfide) fibers and production process thereof
Allen et al. High-modulus-high-strength poly-(p-phenylene benzobisthiazole) fibres: Part 1 Heat treatment processing
JPS59216912A (en) Production of polyethylene fiber having high strength and modulus of elasticity
JPH0363536A (en) Stress sensitive body
JP4010572B2 (en) Thermotropic aromatic polyester (amide) monofilament
US5082610A (en) Process for surface treating thermoplastic monofilaments
EP0312039A2 (en) Flame treated monofilaments
AU684903B2 (en) Process for producing a polyamide suture
JPH02104721A (en) Polyamide-imide system filament and method for its production
JPH01239109A (en) Polyphenylene sulfide fiber, its production and false-twisted yarn of said fiber
JPS62299513A (en) Production of polyphenylene sulfide monofilament
NO911820D0 (en) SPINNING PROCEDURE FOR MANUFACTURING SYNTHETIC YARNED WITH HIGH STRENGTH, HIGH MODULE AND LOW CRIMPING.
US4983448A (en) Polyamide filaments having improved properties and method of preparation
KR101273357B1 (en) Polyethyleneterephthalate yarn with good thermal performance and high tenacity for industrial use
JPH04222217A (en) Polyphenylene sulfide fiber and production thereof
JPS63315608A (en) Polyester fiber
JPS5915513A (en) Production of polyester fiber
JPS6028926B2 (en) Method for manufacturing fiber from cellulose derivative liquid crystal
US3526693A (en) Production of resilient,high denier,flame-resistant filaments
JPS60181314A (en) Manufacture of polyvinylidene fluoride monofilament having high knot strength
EP0471163B1 (en) Poly[2,2&#39;-bis(trifluoromethyl)-benzidine terephthalamide]spin dopes and fibers therefrom
KR870001151B1 (en) High strength polyamide fiber and it&#39;s making method
Lewis Effect of Alternate Heating and Cooling on the Breaking Strength and Elongation of Cotton and Rayon Tire Cords