JPH0362804A - Preparation of low molecular weight polyolefin - Google Patents

Preparation of low molecular weight polyolefin

Info

Publication number
JPH0362804A
JPH0362804A JP19787489A JP19787489A JPH0362804A JP H0362804 A JPH0362804 A JP H0362804A JP 19787489 A JP19787489 A JP 19787489A JP 19787489 A JP19787489 A JP 19787489A JP H0362804 A JPH0362804 A JP H0362804A
Authority
JP
Japan
Prior art keywords
polyolefin
tubular reactor
low
molecular weight
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19787489A
Other languages
Japanese (ja)
Other versions
JPH0670094B2 (en
Inventor
Hiroshi Nishimoto
博 西本
Hidekazu Senda
千田 英一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP1197874A priority Critical patent/JPH0670094B2/en
Publication of JPH0362804A publication Critical patent/JPH0362804A/en
Publication of JPH0670094B2 publication Critical patent/JPH0670094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To contrive to stabilize the qualities of a low molecular polyolefin, such as color tone, by adjusting a thermal degradation temperature, the inner diameter of a tubular reactor, etc., within specific ranges when a polyolefin is thermally degradated in the tubular reactor in an inert gas to continuously prepare the low molecular polyolefin. CONSTITUTION:A polyolefin is charged to a tubular reactor 1 and 2 immersed in a salt bath 6 equipped with a stirrer 7 and subsequently degradated under a condition satisfied with an equation ((d) is the density (g/cm<3>) of the polyolefin at 23 deg.C; delta is the degradation amount (kg/hr) of the polyolefin per unit time; D is the inner diameter (m) of the tubular reactor; L is the length (m) of the tubular reactor; T is a degradation temperature ( deg.C)) at 300-459 deg.C for 0.5-10hr while an inert gas is blown in from a blowing opening 4, thereby providing a low molecular polyolefin having a number-average mol.wt. of 500-10000, preferably a hue of <=500 Hazen, a softening point of 90-210 deg.C, a melting viscosity of 20-100000cps at 140-160 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、低分子ポリオレフィンの製造法に関する。さ
らに詳しくは工業的に有用な低分子ポリオレフィンの製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing low-molecular polyolefins. More specifically, the present invention relates to a method for producing industrially useful low-molecular polyolefins.

[従来の技術] 従来、ポリオレフィンを熱分解して低分子ポリオレフィ
ンを製造する方法としてポリオレフィンを不活性ガス中
、250〜600℃で加熱する方法が知られている(例
えば英国特許第5fi9043号、米国特許第2835
Ei59号、特公昭3Ei−8737号公報および特公
昭43−93H号公報)。
[Prior Art] Conventionally, a method of heating a polyolefin at 250 to 600° C. in an inert gas is known as a method of thermally decomposing a polyolefin to produce a low-molecular-weight polyolefin (for example, British Patent No. 5FI9043, U.S. Pat. Patent No. 2835
Ei No. 59, Japanese Patent Publication No. 3 Ei-8737, and Japanese Patent Publication No. 43-93H).

[発明が解決しようとする課題] しかし従来の技術では色相をはじめとした種々の品質(
例えば臭気など)において安定した製品を工業的に製造
する点で満足されるものではなかった。
[Problem to be solved by the invention] However, with conventional technology, various qualities such as hue (
However, it has not been satisfactory in terms of industrial production of products that are stable in terms of odor (for example, odor, etc.).

[課題を解決するための手段] 本発明者らは、色相をはじめとした種々の品質の安定し
た低分子ポリオレフィンを工業的に製造すべく鋭意検討
を行った結果、本発明に到達した。
[Means for Solving the Problems] The present inventors have arrived at the present invention as a result of intensive studies aimed at industrially producing low-molecular polyolefins with stable various qualities including hue.

すなわち本発明は、管状反応器でポリオレフィンを不活
性ガス中、熱減成して数平均分子量500〜10.00
0の低分子ポリオレフィンを連続的に製造する方法(以
下この項において前記の方法という)において、 熱減成を300〜450℃で0.5ないし10時間およ
び式[式中、d:  ポリオレフィンの23℃での密度
(g/cm3)、σ: ポリオレフィンの単位時間当り
の減成ffi (kg/ hr)、D:管状反応器の内
径(m)、L:管状反応器の長さ(m)、T: 減成温
度(℃)を示す。
That is, the present invention thermally degrades polyolefin in a tubular reactor in an inert gas to obtain a number average molecular weight of 500 to 10.00.
0 (hereinafter referred to as the above method in this section), heat degradation is carried out at 300 to 450°C for 0.5 to 10 hours and the formula [where d: 23 of the polyolefin] Density in °C (g/cm3), σ: Degradation ffi per unit time of polyolefin (kg/hr), D: Internal diameter of the tubular reactor (m), L: Length of the tubular reactor (m), T: Indicates degradation temperature (°C).

]を満たす条件下で行うことを特徴とする低分子ポリオ
レフィンの製造法;前記の方法において管状反応器とし
て内径の異なる管を2段以上直列に連結して300〜4
50℃で0.5ないし10時間行うことを特徴とする低
分子ポリオレフィンの製造法;前記の方法において、内
径の異なる管が式(2)〜(5)を満たす前部管および
最終管からなる請求項2記載の製造法 0.2≦DI/De≦o、s          (2
)150≦Ll/DI≦1500          
(3)200≦Le/De≦soo         
  (4)0.3≦LIX De/LeX DI≦4.
o     (5)[式中、Dl: 前部管内径、De
: Q路管内径、LJ:前部管の管長、Le:最終管の
管長を示す。];前記の方法において、管長5ないし2
00mの管状反応器を用い、0.2ないし200kg/
 cm3の圧力下、5ないし100m/hrの線速度で
該管状反応器にポリオレフィンを300〜450℃で0
.5ないし10時間通して行うことを特徴とする低分子
ポリオレフィンの製造法;前記の方法において、管状反
応器の一部または全部としてスタティックミキサーを用
い、300〜450℃で0.5ないし10時間行なうこ
とを特徴とする低分子ポリオレフィンの製造法;熱減成
を式 [式中、d:  ポリオレフィンの23℃での密度(g
/cm3)、σ: ポリオレフィンの単位時間当りの減
成量(kg/ hr)、D:管状反応器の内径(m)、
L:管状反応器の長さ(m)、丁:減成温度(’C)を
示す。
A method for producing a low-molecular-weight polyolefin, characterized in that it is carried out under conditions that satisfy the following conditions: In the above method, two or more tubes with different inner diameters are connected in series as a tubular reactor,
A method for producing a low molecular weight polyolefin, characterized in that the process is carried out at 50°C for 0.5 to 10 hours; in the above method, the tubes having different inner diameters are composed of a front tube and a final tube satisfying formulas (2) to (5). The manufacturing method according to claim 2 0.2≦DI/De≦o,s (2
)150≦Ll/DI≦1500
(3) 200≦Le/De≦soo
(4) 0.3≦LIX De/LeX DI≦4.
o (5) [where Dl: front tube inner diameter, De
: Indicates the internal diameter of the Q-way pipe, LJ: the pipe length of the front pipe, and Le: the pipe length of the final pipe. ]; In the above method, the pipe length is 5 to 2.
Using a 00m tubular reactor, 0.2 to 200kg/
The polyolefin was introduced into the tubular reactor at a temperature of 300-450°C under a pressure of cm3 and a linear velocity of 5-100 m/hr.
.. A method for producing a low molecular weight polyolefin, characterized in that the process is carried out for 5 to 10 hours; in the above method, a static mixer is used as part or all of the tubular reactor, and the process is carried out at 300 to 450°C for 0.5 to 10 hours. A method for producing low-molecular-weight polyolefins characterized by
/cm3), σ: Degradation amount of polyolefin per unit time (kg/hr), D: Inner diameter of tubular reactor (m),
L: length of the tubular reactor (m), D: decomposition temperature ('C).

]を満たす条件下で行なうことを特徴とする請求項5記
載の製造法;前記の方法において、管状反応器を無機塩
混合物からなる浴に浸漬して300〜450℃で0.5
ないし10時間行うことを特徴とする低分子ポリオレフ
ィンの製造法;ポリオレフィンを不活性ガス中、熱減成
して数平均分子量500〜10,000の低分子ポリオ
レフィンを製造する方法において、ポリオレフィン10
0重量部に対しフェノール系酸化防止剤0.01ないし
0.2重量部の存在下300〜450 ’Cで0.5な
いし10時間行うことを特徴とする低分子ポリオレフィ
ンの製造法;および請求項1〜8のいずれか記載の方法
を2以」二組み合わせる低分子ポリオレフィンの製造法
である。
The method according to claim 5, characterized in that the process is carried out under conditions that satisfy
A method for producing a low-molecular polyolefin, characterized in that the process is carried out for 10 to 10 hours; a method for producing a low-molecular polyolefin having a number average molecular weight of 500 to 10,000 by thermally degrading a polyolefin in an inert gas;
A method for producing a low molecular weight polyolefin, characterized in that the process is carried out at 300 to 450'C for 0.5 to 10 hours in the presence of 0.01 to 0.2 parts by weight of a phenolic antioxidant per 0 part by weight; and claims. This is a method for producing a low-molecular polyolefin by combining two or more of the methods described in any one of 1 to 8.

本発明においてポリオレフィンとしてはエチレン、プロ
ピレン、l−ブテンおよび4−メチル−1−ヘンテンか
らなる群より選ばれるα−オレフィンの単独重合体また
はこれらα−オレフィンの二種以上からなる共重合体ま
たはこれらα−オレフィンの一種以上と他のα−オレフ
ィンおよび/またはビニル化合物の一種または二種以上
との共重合体があげられる。他のα−オレフィンとして
は炭素数5〜18のオレフィン、例えば1−ペンテン、
1−ヘキセン、■−オクテン、■−デセン、■−ドデセ
ン等があげられる。ビニル化合物としては不飽和カルボ
ン酸またはその無水物[(メタ)アクリル酸、無水マレ
イン酸などコおよび(メタ)アクリル酸アルキル(アル
キル基としてはメチル、エチルおよびブチルからなる群
より選ばれる基があげられる)などがあげられる。
In the present invention, the polyolefin is a homopolymer of α-olefin selected from the group consisting of ethylene, propylene, l-butene, and 4-methyl-1-hentene, a copolymer of two or more of these α-olefins, or a copolymer of two or more of these α-olefins. Examples include copolymers of one or more α-olefins and one or more other α-olefins and/or vinyl compounds. Other α-olefins include olefins having 5 to 18 carbon atoms, such as 1-pentene,
Examples include 1-hexene, ■-octene, ■-decene, and ■-dodecene. Examples of vinyl compounds include unsaturated carboxylic acids or their anhydrides [(meth)acrylic acid, maleic anhydride, etc., and alkyl (meth)acrylates (the alkyl group is a group selected from the group consisting of methyl, ethyl, and butyl). etc.).

ポリオレフィンのメルトフローレートは通常0゜5ない
し200 (g/ l0m1n)、好ましくは1ないし
1100(/l0m1n)である。数平均分子量は通常
12000ないし100,000、好ましくは15,0
00ないし70,000である。
The melt flow rate of the polyolefin is usually 0.5 to 200 (g/l0ml), preferably 1 to 1100 (/l0ml). The number average molecular weight is usually 12,000 to 100,000, preferably 15.0
00 to 70,000.

ポリオレフィンの23℃における密度は通常0.85〜
I(g/am3)である。
The density of polyolefin at 23°C is usually 0.85~
I (g/am3).

本発明の製造法の一例を図面により説明する。An example of the manufacturing method of the present invention will be explained with reference to the drawings.

第1図において1は管状反応器の前部管、2は最終管、
3は気液分離器、4は不活性ガス吹き込み口、5は熱媒
体(ソルトバス)容器、6はソルトバス、7はソルトバ
スの攪拌器である。
In Fig. 1, 1 is the front pipe of the tubular reactor, 2 is the final pipe,
3 is a gas-liquid separator, 4 is an inert gas inlet, 5 is a heat medium (salt bath) container, 6 is a salt bath, and 7 is a stirrer for the salt bath.

ポリオレフィンは管状反応器に入って加熱、減成された
後、気液分離器で揮発性ガス状物が除かれ低分子ポリオ
レフィンとなる。
After the polyolefin is heated and degraded in a tubular reactor, volatile gaseous substances are removed in a gas-liquid separator to produce a low-molecular-weight polyolefin.

管状反応器の内径(D)は通常10ないし300 mm
1好ましくは20ないし200mmである。長さ(L)
は通常5ないし20011、好ましくはIOないし15
0mである。
The inner diameter (D) of the tubular reactor is usually 10 to 300 mm.
1 preferably 20 to 200 mm. Length (L)
is usually 5 to 20011, preferably IO to 15
It is 0m.

管状反応器の長さが5m未満ては得られた低分子ポリオ
レフィンの臭気が増大し均質なものが得られにくい。2
00mを超えると色相が悪くなる。
If the length of the tubular reactor is less than 5 m, the odor of the obtained low molecular weight polyolefin increases and it is difficult to obtain a homogeneous product. 2
If the distance exceeds 00 m, the hue will deteriorate.

管状反応器の長さと内径の比(L、 / D )は通常
50ないし20001  好ましくは120ないし15
00である。
The length-to-inner diameter ratio (L,/D) of the tubular reactor is usually 50 to 20,001, preferably 120 to 15.
It is 00.

管状反応器は内径の異なる管状反応器を通常二段以上、
好ましくはニないし万般、特に好ましくは二段に直列に
連結したものを使用する。管状反応器はまっすぐでも、
またラセン状に曲がったものでもよい。
Tubular reactors are usually two or more stages of tubular reactors with different inner diameters,
Preferably, two or more, particularly preferably two stages connected in series are used. Even if the tubular reactor is straight,
Alternatively, it may be bent in a spiral shape.

前部管の内径(DI)と最終管の内径(De)との比(
Di/ De)は、通常0.2ないし0.8、好ましく
は0.3ないし0.7である。DI/Deが0.2未満
だと得られた低分子ポリオレフィンの色相が悪くなり、
0.8を越えると臭気が増大する。
The ratio of the inner diameter of the front tube (DI) to the inner diameter of the final tube (De) (
Di/De) is usually 0.2 to 0.8, preferably 0.3 to 0.7. When DI/De is less than 0.2, the hue of the obtained low-molecular polyolefin becomes poor,
If it exceeds 0.8, the odor will increase.

前部管の長さ(Ll)とDIとの比(Ll/DI)は通
常150ないし1500、好ましくは200ないし12
00にする。Ll/DIが150未満では得られた低分
子ポリオレフィンの臭気が大きくなり、1500を越え
ると色相が悪くなる。
The ratio of the length of the front tube (Ll) to DI (Ll/DI) is usually from 150 to 1500, preferably from 200 to 12
Set it to 00. When Ll/DI is less than 150, the odor of the obtained low-molecular polyolefin becomes large, and when it exceeds 1500, the hue becomes poor.

最終管の長さ(Le)とDeとの比(Le/De)は通
常200ないし800、好ましくは250〜700であ
る。Le/Deが200未満では得られた低分子ポリオ
レフィンの臭気が大きくなり、800を越えると色相が
悪くなる。
The ratio of the final tube length (Le) to De (Le/De) is usually 200 to 800, preferably 250 to 700. When Le/De is less than 200, the odor of the obtained low-molecular polyolefin becomes large, and when it exceeds 800, the hue becomes poor.

Ll/DIとLe/Daとの比[(L1×De) / 
(LeXDl)コは通常0.3ないし4.0、好ましく
は0.5〜3.5である。 (L1×De) / (L
eXDl)が0.3未満では得られた低分子ポリオレフ
ィンの色相が悪くなり、4.0を越えると臭気が増大す
る。
The ratio between Ll/DI and Le/Da [(L1×De)/
(LeXDl) is usually 0.3 to 4.0, preferably 0.5 to 3.5. (L1×De) / (L
If eXDl) is less than 0.3, the obtained low-molecular polyolefin will have a poor hue, and if it exceeds 4.0, the odor will increase.

管状反応器が三段以上で構成される場合、中間の管(二
段目から最終段の一段前までの管)の内径は特に限定さ
れないが徐々に大きくしていくことが好ましい。長さは
任意に設定してもよい。
When the tubular reactor is composed of three or more stages, the inner diameter of the intermediate tube (the tube from the second stage to one stage before the final stage) is not particularly limited, but it is preferable to gradually increase the inner diameter. The length may be set arbitrarily.

本発明において管状反応器の一部または全部としてスタ
ティックミキサーを用いることができる。
In the present invention, a static mixer can be used as part or all of the tubular reactor.

スタティックミキサーとしては通常のもの、例えば「静
止型混合器」 (日刊工業新聞社、昭和56年9月30
日発行)の5頁および6頁目に記載のものなどがあげら
れる。スタティックミキサーを使うこと11 によって臭気が少なくなるというメリットがある。
A typical static mixer, such as a "static mixer" (Nikkan Kogyo Shimbun, September 30, 1980)
Examples include those listed on pages 5 and 6 of the Japanese publication). Using a static mixer 11 has the advantage of reducing odor.

スタティックミキサーの長さ(L)と内径(D:通路管
の内径で表わす)との比は通常50ないし2000、 
 好ましくは120ないし+500である。
The ratio of the length (L) to the inner diameter (D: expressed as the inner diameter of the passage pipe) of the static mixer is usually 50 to 2000,
Preferably it is 120 to +500.

スタティックミキサーは管状反応器の一部または全部に
使用することができる。一部に使用する場合、残部は通
常の管を使用することができる。
Static mixers can be used in part or all of the tubular reactor. If a part is used, a normal pipe can be used for the rest.

また一部に使用する場合スタティックミキサーの位置は
特に限定されない。すなわち管状反応器の前半部、後半
部およびその中間のいずれでもよいが、好ましくは前半
部である。使用する位置は1ケ所でも2ケ所以上でもよ
い。
In addition, when the static mixer is used in a portion, the position of the static mixer is not particularly limited. That is, it may be the first half, the second half, or the middle of the tubular reactor, but the first half is preferable. It may be used at one location or at two or more locations.

本発明の製造法において熱媒浴としてソルトバスを用い
るのが好ましい。ソルトの種類としては塩化リチウム−
塩化カリウム、硫酸リチウム−硫酸カリウム、硝酸ナト
リウム−硝酸カリウム、亜硝酸ナトリウム−硝酸カリウ
ム、水酸化ナトリウム−水酸化カリウムなどの混合塩が
あげられる。
In the production method of the present invention, it is preferable to use a salt bath as the heat medium bath. The type of salt is lithium chloride.
Examples include mixed salts such as potassium chloride, lithium sulfate-potassium sulfate, sodium nitrate-potassium nitrate, sodium nitrite-potassium nitrate, and sodium hydroxide-potassium hydroxide.

これらのうち好ましいものは亜硝酸ナトリウム−硝酸カ
リウムの混合塩である。
Among these, a mixed salt of sodium nitrite and potassium nitrate is preferred.

12 ソルトを混合する場合の重量比は特に限定されないが、
好ましくは混合塩の融点範囲が50ないし200℃にな
るように選ぶ。
12 The weight ratio when mixing salt is not particularly limited, but
Preferably, the mixed salt is selected so that the melting point range is from 50 to 200°C.

加熱の方法は通常、電熱ヒーターにて行う。温度の調整
は特に限定されないが、好ましくは±0゜2℃以下の制
御範囲である。この範囲外では均質なポリオレフィンが
得られにくい。
Heating is usually done using an electric heater. Temperature adjustment is not particularly limited, but preferably within a control range of ±0.degree. 2.degree. C. or less. Outside this range, it is difficult to obtain a homogeneous polyolefin.

本発明における反応は通常、不活性ガス中で行う。不活
性ガスとしてはアルゴン、窒素、炭酸ガスおよび水蒸気
があげられる。好ましくは窒素である。流量は通常、5
ないし1001/minである。
The reaction in the present invention is usually carried out in an inert gas. Inert gases include argon, nitrogen, carbon dioxide and water vapor. Nitrogen is preferred. The flow rate is usually 5
to 1001/min.

反応を促進する目的で触媒を用いることもできる。触媒
としてはラジカル発生触媒[ベンゾイルパーオキシド、
ジーtert−ブチルパーオキサイド、ジクミルパーオ
キサイドなどのパーオキサイド類; 2,2’−アゾビ
ス(インブチロニトリル)、2,2′−アゾビス(2,
4−ジメチルバレロニトリル)及び4.4′−アゾビス
(4−シアノバレリアン酸)などのアゾニトリル類]お
よびクラッキング触媒(シリカ−アルミナ、シリカ−マ
グネシア、活性白土など)などがあげられる。
A catalyst can also be used for the purpose of promoting the reaction. As a catalyst, a radical generating catalyst [benzoyl peroxide,
Peroxides such as di-tert-butyl peroxide and dicumyl peroxide; 2,2'-azobis(imbutyronitrile), 2,2'-azobis(2,
Azonitriles such as 4-dimethylvaleronitrile) and 4,4'-azobis(4-cyanovaleric acid)] and cracking catalysts (silica-alumina, silica-magnesia, activated clay, etc.).

触媒の使用量はポリオレフィン100重量部に対し通常
0.1ないし20重量部、好ましくは工ないし10重量
部である。ポリオレフィンへの触媒の添加は通常、管状
反応器に入る前に行う。
The amount of the catalyst used is usually 0.1 to 20 parts by weight, preferably 1 to 10 parts by weight, per 100 parts by weight of the polyolefin. Addition of catalyst to the polyolefin is usually carried out before entering the tubular reactor.

反応温度は300〜450℃、好ましくは320〜43
0℃である。反応温度が300℃未満では反応に長時間
を要しく通常30時間以上)、得られた低分子ポリオレ
フィンの色相が悪くなる。450℃を超えると臭気が増
大する。
The reaction temperature is 300 to 450°C, preferably 320 to 43°C.
It is 0°C. If the reaction temperature is less than 300° C., the reaction takes a long time (usually 30 hours or more), and the hue of the obtained low-molecular polyolefin deteriorates. When the temperature exceeds 450°C, the odor increases.

反応時間は0.5〜10時間、好ましくは1〜7時間で
ある。反応時間が0.5時間未満では得られた低分子ポ
リオレフィンの臭気が増大し、また均質なものが得られ
にくい。10時間を超えると色相が悪くなる。
The reaction time is 0.5 to 10 hours, preferably 1 to 7 hours. If the reaction time is less than 0.5 hours, the odor of the obtained low-molecular-weight polyolefin will increase, and it will be difficult to obtain a homogeneous product. If it exceeds 10 hours, the hue will deteriorate.

ポリオレフィンの単位時間当りの減成量は通常IOない
し700 kgl  好ましくは50ないし500kg
である。
The amount of polyolefin degraded per unit time is usually IO to 700 kgl, preferably 50 to 500 kg.
It is.

圧力は通常0.1ないし200kg/am2、好ましく
は0.5ないし150kg/cm2である。圧力が0.
2kg/Cm’未満ではえられた低分子ポリオレフィン
の色相が悪くなり、200kg/cI112を超えると
臭気が増大する。
The pressure is usually 0.1 to 200 kg/am2, preferably 0.5 to 150 kg/cm2. Pressure is 0.
If it is less than 2 kg/Cm', the hue of the obtained low-molecular polyolefin becomes poor, and if it exceeds 200 kg/Cm', the odor increases.

本発明においては式 [式中、d:  ポリオレフィンの23℃での密度(g
/Cl113)、σ: ポリオレフィンの23℃での密
度(g/cm3)、σ: 管状反応器の内径(m)、L
: 管状反応器の長さ(m)、T: 減成温度(’C)
を示す。
In the present invention, the formula [where d: density of polyolefin at 23°C (g
/Cl113), σ: Density of polyolefin at 23°C (g/cm3), σ: Inner diameter of tubular reactor (m), L
: Length of tubular reactor (m), T: Degradation temperature ('C)
shows.

]を満足するように熱減成を行う。好ましくは−L で行なう。] Thermal degradation is performed to satisfy the following. Preferably -L Let's do it.

−L リオレフィンの色相が悪くなり、100を超えると臭気
が増大する。
-L The hue of the lyolefin worsens, and when it exceeds 100, the odor increases.

管状反応器としてスタティックミキサーを一部または全
部に使用する場合、熱減成は式[式中、dlσ、D 、
TおよびLは式(1)の場合と同様である。コを満足す
る条件下で行なう。好ましくは−L 下で行なう。
If a static mixer is used partially or completely as a tubular reactor, the thermal degradation is determined by the formula [where dlσ, D ,
T and L are the same as in formula (1). The test shall be carried out under conditions that satisfy the following. Preferably it is carried out under -L.

d・σ ・D XIO” が0.3未満では得られた低分子ボ −L リオレフィンの色相が悪くなり、500を超えると臭気
が増大する。
If d·σ·D

管状反応器が二段以上の場合、管の内径(D)及び長さ
(L)は次式により計算する。
When the tubular reactor has two or more stages, the inner diameter (D) and length (L) of the tube are calculated using the following formula.

L = L1+L2+   −−−−−−−−−−−−
−−−+Le[式中、Ll、L2 −−−−−−−一−
:  それぞれ−段目、二段目、・−段目の管の長さ、
Le:最終段の管の長さ、DI、D2 −−−−−−−
−−  :  それぞれ−段目、二段−一−−−・−段
目の管の内径、De: 最終段の管の内径を示す。コ 16 管状反応器がスタティックミキサーの場合、管の内径(
D)はスタティックミキサーの通路管の内径を示し、長
さはスタティックミキサーの長さで示す。
L = L1+L2+ −−−−−−−−−−−−
---+Le [wherein, Ll, L2 -------
: The length of the -th stage, second stage, ... -th stage pipe, respectively.
Le: Length of final stage tube, DI, D2 -------
--: indicates the inner diameter of the tube at the -th stage, the second stage, the first stage, and so on, respectively; De: indicates the inner diameter of the pipe at the final stage. 16 If the tubular reactor is a static mixer, the inner diameter of the tube (
D) indicates the inner diameter of the passage tube of the static mixer, and the length is indicated by the length of the static mixer.

本発明においてポリオレフィンの流動線速度は通常0.
5ないし100m/hrN  好ましくはIないし80
m/hrである。線速度が0.5m/hr未満では得ら
れた低分子ポリオレフィンの色相が悪くなり、100m
/hrを越えると臭気が増大する。
In the present invention, the flow linear velocity of the polyolefin is usually 0.
5 to 100 m/hrN preferably I to 80
m/hr. If the linear velocity is less than 0.5 m/hr, the hue of the obtained low-molecular polyolefin will deteriorate;
/hr, the odor increases.

本発明においては通常フェノール系の酸化防止剤を添加
して熱減成を行う。
In the present invention, thermal degradation is usually carried out by adding a phenolic antioxidant.

フェノール系酸化防止剤としてはヒンダードフェノール
系化合物が好ましい。ヒンダードフェノール系化合物と
しては単環式ヒンダードフェノール類例えば2,6−シ
ーtert−ブチル−4−メチルフェノール(B、H,
T) 、2−tert−ブチル−4−メチルフェノール
(B、H,A) 、B−tert−ブチル−2,4−メ
チルフェノール(24M[iB)、2,6−シーter
t−ブチルフェノール(2[iB)、2−tert−ブ
チル−4−エチルフェノール(24M[iB)、2.6
−シーtert−ブチル−4−エチルフェノール、n−
オクタデシル−3−(4’−ヒドロキシ−3,5−ジー
tert−ブチルフェニル)プロピオネート、ジオクタ
デシル−4ヒドロキシ−3,5−ジーtert−プチル
ベンジルフオスフォネート、ジエチル−4−ヒドロキシ
−3,5−ジーtBt−プチルベンジルフォスフォネー
トおよび6−(4オキシ−3,5−ジーtert−ブチ
ルーアニリノ)2.4−ビス(n−オクチルチオ) −
1,3,5−)−リアジン;二環式ヒンダードフェノー
ル類、例えば4,4′−チオビス(B−tert−ブチ
ル−3−メチルフェノール)、4,4′ −ブチリデン
ビス([1−tert−ブチル−3−メチルフェノール
)、4.4’−メチレンビス(6−tert−ブチルフ
ェノール)、4.4’−ビス(2,6−シーtert−
ブチルフェノール)、4.4’−チオビス(G−ter
t−ブチル−0−クレゾール)、2,2′−メチレンビ
ス(4−メチル−[1−tert−ブチルフェノール)
、2,2′−チオビス(6−tertブチル−4−メチ
ルフェノール)およびl、6−ビス(3,5−ジーte
rt−ブチルー4−ヒドロキシ−2−メチルフェニル)
ブタン;および多環(二環以上)式ヒンダードフェノー
ル類、例えば1,1.3−)リス(5−tert−ブチ
ルー4−ヒドロキシ−2−メチルフェニル)ブタン、2
.4,1li−トリス(3,5−ジーtert−ブチル
ー4−ヒドロキシベンジル)メシチレン、1,3.5−
トリス(3,5−ジーtert−フチルー4−ヒドロキ
シベンジル)メシチレン、1.3.5−1−リス(3,
5−ジーtert−ブチルー4−ヒドロキシベンジル)
インシアヌレートおよびテトラキス[β−(3,5−ジ
ーtert−ブチルー4−ヒドロキシフェニル)プロピ
オニルオキシメチルコメタンなどがあげられる。
As the phenolic antioxidant, hindered phenol compounds are preferred. Examples of hindered phenol compounds include monocyclic hindered phenols such as 2,6-tert-butyl-4-methylphenol (B, H,
T), 2-tert-butyl-4-methylphenol (B, H, A), B-tert-butyl-2,4-methylphenol (24M [iB), 2,6-tert
t-Butylphenol (2[iB), 2-tert-butyl-4-ethylphenol (24M[iB), 2.6
-tert-butyl-4-ethylphenol, n-
Octadecyl-3-(4'-hydroxy-3,5-di-tert-butylphenyl)propionate, Dioctadecyl-4-hydroxy-3,5-di-tert-butylbenzyl phosphonate, Diethyl-4-hydroxy-3,5 -di-tBt-butylbenzylphosphonate and 6-(4oxy-3,5-di-tert-butylanilino)2,4-bis(n-octylthio)-
1,3,5-)-Ryazine; Bicyclic hindered phenols, such as 4,4'-thiobis(B-tert-butyl-3-methylphenol), 4,4'-butylidenebis([1-tert- butyl-3-methylphenol), 4,4'-methylenebis(6-tert-butylphenol), 4,4'-bis(2,6-tert-
butylphenol), 4,4'-thiobis(G-ter
t-butyl-0-cresol), 2,2'-methylenebis(4-methyl-[1-tert-butylphenol)
, 2,2'-thiobis(6-tertbutyl-4-methylphenol) and l,6-bis(3,5-di-te
rt-butyl-4-hydroxy-2-methylphenyl)
butane; and polycyclic (two or more rings) hindered phenols, such as 1,1,3-)lis(5-tert-butyl-4-hydroxy-2-methylphenyl)butane, 2
.. 4,1li-tris(3,5-di-tert-butyl-4-hydroxybenzyl)mesitylene, 1,3.5-
Tris(3,5-di-tert-phthyl-4-hydroxybenzyl)mesitylene, 1.3.5-1-lis(3,
5-tert-butyl-4-hydroxybenzyl)
Examples include incyanurate and tetrakis[β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyloxymethylcomethane.

これらのうち好ましくは2,6−シーtert−ブチル
−4メチルフエノール、2−tert−ブチル−4−メ
チルフェノール、n−オクタデシル−3−(4’−ヒド
ロキシ−3゜5−ジーtert−ブチルフェニル)プロ
ピオネート、およびテトラキス[β−(3,5−ジーt
ert−ブチルー4−ヒドロキシフェニル)プロピオニ
ルオキシメチルコメタンであり特に好ましいものはテト
ラキス[β(3,5−ジーtert−ブチルー4−ヒド
ロキシフェニル)プロピオニルオキシメチルコメタンで
ある。
Among these, 2,6-tert-butyl-4-methylphenol, 2-tert-butyl-4-methylphenol, n-octadecyl-3-(4'-hydroxy-3°5-di-tert-butylphenyl ) propionate, and tetrakis [β-(3,5-di-t
A particularly preferred ert-butyl-4-hydroxyphenyl)propionyloxymethylcomethane is tetrakis[β(3,5-di-tert-butyl-4-hydroxyphenyl)propionyloxymethylcomethane.

フェノール系酸化防止剤の添加量は、通常ポリオレフィ
ン100重量部に対し通常0.01ないし0.2重量部
、好ましくは0.02ないし0.15重量部である。
The amount of the phenolic antioxidant added is usually 0.01 to 0.2 parts by weight, preferably 0.02 to 0.15 parts by weight, per 100 parts by weight of the polyolefin.

19 0.01重量部未満では得られた低分子ポリオレフィン
の色相が悪くなり、0.2重量部を越えると臭気が増大
する。
19 If it is less than 0.01 part by weight, the hue of the obtained low-molecular polyolefin will deteriorate, and if it exceeds 0.2 part by weight, the odor will increase.

フェノール系酸化防止剤の添加方法は特に限定されない
。例えば熱減成前に添加してもよく、また熱減成中に添
加してもよい。
The method of adding the phenolic antioxidant is not particularly limited. For example, it may be added before thermal degradation or during thermal degradation.

このようにして得られた低分子ポリオレフィンは通常、
極低分子量物を除去するための精製工程を経て粉末また
はペレットに成型される。精製および成型の方法は特に
限定されず通常の方法でよい。
The low molecular weight polyolefin obtained in this way is usually
It is formed into powder or pellets after a purification process to remove extremely low molecular weight substances. The purification and molding methods are not particularly limited and may be any conventional method.

本発明によって得られた低分子ポリオレフィンは通常5
00〜10,000の数平均分子量を有する。
The low molecular weight polyolefin obtained by the present invention usually has 5
It has a number average molecular weight of 00 to 10,000.

色相は通常ハーゼンで500以下、軟化点は90ないし
210℃、また溶融粘度は140℃または160℃で2
0ないし100,000cpsである。
The hue is usually less than 500 on the Hazen scale, the softening point is 90 to 210°C, and the melt viscosity is 2 at 140°C or 160°C.
0 to 100,000 cps.

[実施例] 以下、実施例により本発明をさらに説明するが、本発明
はこれに限定されるものではない。実施例中の部は重量
部である。
[Examples] The present invention will be further described below with reference to Examples, but the present invention is not limited thereto. Parts in the examples are parts by weight.

0 実施例1 23℃における密度が0.920でメルトフローレート
が2.0(g/ 10mIn)の高圧法ポリエチレンを
410±0゜1℃に温度制御されたソルトバス(亜硝酸
ナトリウム−硝酸カリウムの重量比で45: 55の混
合塩)に浸漬した内径が49.5mmで長さGOmの前
部管および内径が97.1mmで長さ50mの後部管か
らなる管状反応器に窒素を+51/min導入しながら
180kg/hrの流量で通し連続的に熱減成した。得
られた低分子ポリエチレンは数平均分子量2200、色
相(ハーゼン)60、軟化点+09℃および140℃に
おける溶融粘度350cpsの無色で臭気のほとんどな
いワックスであった。
0 Example 1 High-pressure polyethylene with a density of 0.920 at 23°C and a melt flow rate of 2.0 (g/10 mIn) was placed in a salt bath (sodium nitrite-potassium nitrate solution) whose temperature was controlled at 410±0°1°C. A tubular reactor consisting of a front tube with an internal diameter of 49.5 mm and a length of GOm and a rear tube with an internal diameter of 97.1 mm and a length of 50 m, immersed in a mixed salt (45:55 by weight), was supplied with nitrogen at +51/min. While being introduced, it was passed through at a flow rate of 180 kg/hr for continuous thermal degradation. The obtained low-molecular-weight polyethylene was a colorless wax having a number average molecular weight of 2200, a hue (Hazen) of 60, a softening point of +09°C, and a melt viscosity of 350 cps at 140°C.

実施例2 23℃における密度が0.957でメルトフローレート
が12.2(g/ lomin)の低圧法ポリエチレン
を用いる以外は実施例1と同様に行った。得られた低分
子ポリエチレンは数平均分子量4200.  色相(ハ
ーゼン)501  軟化点127℃および140℃にお
ける溶融粘度3300cpsの無色で臭気のほとんどな
いワックスであった0 実施例3 395±0.1℃に温度制御された実施例1と同様のソ
ルトバスに浸漬した内径が73.9mmで長さ100m
の管状反応器に窒素を101/川in導入しながら実施
例1で用いた高圧法ポリエチレンを50kg/cm3の
圧力下、45m/hrの線速度で2 ++:;問10分
通し連続的に熱減成した。得られた低分子ポリエチレン
は数平均分子量33001  色相(ハーゼン)30、
軟化点III℃および140℃における溶融粘度880
cpsの無色で臭気のほとんどないワックスであった。
Example 2 The same procedure as in Example 1 was carried out except that low-pressure polyethylene having a density at 23°C of 0.957 and a melt flow rate of 12.2 (g/lomin) was used. The obtained low molecular weight polyethylene had a number average molecular weight of 4200. Hue (Hazen) 501 It was a colorless wax with almost no odor and a melt viscosity of 3300 cps at softening points of 127°C and 140°C0 Example 3 Salt bath similar to Example 1 with temperature controlled at 395 ± 0.1°C The inner diameter is 73.9 mm and the length is 100 m.
The high-pressure polyethylene used in Example 1 was heated continuously for 10 minutes under a pressure of 50 kg/cm3 and at a linear velocity of 45 m/hr while nitrogen was introduced at a rate of 101/river into a tubular reactor. It has declined. The obtained low molecular weight polyethylene had a number average molecular weight of 33,001 and a hue (Hazen) of 30.
Softening point III °C and melt viscosity at 140 °C 880
It was a CPS colorless wax with almost no odor.

実施例4 実施例3で使用した高圧法ポリエチレンのかわりに23
℃における密度が0.900でメルトフローレートが8
.0(g/ 10mIn)のポリプロピレンを用いる以
外は実施例3と同様に行った。得られた低分子ポリエチ
レンは数平均分子量3000、色相(ハーゼン)100
、軟化点147℃およびI[iooCにおける溶融粘度
100cpsの微黄色で臭気のほとんどないワックスで
あった。
Example 4 23 instead of the high pressure polyethylene used in Example 3
Density at °C is 0.900 and melt flow rate is 8
.. The same procedure as in Example 3 was carried out except that 0 (g/10 mIn) polypropylene was used. The obtained low molecular weight polyethylene had a number average molecular weight of 3000 and a hue (Hazen) of 100.
It was a slightly yellow wax with almost no odor and a softening point of 147° C. and a melt viscosity of 100 cps at I[iooC.

実施例5 実施例1で使用した管状反応器の前部管を固定刃式のス
タティックミキサーとした以外は実施例1と同様に行っ
た。得られた低分子ポリエチレンは数平均分子ffl 
2400、色相(ハーゼン)501  軟化点109℃
および+40℃における溶融粘度390cpsの無色で
臭気の全くないワックスであった。
Example 5 The same procedure as in Example 1 was carried out except that the front tube of the tubular reactor used in Example 1 was replaced with a fixed-blade static mixer. The obtained low molecular weight polyethylene has a number average molecular ffl
2400, Hue (Hazen) 501 Softening point 109℃
It was a colorless, completely odorless wax with a melt viscosity of 390 cps at +40°C.

実施例6 実施例2で管状反応器を通す前に酸化防止剤として2−
tert−ブチル−4−メトキシフェノール0.05%
をポリエチレンに添加する以外は実施例2と同様に行っ
た。得られた低分子ポリエチレンは数平均分子量440
0、色相(ハーゼン)20、軟化点128℃および14
0℃における溶融粘度3400cpsの無色で臭気のほ
とんどないワックスであった。
Example 6 In Example 2, 2- was added as an antioxidant before passing through the tubular reactor.
tert-butyl-4-methoxyphenol 0.05%
The same procedure as in Example 2 was carried out except that the following was added to the polyethylene. The obtained low molecular weight polyethylene had a number average molecular weight of 440.
0, hue (Hazen) 20, softening point 128℃ and 14
It was a colorless wax with a melt viscosity of 3400 cps at 0°C and almost no odor.

[発明の効果] 本発明の製造法により色相をはしめとした種々の品質の
安定した低分子ポリオレフィンを工業的に製造すること
ができる。具体的には 1、色相の良好な低分子ポリオレフィンが得られる。
[Effects of the Invention] By the production method of the present invention, it is possible to industrially produce stable low-molecular polyolefins of various hues and of various qualities. Specifically, 1. A low-molecular polyolefin with good hue can be obtained.

3 2、臭気の少ない低分子ポリオレフィンが得られる。3 2. A low-molecular-weight polyolefin with little odor can be obtained.

3、熱安定性の良好な低分子ポリオレフィンが得られる
3. A low-molecular polyolefin with good thermal stability can be obtained.

4、熱減成による低分子ポリオレフィンの工業的規模の
生産が効率よくできる。
4. Industrial-scale production of low-molecular-weight polyolefins by thermal degradation can be efficiently performed.

上記効果を奏することから本発明で得られる低分子ポリ
オレフィンはプラスチックの顔料分散剤、プラスチック
の加工性向上剤、ゴム添加剤、インキ、塗料の配合剤お
よびトナーの離型剤などとして好適に使用できる。
Due to the above-mentioned effects, the low-molecular-weight polyolefin obtained by the present invention can be suitably used as a pigment dispersant for plastics, a processability improver for plastics, a rubber additive, a compounding agent for ink and paint, a release agent for toner, etc. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すフローチャートである。 1および2:管状反応器 6: ソルトバス 24 手 続 補 正 書 FIG. 1 is a flowchart showing an embodiment of the present invention. 1 and 2: tubular reactor 6: Salt bath 24 hand Continued Supplementary Positive book

Claims (1)

【特許請求の範囲】 1、管状反応器でポリオレフィンを不活性ガス中、熱減
成して数平均分子量500〜10,000の低分子ポリ
オレフィンを連続的に製造する方法において、熱減成を
300〜450℃で0.5ないし10時間および式0.
3≦(d・σ・D)/(T・L)×10^4≦100(
1)[式中、d:ポリオレフィンの23℃での密度(g
/cm^3)、σ:ポリオレフィンの単位時間当りの減
成量(kg/hr)、D:管状反応器の内径(m)、L
:管状反応器の長さ(m)、T:減成温度(℃)を示す
。 ]を満たす条件下で行うことを特徴とする低分子ポリオ
レフィンの製造法。 2、管状反応器でポリオレフィンを不活性ガス中、熱減
成して数平均分子量500〜10,000の低分子ポリ
オレフィンを連続的に製造する方法において、管状反応
器として内径の異なる管を2段以上直列に連結して30
0〜450℃で0.5ないし10時間熱減成を行うこと
を特徴とする低分子ポリオレフィンの製造法。 3、内径の異なる管が式(2)〜(5)を満たす一段目
の反応器(以下前部管という)および最終段の反応器(
以下最終管という)からなる請求項2記載の製造法。 0.2≦D1/De≦0.8(2) 150≦L1/D1≦1500(3) 200≦Le/De≦800(4) 0.3≦(L1×De)/(Le×D1)≦4.0(5
)[式中、D1:前部管内径、De:最終管内径、L1
:前部管の管長、Le:最終管の管長を示す。]4、管
状反応器でポリオレフィンを不活性ガス中、熱減成して
数平均分子量500〜10,000の低分子ポリオレフ
ィンを連続的に製造する方法において、管長5ないし2
00mの管状反応器を用い、0.2ないし200kg/
cm^3の圧力下、5ないし100m/hrの線速度で
該管状反応器にポリオレフィンを300〜450℃で0
.5ないし10時間通して熱減成を行うことを特徴とす
る低分子ポリオレフィンの製造法。 5、管状反応器でポリオレフィンを不活性ガス中、30
0〜450℃で0.5ないし10時間熱減成して数平均
分子量500〜10,000の低分子ポリオレフィンを
連続的に製造する方法において、管状反応器の一部また
は全部としてスタティックミキサーを用い、300〜4
50℃で0.5ないし10時間熱減成を行なうことを特
徴とする低分子ポリオレフィンの製造法。 6、熱減成を式 0.3≦(d・σ・D)/(T・L)×10^4≦50
0(1)′[式中、d:ポリオレフィンの23℃での密
度(g/cm^3)、σ:ポリオレフィンの単位時間当
りの減成量(kg/hr)、D:管状反応器の内径(m
)、L:管状反応器の長さ(m)、T:減成温度(℃)
を示す。 ]を満たす条件下で行なうことを特徴とする請求項5記
載の製造法。 7、管状反応器でポリオレフィンを不活性ガス中、熱減
成して数平均分子量500〜10,000の低分子ポリ
オレフィンを連続的に製造する方法において、管状反応
器を無機塩混合物からなる浴に浸漬して300〜450
℃で0.5ないし10時間熱減成を行うことを特徴とす
る低分子ポリオレフィンの製造法。 8、ポリオレフィンを不活性ガス中、熱減成して数平均
分子量500〜10,000の低分子ポリオレフィンを
連続的に製造する方法において、ポリオレフィン100
重量部に対しフェノール系酸化防止剤0.01ないし0
.2重量部の存在下300〜450℃で0.5ないし1
0時間熱減成を行うことを特徴とする低分子ポリオレフ
ィンの製造法。 9、請求項1〜8のいずれか記載の方法を2以上組み合
わせる低分子ポリオレフィンの製造法。
[Claims] 1. A method for continuously producing a low molecular weight polyolefin having a number average molecular weight of 500 to 10,000 by thermally degrading a polyolefin in an inert gas in a tubular reactor, wherein the thermal degradation is 300%. ~450°C for 0.5 to 10 hours and formula 0.
3≦(d・σ・D)/(T・L)×10^4≦100(
1) [where d: density of polyolefin at 23°C (g
/cm^3), σ: Degradation amount of polyolefin per unit time (kg/hr), D: Inner diameter of tubular reactor (m), L
: Length of tubular reactor (m), T: Degradation temperature (°C). A method for producing a low-molecular polyolefin, characterized in that it is carried out under conditions that satisfy the following. 2. In a method of continuously producing low-molecular polyolefin with a number average molecular weight of 500 to 10,000 by thermally degrading polyolefin in an inert gas in a tubular reactor, two stages of tubes with different inner diameters are used as the tubular reactor. 30 or more connected in series
A method for producing a low-molecular polyolefin, characterized by carrying out thermal degradation at 0 to 450°C for 0.5 to 10 hours. 3. A first-stage reactor (hereinafter referred to as front tube) and a final-stage reactor (hereinafter referred to as front tube) whose tubes have different inner diameters satisfy formulas (2) to (5).
3. The manufacturing method according to claim 2, comprising: a final tube). 0.2≦D1/De≦0.8 (2) 150≦L1/D1≦1500 (3) 200≦Le/De≦800 (4) 0.3≦(L1×De)/(Le×D1)≦ 4.0 (5
) [where, D1: front tube inner diameter, De: final tube inner diameter, L1
: indicates the length of the front tube, Le: indicates the length of the final tube. ] 4. A method for continuously producing a low molecular weight polyolefin having a number average molecular weight of 500 to 10,000 by thermally degrading polyolefin in an inert gas in a tubular reactor, the tube length being 5 to 2.
Using a 00m tubular reactor, 0.2 to 200kg/
The polyolefin was introduced into the tubular reactor at a temperature of 300-450°C under a pressure of cm^3 and a linear velocity of 5-100 m/hr.
.. A method for producing a low-molecular polyolefin, characterized by carrying out thermal degradation for 5 to 10 hours. 5. Polyolefin in a tubular reactor in an inert gas for 30
In a method of continuously producing a low molecular weight polyolefin having a number average molecular weight of 500 to 10,000 by thermal degradation at 0 to 450°C for 0.5 to 10 hours, a static mixer is used as part or all of the tubular reactor. , 300-4
A method for producing a low-molecular polyolefin, characterized by carrying out thermal degradation at 50° C. for 0.5 to 10 hours. 6. Thermal degradation is expressed by the formula 0.3≦(d・σ・D)/(T・L)×10^4≦50
0(1)' [where d: density of polyolefin at 23°C (g/cm^3), σ: amount of degradation of polyolefin per unit time (kg/hr), D: inner diameter of tubular reactor (m
), L: length of tubular reactor (m), T: degradation temperature (℃)
shows. 6. The manufacturing method according to claim 5, wherein the manufacturing method is carried out under conditions that satisfy the following conditions. 7. In a method for continuously producing a low molecular weight polyolefin with a number average molecular weight of 500 to 10,000 by thermally degrading a polyolefin in an inert gas in a tubular reactor, the tubular reactor is placed in a bath consisting of an inorganic salt mixture. Soak for 300-450 yen
A method for producing a low-molecular-weight polyolefin, characterized by carrying out thermal degradation at ℃ for 0.5 to 10 hours. 8. In a method for continuously producing a low molecular weight polyolefin having a number average molecular weight of 500 to 10,000 by thermally degrading a polyolefin in an inert gas, polyolefin 100
Phenolic antioxidant 0.01 to 0 per part by weight
.. 0.5 to 1 at 300 to 450°C in the presence of 2 parts by weight
A method for producing a low-molecular polyolefin, which comprises performing thermal degradation for 0 hours. 9. A method for producing a low-molecular polyolefin by combining two or more of the methods according to any one of claims 1 to 8.
JP1197874A 1989-07-28 1989-07-28 Method for producing low molecular weight polyolefin Expired - Fee Related JPH0670094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1197874A JPH0670094B2 (en) 1989-07-28 1989-07-28 Method for producing low molecular weight polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1197874A JPH0670094B2 (en) 1989-07-28 1989-07-28 Method for producing low molecular weight polyolefin

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9325431A Division JP3038547B2 (en) 1997-11-10 1997-11-10 Method for producing low molecular weight polyolefin

Publications (2)

Publication Number Publication Date
JPH0362804A true JPH0362804A (en) 1991-03-18
JPH0670094B2 JPH0670094B2 (en) 1994-09-07

Family

ID=16381759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1197874A Expired - Fee Related JPH0670094B2 (en) 1989-07-28 1989-07-28 Method for producing low molecular weight polyolefin

Country Status (1)

Country Link
JP (1) JPH0670094B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764760B2 (en) 2000-07-24 2004-07-20 Yupo Corporation Label for in-mold decorating and labeled resin molded article
JP2004204207A (en) * 2002-03-29 2004-07-22 Sanyo Chem Ind Ltd Dispersion of heat-crosslinkable resin
EP1533334A1 (en) 1999-02-10 2005-05-25 Sanyo Chemical Industries, Ltd. Block polymer and antistatic agent comprising the same
JP2006183000A (en) * 2004-12-28 2006-07-13 Sanyo Chem Ind Ltd Reactive hot-melt adhesive
WO2008012946A1 (en) 2006-07-27 2008-01-31 Techno Polymer Co., Ltd. Thermoplastic polymer composition and molded article
WO2008041356A1 (en) 2006-10-03 2008-04-10 Techno Polymer Co., Ltd. Thermoplastic resin composition and resin molded article
WO2010086574A2 (en) 2009-02-02 2010-08-05 Arkema France Method for synthesising a block copolymer alloy having improved antistatic properties
US8859647B2 (en) 2009-07-31 2014-10-14 Sanyo Chemical Industries, Ltd. Antistatic resin composition
JP2015108128A (en) * 2013-10-25 2015-06-11 三洋化成工業株式会社 Method for producing modified polyolefin
US9303197B2 (en) 2010-06-30 2016-04-05 Sanyo Chemical Industries, Ltd. Antistatic agent and antistatic resin composition
JP2016121342A (en) * 2014-12-25 2016-07-07 三洋化成工業株式会社 Compatibilizer for resin
WO2019097179A1 (en) 2017-11-17 2019-05-23 Arkema France Block copolymer exhibiting improved abrasion resistance and improved tear resistance
WO2019097178A1 (en) 2017-11-17 2019-05-23 Arkema France Block copolymer foam
WO2019097185A1 (en) 2017-11-17 2019-05-23 Arkema France Stretchable and anti-pilling, flexible textile material based on block copolymer
WO2019097184A1 (en) 2017-11-17 2019-05-23 Arkema France Block-copolymer-based stretchable, flexible, waterproof and breathable film
WO2019110946A1 (en) 2017-12-08 2019-06-13 Arkema France Offshore hose outer cladding comprising at least one block copolymer
WO2019110944A1 (en) 2017-12-08 2019-06-13 Arkema France Hydrolysis-resistant, co 2-permeable block copolymer
JP2020084112A (en) * 2018-11-29 2020-06-04 三洋化成工業株式会社 Inorganic fiber-containing polyolefin resin composition
WO2020240132A1 (en) 2019-05-29 2020-12-03 Arkema France Block copolymer with improved resistance to sebum
WO2022014431A1 (en) 2020-07-17 2022-01-20 三洋化成工業株式会社 Chargeability imparting agent, chargeable resin composition and charged nonwoven fabric
WO2022186149A1 (en) 2021-03-01 2022-09-09 株式会社アデランス Fiber for artificial hair, and wig
WO2023281771A1 (en) 2021-07-05 2023-01-12 三洋化成工業株式会社 Antistatic agent
WO2023085172A1 (en) 2021-11-09 2023-05-19 三洋化成工業株式会社 Shoe sole block polymer, shoe sole resin composition, and shoe sole
FR3144818A1 (en) 2023-01-11 2024-07-12 Arkema France COMPOSITION COMPRISING AT LEAST ONE RECYCLED POLYAMIDE ELASTOMER

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256339A (en) * 2010-06-11 2011-12-22 Sanyo Chem Ind Ltd Adhesive for metal laminates
KR102018417B1 (en) 2013-07-08 2019-09-04 산요가세이고교 가부시키가이샤 Dispersant for resin collectors, material for resin collectors, and resin collector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879851A (en) * 1972-01-28 1973-10-26
JPS51135996A (en) * 1975-05-20 1976-11-25 Toyobo Co Ltd Continuous process for pr oducing low molecular weight polypropylene
JPS6069105A (en) * 1983-09-27 1985-04-19 Mitsubishi Chem Ind Ltd Modification of crystalline polypropylene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879851A (en) * 1972-01-28 1973-10-26
JPS51135996A (en) * 1975-05-20 1976-11-25 Toyobo Co Ltd Continuous process for pr oducing low molecular weight polypropylene
JPS6069105A (en) * 1983-09-27 1985-04-19 Mitsubishi Chem Ind Ltd Modification of crystalline polypropylene

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1533334A1 (en) 1999-02-10 2005-05-25 Sanyo Chemical Industries, Ltd. Block polymer and antistatic agent comprising the same
US6764760B2 (en) 2000-07-24 2004-07-20 Yupo Corporation Label for in-mold decorating and labeled resin molded article
JP2004204207A (en) * 2002-03-29 2004-07-22 Sanyo Chem Ind Ltd Dispersion of heat-crosslinkable resin
JP2006183000A (en) * 2004-12-28 2006-07-13 Sanyo Chem Ind Ltd Reactive hot-melt adhesive
WO2008012946A1 (en) 2006-07-27 2008-01-31 Techno Polymer Co., Ltd. Thermoplastic polymer composition and molded article
WO2008041356A1 (en) 2006-10-03 2008-04-10 Techno Polymer Co., Ltd. Thermoplastic resin composition and resin molded article
WO2010086574A2 (en) 2009-02-02 2010-08-05 Arkema France Method for synthesising a block copolymer alloy having improved antistatic properties
EP2502950A1 (en) 2009-02-02 2012-09-26 Arkema France Method for synthesising a block copolymer alloy having improved antistatic properties
US8859647B2 (en) 2009-07-31 2014-10-14 Sanyo Chemical Industries, Ltd. Antistatic resin composition
US9303197B2 (en) 2010-06-30 2016-04-05 Sanyo Chemical Industries, Ltd. Antistatic agent and antistatic resin composition
JP2015108128A (en) * 2013-10-25 2015-06-11 三洋化成工業株式会社 Method for producing modified polyolefin
JP2016121342A (en) * 2014-12-25 2016-07-07 三洋化成工業株式会社 Compatibilizer for resin
WO2019097179A1 (en) 2017-11-17 2019-05-23 Arkema France Block copolymer exhibiting improved abrasion resistance and improved tear resistance
WO2019097178A1 (en) 2017-11-17 2019-05-23 Arkema France Block copolymer foam
WO2019097185A1 (en) 2017-11-17 2019-05-23 Arkema France Stretchable and anti-pilling, flexible textile material based on block copolymer
WO2019097184A1 (en) 2017-11-17 2019-05-23 Arkema France Block-copolymer-based stretchable, flexible, waterproof and breathable film
WO2019110946A1 (en) 2017-12-08 2019-06-13 Arkema France Offshore hose outer cladding comprising at least one block copolymer
WO2019110944A1 (en) 2017-12-08 2019-06-13 Arkema France Hydrolysis-resistant, co 2-permeable block copolymer
JP2020084112A (en) * 2018-11-29 2020-06-04 三洋化成工業株式会社 Inorganic fiber-containing polyolefin resin composition
WO2020240132A1 (en) 2019-05-29 2020-12-03 Arkema France Block copolymer with improved resistance to sebum
FR3096684A1 (en) 2019-05-29 2020-12-04 Arkema France Block copolymer with improved sebum resistance
WO2022014431A1 (en) 2020-07-17 2022-01-20 三洋化成工業株式会社 Chargeability imparting agent, chargeable resin composition and charged nonwoven fabric
WO2022186149A1 (en) 2021-03-01 2022-09-09 株式会社アデランス Fiber for artificial hair, and wig
WO2023281771A1 (en) 2021-07-05 2023-01-12 三洋化成工業株式会社 Antistatic agent
WO2023085172A1 (en) 2021-11-09 2023-05-19 三洋化成工業株式会社 Shoe sole block polymer, shoe sole resin composition, and shoe sole
FR3144818A1 (en) 2023-01-11 2024-07-12 Arkema France COMPOSITION COMPRISING AT LEAST ONE RECYCLED POLYAMIDE ELASTOMER
WO2024149961A1 (en) 2023-01-11 2024-07-18 Arkema France Composition comprising at least one recycled polyamide elastomer

Also Published As

Publication number Publication date
JPH0670094B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
JPH0362804A (en) Preparation of low molecular weight polyolefin
CA1043946A (en) Process for controlled degradation of propylene polymers
AU630539B2 (en) Mehtod of producing olefin polymer graft copolymers
JPS6058243B2 (en) Method for producing graft polymer material
US5486575A (en) High performance blow molding resins and process for their preparation
MXPA05001730A (en) Grafted propylene copolymers.
JP5074770B2 (en) Development of catalysts in bimodal olefin production
IE52360B1 (en) Polymers of ethylene
JPH05310846A (en) Preparation of interpolymer of ethylene and unsaturated carboxylic acid
JPS621737A (en) Blend of polyolefin and reactive additive-containing polymer
KR950014152A (en) Method for preparing methacrylate polymer
JPH0593010A (en) Maleic-anhydride-modified ethylene polymer substantially uncross-linked and its production
AU735625B2 (en) Using nitric oxide to reduce reactor fouling during polypropylene graft copolymerization
US5356950A (en) Grafted polymers of an isomonoolefin and an alkylstyrene
JPH0665445A (en) Soft polyolefin mixture crosslinked with maleic bisimide
US6334970B1 (en) Method for producing foamed resin article
JP2526132B2 (en) Resin additive and method for producing the same
US3702845A (en) Continuous production of ethylene homopolymers
US4760113A (en) Process for continuously producing a high-melt viscoelastic ethylene-propylene copolymer
JPS623167B2 (en)
WO2003042257A1 (en) Impact strength polypropylene
CA2255434C (en) Morphology control in polypropylene graft copolymers
US5476905A (en) Grafted, crosslinked and crosslinkable
AU779147B2 (en) Irradiation process for making olefin graft copolymers with low molecular weight side chains
JP3038547B2 (en) Method for producing low molecular weight polyolefin

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070907

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees