JPH0358769B2 - - Google Patents

Info

Publication number
JPH0358769B2
JPH0358769B2 JP62252565A JP25256587A JPH0358769B2 JP H0358769 B2 JPH0358769 B2 JP H0358769B2 JP 62252565 A JP62252565 A JP 62252565A JP 25256587 A JP25256587 A JP 25256587A JP H0358769 B2 JPH0358769 B2 JP H0358769B2
Authority
JP
Japan
Prior art keywords
electrodialysis
current
voltage
current density
desalination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62252565A
Other languages
Japanese (ja)
Other versions
JPH0199615A (en
Inventor
Takao Matsui
Tetsuo Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP25256587A priority Critical patent/JPH0199615A/en
Publication of JPH0199615A publication Critical patent/JPH0199615A/en
Publication of JPH0358769B2 publication Critical patent/JPH0358769B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気透析式脱塩装置に関し、特に脱
塩液中の塩分濃度が経時的に大きく変動する回分
式運転法に適した電気透析式脱塩装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrodialysis desalination device, and in particular an electrodialysis device suitable for a batch operation method in which the salt concentration in the desalination solution varies greatly over time. Related to type desalination equipment.

更には、実験室で簡便に使用できる小型の脱塩
装置として有用な電気透析装置に関する。
Furthermore, the present invention relates to an electrodialysis device useful as a small desalination device that can be easily used in a laboratory.

〔発明の背景及び従来技術〕[Background of the invention and prior art]

電気透析式脱塩装置は、電気透析槽の一端に設
けられた陽極と他端に設けられた陰極との間に陰
イオン交換膜と陽イオン交換膜とを交互に多数配
列した構成を有し、前記した両電極間に直流電圧
を印加することで溶液の脱塩又は脱塩と濃縮を行
うために用いられ、例えば、地下かん水、チー
ズ、ホエー、糖液、ワイン、アミノ酸、タンパク
室、等の脱塩等に広く用いられている。
An electrodialysis desalination device has a configuration in which a large number of anion exchange membranes and cation exchange membranes are alternately arranged between an anode provided at one end of an electrodialysis tank and a cathode provided at the other end. It is used for desalting or desalting and concentrating a solution by applying a DC voltage between the above-mentioned two electrodes, for example, underground brine, cheese, whey, sugar solution, wine, amino acids, protein chambers, etc. It is widely used for desalination, etc.

この種、電気透析装置は、通常回分式運転法で
使用されることが多く、特に塩濃度が高い溶液か
ら脱塩する場合は専らこの方法が用いられてい
る。
This type of electrodialysis apparatus is usually used in a batch operation method, and this method is used exclusively when desalting a solution with a particularly high salt concentration.

従来、回分式運転法での電気透析装置への通電
は、陽極両電極間に一定の電圧を印加して行われ
ているが、通電可能な電流密度には限界電流密度
と称される上限値があり、それ以上の電流密度で
運転した場合は透析液のPHが大巾に変動し、その
結果、スケールの発生、透析液中の有効成分の変
質、膜の劣化等の障害が発生し、安定した運転が
損なわれる。したがつて、通常は限界電流密度未
満の電流密度となるような一定電圧を印加して運
転されている。
Conventionally, electricity is applied to an electrodialysis machine using the batch operation method by applying a constant voltage between the anode and both electrodes, but there is an upper limit value called the critical current density for the current density that can be applied. If the dialysate is operated at a higher current density, the pH of the dialysate will fluctuate widely, resulting in problems such as scale formation, alteration of the active ingredients in the dialysate, and membrane deterioration. Stable driving is impaired. Therefore, the device is normally operated by applying a constant voltage such that the current density is less than the critical current density.

ところで、一般的に限界電流密度は膜塩室にお
ける塩濃度にほぼ比例することが知られている。
したがつて脱塩室の塩濃度が経時的に大きく変動
する回分式運転方法においては限界電流密度も当
然大きく変化することになる。しかしながら、電
気透析装置全体の電気抵抗は脱塩室の塩濃度以外
に、膜の抵抗、電極室での抵抗を始めとし、多く
の因子によつて成り立つているため、両電極に一
定の電圧を印加した場合、運転電流密度は脱塩室
の塩濃度のみに比例して変化するものとは考えら
れず、回分式運転の開始から終了まで常に限界電
流密度以下で運転するためには、通常は脱塩室の
濃度が最も小さいとき、すなわち、運転終了直前
での電流密度が限界電流密度の70〜95%になるよ
うな一定電圧を印加する方法がとられている。し
かし、この場合、脱塩室の濃度が高い領域での電
流密度は限界電流密度よりはるかに低く、条件に
よつては20%にも満たないこともあり、このため
に、一回の回分式運転の処理時間が長くなること
となる。
By the way, it is generally known that the limiting current density is approximately proportional to the salt concentration in the membrane salt chamber.
Therefore, in a batch operation method in which the salt concentration in the desalination chamber varies greatly over time, the critical current density naturally also varies greatly. However, the electrical resistance of the entire electrodialysis device is determined by many factors, including the membrane resistance and the resistance in the electrode chamber, in addition to the salt concentration in the demineralization chamber. When applied, the operating current density is not considered to change in proportion only to the salt concentration in the desalination chamber, and in order to operate at a constant current density below the limit current density from the start to the end of batch operation, it is usually necessary to A method is used in which a constant voltage is applied such that the current density is 70 to 95% of the critical current density when the concentration in the demineralization chamber is at its lowest, that is, just before the end of operation. However, in this case, the current density in the high concentration region of the desalination chamber is much lower than the critical current density, and may even be less than 20% depending on the conditions. The processing time for driving becomes longer.

従来は、上記のような問題点を解決するため
に、例えば脱塩室の塩濃度を電導度計で検知して
電流値を制御する方法や、特開昭59−130504号公
報に記載されているように、陽極、陰極の両電極
室のイオン交換膜近傍にそれぞれ電圧を検出する
一対の検出電極を設け、この検出電極間の電圧が
常に一定となるように電気透析装置の印加電圧を
制御するようにしたものである。
Conventionally, in order to solve the above-mentioned problems, for example, there was a method of detecting the salt concentration in the desalination chamber with a conductivity meter and controlling the current value, and a method described in Japanese Patent Application Laid-Open No. 130504/1983. As shown in the figure, a pair of detection electrodes are installed near the ion exchange membrane in both the anode and cathode electrode chambers to detect voltage, and the voltage applied to the electrodialysis machine is controlled so that the voltage between the detection electrodes is always constant. It was designed to do so.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述した回分式の脱塩をできるだけ短時間で終
了させるための従来技術は、何れも制御方法が複
雑で信頼性の点で問題を有し、例えば、脱塩対象
液の電導度を検出して電流値を制御する方法で
は、脱塩対象液に通常含まれる蛋白などの有機物
が電導度電極に付着し、測定値が変わるという問
題があり、同様なことは電極室に白金線などの電
圧検出用の電極を挿入して電圧を測定しつつ一定
電圧を印加する前記の特開昭59−130504号公報に
記載される発明でも起こり得るもので、この場
合、直流電流の一部を取り出して検出するため、
電極表面における酸化還元反応で徐々に検出電極
表面が劣化し、測定値が変動して印加電圧が不正
確になることがある。
The above-mentioned conventional techniques for completing batch desalination in as short a time as possible have complicated control methods and problems in terms of reliability. With the method of controlling the current value, there is a problem that organic substances such as proteins normally contained in the liquid to be desalted adhere to the conductivity electrode and change the measured value. This problem can also occur in the invention described in the above-mentioned Japanese Patent Application Laid-Open No. 130504/1983, in which a constant voltage is applied while measuring the voltage by inserting an electrode for the DC current. In order to
The detection electrode surface gradually deteriorates due to oxidation-reduction reactions on the electrode surface, which may cause measurement values to fluctuate and the applied voltage to become inaccurate.

特に通電面積200cm2程度までの大きさで、陰イ
オン交換膜と陽イオン交換膜とが枠体状ガスケツ
トを介して一体化されているような、電気透析式
脱塩装置においては、取扱いの簡便さが重要とな
るため、劣化しやすい白金線や電導度セルを使用
することは交換や洗浄など取り扱いが複雑となり
好ましくなく、また、部品点数も大巾に増加する
ので故障の生ずる確立も増加することとなる。更
に、白金線ではイオン交換膜の枚数が少ない場合
など、電圧の絶対値が小さいときは精度のよい測
定が困難であり、また、電導度セルでは測定に数
十cc程度の液量が必要であり、これより液量が少
ない場合は電動度を検出することが難しいという
問題点がある。
In particular, electrodialysis desalination equipment with a current-carrying area of up to 200 cm 2 and in which an anion exchange membrane and a cation exchange membrane are integrated via a frame-like gasket are easy to handle. Therefore, using platinum wire or conductivity cells that easily deteriorate is undesirable as handling such as replacement and cleaning becomes complicated, and the number of parts increases significantly, increasing the probability of failure. That will happen. Furthermore, with a platinum wire, it is difficult to measure accurately when the absolute value of the voltage is small, such as when the number of ion exchange membranes is small, and conductivity cells require a liquid volume of several tens of cc for measurement. There is a problem that it is difficult to detect the electric power when the liquid amount is smaller than this.

〔問題点を解決するための手段及び作用〕[Means and actions for solving problems]

本発明の電気透析装置は陽極と陰極との間に、
陰イオン交換膜と陽イオン交換膜とを交互に一対
以上配列された電気透析装置において、前記陽極
と陰極の両電極間に2以上の異なる値の一定電圧
を印加する手段と、前記両電極間に流れる電流値
を検出する手段を備え、前記両電極間に流れる電
流値が予め設定した1以上の電流値の一つに一致
したとき両電極間に印加する一定電圧の値を該電
流値に対応して予め設定した値に自動的に切替え
る手段を有することをその特徴とするものであ
る。
The electrodialysis device of the present invention has between the anode and the cathode,
In an electrodialysis apparatus in which one or more pairs of anion exchange membranes and cation exchange membranes are arranged alternately, means for applying constant voltages of two or more different values between the anode and cathode electrodes, and between the two electrodes. means for detecting the value of the current flowing between the two electrodes, and when the value of the current flowing between the two electrodes matches one of one or more preset current values, the value of a constant voltage applied between the two electrodes is set to the current value. It is characterized by having means for automatically switching to a corresponding preset value.

本発明に使用する陽極、陰極、陽イオン交換
膜、陰イオン交換膜、ガスケツト、電気透析槽の
フイルタープレス等は特に制限されるものでなく
通常のものが使用できるものである。
The anode, cathode, cation exchange membrane, anion exchange membrane, gasket, filter press of the electrodialysis tank, etc. used in the present invention are not particularly limited, and conventional ones can be used.

陽極と陰極の両電極間に2以上の異なる値の一
定電圧を印加する手段としては、予め設定した複
数の直流電圧の任意の一つが使用でき、定電圧条
件で通電できる回路であることが必要であり、予
め設定する直流電圧は2又は3種類多くとも5種
類もあれば充分であり、それ以上種類を増加せし
めると回路的に複雑となり好ましくない。
As a means of applying constant voltages of two or more different values between the anode and cathode electrodes, any one of multiple preset DC voltages can be used, and the circuit must be able to conduct electricity under constant voltage conditions. Therefore, it is sufficient to set the number of DC voltages in advance in two or three types, or at most five types; increasing the number of DC voltages more than that is not preferable because the circuit becomes complicated.

両電極間に流れる電流値を検知する手段として
は通常の電流計又はそれに相当する回路が使用で
きる。
An ordinary ammeter or an equivalent circuit can be used as a means for detecting the value of the current flowing between the two electrodes.

両電極間に流れる電流値が予め設定した1以上
の電流値の一つに一致したときに両電極間に印加
する一定電圧の値を該電流値に対応して予め設定
した値に自動的に切替える手段としては、電流制
御の各リレー、又はそれと同等なリレー回路が使
用できる。この場合、予め設定する電流値は上記
の予め設定する直流電圧より一種類少なくとも良
いが、脱塩の終了を検知するための電流設定値も
含ませて、設定直流電圧と同数の電流値を定めて
おくとよい。
When the current value flowing between both electrodes matches one of one or more preset current values, the value of the constant voltage applied between both electrodes is automatically set to a preset value corresponding to the current value. As the switching means, current control relays or equivalent relay circuits can be used. In this case, the preset current value should be at least one type from the above preset DC voltage, but the current value should be the same as the set DC voltage, including the current setting value for detecting the end of desalination. It's good to keep it.

切替える順序としては、脱塩初期には透析槽全
体に比較的均一に分布していた電圧が脱塩の進行
に伴つて脱塩室のみにかゝる方向に推移するの
で、前記の脱塩の進行に伴い直流電圧を下げる方
向に切替えることが必要である。そして、電圧を
下げるように切替えないと限界電流密度を越える
ことになりやすい。
The order of switching is that the voltage, which was relatively uniformly distributed throughout the dialysis tank at the initial stage of desalination, shifts to apply only to the desalination chamber as desalination progresses. It is necessary to switch to lower the DC voltage as it progresses. If the voltage is not switched to lower the voltage, the limiting current density is likely to be exceeded.

本発明は、大型の電気透析装置にも適用できる
が、特に通電面積200cm2程度以下の小型の電気透
析装置に適用することが好ましい。小型の電気透
析装置の場合脱塩室が少ないため、通電の進行と
ともに脱塩室にかかる電圧が相対的に大きくなり
やすいからである。
Although the present invention can be applied to large-sized electrodialysis devices, it is particularly preferable to apply it to small-sized electrodialysis devices with a current-carrying area of about 200 cm 2 or less. This is because, in the case of a small-sized electrodialysis apparatus, there are few demineralization chambers, so that the voltage applied to the demineralization chamber tends to become relatively large as the electricity supply progresses.

特に、取り扱い性を向上させるためのガスケツ
トを介して一体化したイオン交換膜を備えた電気
透析装置では、電圧測定用の端子や電導度セルを
用いないで通常の電気回路のみで通電条件が制御
できるため、脱塩対象液中の有機物による汚染に
起因する該動作が生ぜず、有機物による汚染の影
響はガスケツトを介して一体化したイオン交換膜
を一体として交換することにより簡単に切り換え
ることが可能である。また、必要な最少液量が電
導度セルの容量に制御をうけることもなく、脱塩
対象液が数c.c.と僅かであつても脱塩装置のデツド
ボリユームの範囲であれば、短い脱塩時間で脱塩
処置を行うことが可能である。
In particular, in electrodialysis equipment equipped with an ion exchange membrane integrated through a gasket to improve handling, energization conditions can be controlled using only a normal electric circuit without using voltage measurement terminals or conductivity cells. Therefore, the operation caused by contamination by organic matter in the liquid to be desalted does not occur, and the influence of contamination by organic matter can be easily changed by replacing the ion exchange membrane integrated through the gasket. It is. In addition, the minimum amount of liquid required is not controlled by the capacity of the conductivity cell, and even if the liquid to be desalted is as small as a few cc, as long as it is within the dead volume of the desalting equipment, desalination can be done in a short time. It is possible to carry out desalting procedures.

〔実施例〕〔Example〕

本発明の電気透析装置の実施例を図面に基づい
て詳細に説明する。
Embodiments of the electrodialysis apparatus of the present invention will be described in detail based on the drawings.

第1図は、本発明の電気透析装置の一実施例を
示す構成説明図で、図において、Aは電気透析槽
で該電気透析槽Aの一端に陽極1を他端には陰極
2を設け、前記陽極1と陰極2との間に陰イオン
交換膜3と陽イオン交換膜4が交互に多数配列さ
れている。前記陰イオン交換膜3と陽イオン交換
膜4との間には通常の如く枠体状のガスケツト
(図示しない)を介在せしめて膜間のスペーサと
電気透析槽Aの内周壁を密封するのに役立つよう
にされている。
FIG. 1 is a configuration explanatory diagram showing an embodiment of the electrodialysis apparatus of the present invention. In the figure, A is an electrodialysis tank, and an anode 1 is provided at one end of the electrodialysis tank A and a cathode 2 is provided at the other end. A large number of anion exchange membranes 3 and cation exchange membranes 4 are alternately arranged between the anode 1 and the cathode 2. A frame-shaped gasket (not shown) is interposed between the anion exchange membrane 3 and the cation exchange membrane 4 as usual to seal the spacer between the membranes and the inner peripheral wall of the electrodialysis cell A. It is meant to be helpful.

前記した陽極1と陰極2間に直流電圧を印加す
ることで塩分が除去される脱塩室5と塩分が濃縮
される濃縮室6が前記の陰イオン交換膜3と陽イ
オン交換膜4との間に交互に形成されている。
The desalting chamber 5 where salt is removed by applying a DC voltage between the anode 1 and the cathode 2 described above and the concentration chamber 6 where salt is concentrated are connected to the anion exchange membrane 3 and the cation exchange membrane 4. are formed alternately in between.

7は脱塩液流路、8は濃縮液流路であり、前記
脱塩液流路7及び濃縮液流路8により脱塩室5及
び濃縮室6にそれぞれの液を運転中に循環させる
ようにし、また、陽極1と該陽極1に併設されて
いるイオン交換膜3及び陰極2に併設されている
陽イオン交換膜4との間には電極電解液9,9が
循環される。また、両電極1及び2に直流電流を
通電するための電流供給源として整流器10が設
けられる。
Reference numeral 7 denotes a desalination liquid flow path, and numeral 8 represents a concentrate flow path, and the desalination liquid flow path 7 and concentrate flow path 8 circulate the respective liquids to the desalination chamber 5 and the concentration chamber 6 during operation. Moreover, electrode electrolytes 9, 9 are circulated between the anode 1 and the ion exchange membrane 3 attached to the anode 1 and the cation exchange membrane 4 attached to the cathode 2. Further, a rectifier 10 is provided as a current supply source for supplying direct current to both electrodes 1 and 2.

ところで、本実施例においては、前記した整流
器10は異なる値の2以上の一定電圧が得られる
ようにしてある。第1図に示す整流器10にはマ
イナス側出力端13と三つのプラス側出力端14
a,14b、及び14cが設けられ、前記のマイ
ナス側出力端13とプラス側の出力14a間の電
圧はV1、マイナス側出力端13とプラス側の出
力端14b間の電圧はV2は、マイナス側出力端
13とプラス側の出力端14c間の電圧はV3の
ように三つの異なる一定電圧が得られるように構
成されている。11は前記の三つの異なる一定電
圧を切換える出力切換装置であつて、該出力切換
装置11によつて通電時に前記の三つの異なる一
定電圧のうちのいずれか一つの一定電圧を電気透
析槽Aに印加するようにし、そして、前記の出力
切換装置11は電流検知器12にて電気透析槽A
に流れる電流値を検知し、該検知された電流値に
よつて自動的に作動される。
Incidentally, in this embodiment, the rectifier 10 described above is configured to obtain two or more constant voltages of different values. The rectifier 10 shown in FIG. 1 has a negative output terminal 13 and three positive output terminals 14.
a, 14b, and 14c are provided, the voltage between the negative side output terminal 13 and the positive side output 14a is V1, and the voltage between the negative side output terminal 13 and the positive side output terminal 14b is V2, the negative side The voltage between the output terminal 13 and the positive output terminal 14c is configured so that three different constant voltages such as V3 can be obtained. Reference numeral 11 denotes an output switching device for switching between the three different constant voltages, and the output switching device 11 applies any one of the three different constant voltages to the electrodialysis tank A when electricity is applied. Then, the output switching device 11 uses the current detector 12 to select the electrodialysis tank A.
detects the current value flowing through the sensor, and is automatically activated based on the detected current value.

次に、回分運転方法における運転の開始から終
了までの本実施例における電気透析装置の作動に
ついて述べるが、図に示すように例えば前記した
ように三つの異なる一定電圧としてV1、V2及び
V3と、それぞれの終了電流値I1、I2、I3を予じめ
定めておくが、その各々の値はV1>V2>V3、I1
>I2>I3の関係となし、その設定について述べる
と、本発明の特徴とするところは、脱塩室の濃度
が経時的に大きく低下する回分式運転法を行う電
気透析装置において、脱塩室濃度域は経時的に複
数に分け、それぞれの濃度域において所要の一定
電圧を陽・陰電極に印加して運転するものであ
る。
Next, the operation of the electrodialysis apparatus in this embodiment from the start to the end of operation in the batch operation method will be described.
V3 and the respective end current values I1, I2, I3 are determined in advance, but each value is V1>V2>V3, I1
>I2>I3 and its settings.The feature of the present invention is that in an electrodialysis machine that performs a batch operation method in which the concentration in the demineralization chamber decreases significantly over time, the concentration in the demineralization chamber The concentration range is divided into multiple regions over time, and operation is performed by applying a required constant voltage to the positive and negative electrodes in each concentration range.

例えば、脱塩室濃度を経時的に第1に高濃度
域、第2の中濃度域、第3の低濃度域の三つに分
けた場合、それぞれの濃度域において限界電流密
度未満で、かつ、でき得る限り高い電流密度が得
られる一定電圧を電気透析槽Aに印加することに
より短時間で回分式運転が完結することができる
ものであるので、前記した各濃度域の一定電圧
VI、V2、V3及び終了電流値I1、I2、I3の設定は
次のように行うのが好ましい。
For example, if the concentration in the desalination chamber is divided over time into three areas: the first high concentration area, the second medium concentration area, and the third low concentration area, the current density is below the critical current density in each concentration area, and By applying a constant voltage to the electrodialysis tank A that provides the highest possible current density, batch operation can be completed in a short time.
It is preferable to set VI, V2, V3 and end current values I1, I2, and I3 as follows.

先ず、前述の各濃度域の終了時すなわち、下限
濃度における限界電流密度の70〜95%の値をそれ
ぞれI1、I2、I3と設定し、上記各濃度域の終了時
に前記の電流値が得られる電気透析槽への印加電
圧をそれぞれVI、V2、V3と設定する。
First, the values of 70 to 95% of the critical current density at the lower limit concentration are set as I1, I2, and I3 at the end of each of the above concentration ranges, and the above current values are obtained at the end of each of the above concentration ranges. The voltages applied to the electrodialyzer are set as VI, V2, and V3, respectively.

前記のようにそれぞれVI、V2、V3及びI1、
I2、I3を設定し、運転を開始すると、先ず、運転
開始時には出力切換装置11は整流器10のプラ
ス側出力端14aの出力電圧V1を継電し、電気
透析槽Aに一定電圧V1が印加され、前記第1の
高濃度域において脱塩が進むに従い電気透析槽A
に流れる電流値V1での終了電流値I1まで低下し、
前記の第2の中濃度域になると出力切換装置11
が作動し、整流器10プラス側出力端14bの出
力電圧V2に切り換わる。更に、中濃度域におい
て脱塩が進み電流値がV2での終了電流値I2まで
低下し、前記の第3の低濃度域となると出力切換
え装置11が作動して整流器10のプラス側出力
端14cの出力電圧V3に切り換わり、最後に電
流がV3での終了電流値I3で低下すると出力切
換装置11は整流器のいずれの出力も継電せず、
この時点で回分運転が終了する。この時、例えば
循環ポンプを停止するなど、前記の回分運転終了
と同時に工程の終了を行うようにすることが可能
である。
VI, V2, V3 and I1, respectively, as above
When I2 and I3 are set and operation is started, first, at the start of operation, the output switching device 11 relays the output voltage V1 of the positive side output terminal 14a of the rectifier 10, and a constant voltage V1 is applied to the electrodialysis tank A. , as the desalination progresses in the first high concentration region, the electrodialysis tank A
The current flowing through the current value V1 decreases to the end current value I1,
When the second medium density region is reached, the output switching device 11
is activated, and the output voltage of the positive side output terminal 14b of the rectifier 10 is switched to V2. Furthermore, desalination progresses in the medium concentration region and the current value decreases to the end current value I2 at V2, and when the third low concentration region is reached, the output switching device 11 is activated and the positive side output terminal 14c of the rectifier 10 is switched on. When the output voltage V3 is switched to V3, and finally the current decreases to the end current value I3 at V3, the output switching device 11 does not relay any output of the rectifier,
At this point, the batch operation ends. At this time, it is possible to terminate the process at the same time as the batch operation ends, for example by stopping the circulation pump.

前記したように、I1、I2、I3、V1、V2を設定
することにより上記した回分運転の開始から終了
まで安定した運転が可能であり、しかも、短時間
に処理できるという効果が得られた。
As described above, by setting I1, I2, I3, V1, and V2, stable operation was possible from the start to the end of the batch operation described above, and the effect of processing in a short time was obtained.

本発明の具体例及び比較例を第2図、第3図に
より説明する。
Specific examples and comparative examples of the present invention will be explained with reference to FIGS. 2 and 3.

具体例 第1図に示した電気透析装置の構成説明図にお
ける陰イオン交換膜3として旭化成工業(株)製アシ
プレツクスA−201膜を20枚、陽イオン交換膜4
として旭化成工業(株)製アシプレツクスK−101膜
を20枚用いて膜間隔が0.5mm、脱塩室5の数が20
室、濃縮室6の数が19室、通電面積が0.4dm3のフ
イルタープレス型電気透析槽を作成した。この装
置を用いて脱塩液として0.5M−NaCl水溶液1
を約0.002Mまで脱塩としたきの結果について説
明する。ただし、濃縮室循環液として0.1M−
NaCl水溶液1を、電極電解液として50g/
−Na2SO4水溶液0.5を用いてそれぞれポンプ電
気透析槽に循環した。また脱塩液は脱塩室5内で
の流速が5cm/sec2となるようにポンプで循環
し、温度は25±1℃に調整した。
Specific example: In the explanatory diagram of the configuration of the electrodialysis apparatus shown in FIG. 1, 20 Aciplex A-201 membranes manufactured by Asahi Kasei Industries, Ltd. are used as the anion exchange membrane 3, and the cation exchange membrane 4 is used as the anion exchange membrane 3.
20 Asiplex K-101 membranes manufactured by Asahi Kasei Industries, Ltd. were used, the membrane spacing was 0.5 mm, and the number of demineralization chambers 5 was 20.
A filter press type electrodialysis tank with 19 chambers and concentration chambers 6 and an energized area of 0.4 dm 3 was prepared. Using this device, 0.5M-NaCl aqueous solution 1 is used as a desalting solution.
We will explain the results when desalting to about 0.002M. However, as the concentration chamber circulating fluid, 0.1M−
50g/NaCl aqueous solution 1 as electrode electrolyte
- Na 2 SO 4 aqueous solution 0.5 was used to circulate each pump electrodialyzer. Further, the desalting solution was circulated by a pump at a flow rate of 5 cm/sec 2 in the desalting chamber 5, and the temperature was adjusted to 25±1°C.

第2図は、本発明の電気透析装置を用い、運転
開始時の印加電圧V1を14V、V1での終了電流密
度I1を2.5A/dm2に、第2段目の印加電圧V2を
11V、V2での終了電流密度をI2を0.25A/dm2
に、第3段目の印加電圧V3を9V、V3での終了電
流密度すなわち脱塩運転終了電流密度I3を
0.08A/dm2に設定した場合の線図を示すもので
あり、第2図においては、運転開始から終了まで
の間の運転電流密度は常に限界電流密度の50%〜
80%の間にあつた。その結果、脱塩液濃度を
0.5Mから0.002Mまで脱塩するのに要する時間は
50分と短く良好な結果であつた。
Figure 2 shows that the electrodialysis apparatus of the present invention is used, the applied voltage V1 at the start of operation is 14 V, the final current density I1 at V1 is 2.5 A/dm 2 , and the applied voltage V2 in the second stage is
11V, ending current density at V2 I2 0.25A/dm 2
Then, the applied voltage V3 in the third stage is 9V, and the end current density at V3, that is, the end current density I3 of the desalination operation, is
This diagram shows a diagram when the setting is 0.08A/ dm2 . In Figure 2, the operating current density from the start of operation to the end of operation is always 50% to 50% of the limit current density.
It was between 80%. As a result, the desalination solution concentration
The time required to desalinate from 0.5M to 0.002M is
It took only 50 minutes and the results were good.

第3図は、具体例1の装置で、印加電圧を、運
転開始から終了まで9Vの一定電圧としたときの
脱塩室濃度及び運転電流密度の時間的変化を示し
たものである。第3図において、Aは脱塩液濃
度、Bは電流密度、破線Cは限界電流密度の約80
%である。この場合、運転開始直後での電流密度
は限界電流密度の約20%であつた。そして、脱塩
液濃度を0.5Mから0.002Mまで脱塩するのに87分
とかなりの時間を必要とした。
FIG. 3 shows temporal changes in the concentration in the demineralization chamber and the operating current density when the applied voltage was a constant voltage of 9 V from the start of operation to the end of operation in the apparatus of Example 1. In Figure 3, A is the desalination solution concentration, B is the current density, and dashed line C is the critical current density of approximately 80
%. In this case, the current density immediately after the start of operation was about 20% of the critical current density. It took a considerable amount of time, 87 minutes, to desalinate the desalination solution concentration from 0.5M to 0.002M.

〔発明の効果〕〔Effect of the invention〕

本発明に係る電気透析装置は、脱塩室の塩濃度
が大きく変化しても常に限界電流密度に比較的近
い電流密度で運転できるため、回分式運転の運転
時間を大巾に短縮できるという効果がある。
The electrodialysis apparatus according to the present invention can be operated at a current density that is relatively close to the critical current density even if the salt concentration in the desalination chamber changes greatly, and therefore has the advantage that the operating time of batch-type operation can be significantly shortened. There is.

更に、両電極間に印加する一定電圧を予め定め
た電流値によつて切換えるための制御方式につい
ても、特殊なセンサ等を必要せず、電圧値と電流
値のみで行うことができるので、極めて簡単に構
成できるために誤動作やトラブルが起る恐れがな
いという格別の効果を有するものである。
Furthermore, the control method for switching the constant voltage applied between both electrodes using a predetermined current value does not require any special sensors, and can be done using only voltage and current values, making it extremely simple. It has a special effect in that it can be easily configured and there is no risk of malfunction or trouble occurring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の電気透析装置の一実施例を
示す構成説明図、第2図、第3図は脱塩液濃度及
び電流密度の時間的変化を示す線図であり、第2
図は本発明の電気透析装置を用いて、印加電圧及
び終了電流密度を3段階に設定した場合、第3図
は具体例1の電気透析装置を用い印加電圧を一定
とした場合の結果を示す線図である。 1:陽極、2:陰極、3:陰イオン交換膜、
4:陽イオン交換膜、5:脱塩室、6:濃縮室、
7:脱塩液、8:濃縮液、10:整流器、11:
出力切換装置、12:電流計。
FIG. 1 is a configuration explanatory diagram showing one embodiment of the electrodialysis apparatus of the present invention, FIGS. 2 and 3 are diagrams showing temporal changes in desalination solution concentration and current density, and FIG.
The figure shows the results when the electrodialysis device of the present invention is used and the applied voltage and final current density are set in three stages. Figure 3 shows the results when the electrodialysis device of Example 1 is used and the applied voltage is kept constant. It is a line diagram. 1: anode, 2: cathode, 3: anion exchange membrane,
4: Cation exchange membrane, 5: Demineralization chamber, 6: Concentration chamber,
7: Desalinated liquid, 8: Concentrated liquid, 10: Rectifier, 11:
Output switching device, 12: Ammeter.

Claims (1)

【特許請求の範囲】 1 陽極と陰極との間に、陰イオン交換膜と陽イ
オン交換膜とを交互に一対以上配列された電気透
析装置において、前記陽極と陰極の両電極間に2
以上の異なる値の一定電圧を印加する手段と、前
記両電極間に流れる電流値を検知する手段を備
え、前記両電極間に流れる電流値が予め設定した
1以上の電流値の一つに一致したとき両電極間に
印加する一定電圧の値を該電流値に対応して予め
設定した値に自動的に切替える手段を有すること
を特徴とする電気透析装置。 2 通電面積が200cm2程度以下の大きさであつて、
陰イオン交換膜と陽イオン交換膜とが枠体状ガス
ケツトを介して一体とされていることを特徴とす
る特許請求の範囲第1項記載の電気透析装置。
[Scope of Claims] 1. In an electrodialysis device in which one or more pairs of anion exchange membranes and cation exchange membranes are alternately arranged between an anode and a cathode, two
The device includes means for applying constant voltages of different values as described above and means for detecting a current value flowing between the two electrodes, and the current value flowing between the two electrodes matches one of one or more preset current values. An electrodialysis apparatus comprising means for automatically switching the value of a constant voltage applied between both electrodes to a preset value corresponding to the current value when the current value is applied. 2 The current-carrying area is approximately 200cm2 or less,
2. The electrodialysis apparatus according to claim 1, wherein the anion exchange membrane and the cation exchange membrane are integrated through a frame-shaped gasket.
JP25256587A 1987-10-08 1987-10-08 Electric dialysis device Granted JPH0199615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25256587A JPH0199615A (en) 1987-10-08 1987-10-08 Electric dialysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25256587A JPH0199615A (en) 1987-10-08 1987-10-08 Electric dialysis device

Publications (2)

Publication Number Publication Date
JPH0199615A JPH0199615A (en) 1989-04-18
JPH0358769B2 true JPH0358769B2 (en) 1991-09-06

Family

ID=17239144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25256587A Granted JPH0199615A (en) 1987-10-08 1987-10-08 Electric dialysis device

Country Status (1)

Country Link
JP (1) JPH0199615A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4954926B2 (en) * 2008-03-18 2012-06-20 富士電機株式会社 Water treatment device and fuel cell power generation device
JP4978591B2 (en) * 2008-09-01 2012-07-18 三浦工業株式会社 Pure water production equipment
CN113493263A (en) * 2020-04-01 2021-10-12 佛山市云米电器科技有限公司 Household water purifying device and control method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634142A (en) * 1979-08-25 1981-04-06 Hitachi Maxell Ltd Magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634142A (en) * 1979-08-25 1981-04-06 Hitachi Maxell Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPH0199615A (en) 1989-04-18

Similar Documents

Publication Publication Date Title
US5762774A (en) Apparatus for the purification of liquids and a method of manufacturing and of operating same
Lee et al. Designing of an electrodialysis desalination plant
CA2506095C (en) Apparatus and method for preparative electrophoresis
Enevoldsen et al. Electro-ultrafiltration of industrial enzyme solutions
KR20060126607A (en) Electromembrane process and apparatus
CA2037988A1 (en) Continuous flow method and apparatus for separating substances in solution
US8496797B2 (en) Electrical deionization apparatus
KR102351744B1 (en) Electrochemical System Using Concentrate Recirculation in Periodic Batch Mode
JPH0358769B2 (en)
CN217431407U (en) Electrodialysis membrane stack electrode detection device and water purification equipment
US3240692A (en) Electrophoretic fractionation of ampholytes
JPH01107809A (en) Electrodialysis device and its operation
CN216093094U (en) Electrodialysis membrane stack electrode detection device and water purification unit
JPH0824587A (en) Electrodialysis
Wilhelm et al. Current–voltage behaviour of bipolar membranes in concentrated salt solutions investigated with chronopotentiometry
US3269933A (en) Electrodialysis apparatus for desalinization of fluids having automatic current control means
JP4016663B2 (en) Operation method of electrodeionization equipment
JPS5936506A (en) Method for controlling operation of electrodialysis type water producing equipment
JPH0341784Y2 (en)
JPS5923842B2 (en) electrodialysis machine
JPH01107810A (en) Operation of electrodialysis device
Shaposhnik et al. Assisted electromigration of bipolar ions through ion-selective membranes in glycine solutions
Venugopal et al. Evaluation of the efficiency of brackish desalination ion exchange membranes using electrodialysis process
JP2849881B2 (en) Surface treatment method for aluminum plate for printing plate
KR200155676Y1 (en) Performance testing apparatus of separation barrier

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees