JPH0357220A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPH0357220A
JPH0357220A JP19353989A JP19353989A JPH0357220A JP H0357220 A JPH0357220 A JP H0357220A JP 19353989 A JP19353989 A JP 19353989A JP 19353989 A JP19353989 A JP 19353989A JP H0357220 A JPH0357220 A JP H0357220A
Authority
JP
Japan
Prior art keywords
resist
oxide film
polysilicon
layer
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19353989A
Other languages
Japanese (ja)
Inventor
Koji Eguchi
江口 剛治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19353989A priority Critical patent/JPH0357220A/en
Publication of JPH0357220A publication Critical patent/JPH0357220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To remove a difference in level between a protruding part of a substratum layer and the surface of a flattening layer by a method wherein a resist is formed on the flattening layer inside a recessed region at a difference in level of the substratum layer and the flattening layer is etched isotropically by making use of the resist as a mask. CONSTITUTION:After a field oxide film 20 has been formed on a substrate 1, polysilicon 3 is formed on the whole surface of the film 20 by a CVD method. Then, a resist 5 is formed by a spin coating operation; the resist 5 is left only at the inside of a slightly recessed region from a peak part of the film 20 by a photolithographic operation. Then, when the polysilicon 3 is etched isotropically by making use of the resist 5 as a mask, a difference in level between the polysilicon 3 and the film 20 is reduced. After that, the resist 5 is removed; an oxide film 4 is formed. Thereby, an angular edge of the polysilicon 3 is rounded; a difference in level on the surface is almost removed; it is possible to prevent a disconnection of an Al interconnection.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体集積回路装置の製造方法に関し、特
に表面段差を有する下地層を平坦化するための半導体集
積回路装置の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor integrated circuit device, and more particularly to a method for manufacturing a semiconductor integrated circuit device for planarizing a base layer having a surface step. be.

〔従来の技術〕[Conventional technology]

バイボーラLSIの製造工程において基!Iill上に
フィールド酸化膜20を形威した後は、第4図に示すよ
うに表面に段差が生していた。
Basic in the manufacturing process of bibolar LSI! After forming the field oxide film 20 on the Ill, a step was formed on the surface as shown in FIG.

フィールド酸化膜20上にAI配線を形成した場合、こ
の表面段差の勾配が急峻であると、A{配線が断線する
場合がある。また、フィールド酸化膜20上においてA
2層上にレジストを設け写真製版によりAN配線のパタ
ーニングを行う際、段差部での光の反射によりパターン
寸法が変化したり、段差の深い箇所と浅い箇所とで焦点
深度が相違し、パターン寸法がばらつくという欠点があ
る。この欠点をなくすため、SOG(M体状ガラス)を
フィールド酸化膜20の表面に塗布することや、あるい
はPSG (リン入りS 1 0 2 )またはBPS
G (リン及びボロン入りS i0 2 )を表面に塗
布することが従来より行われている。
When an AI wiring is formed on the field oxide film 20, if the slope of the surface step is steep, the wiring may be disconnected. Further, on the field oxide film 20, A
When patterning AN wiring by placing a resist on two layers and using photolithography, the pattern dimensions may change due to reflection of light at the step, or the depth of focus may differ between deep and shallow steps, resulting in pattern dimensions. The disadvantage is that it varies. In order to eliminate this drawback, it is possible to apply SOG (M-shaped glass) to the surface of the field oxide film 20, or to apply PSG (S102 containing phosphorus) or BPS.
Conventionally, G (S i0 2 containing phosphorus and boron) is applied to the surface.

第5図は、SOG30を表面に塗布した場合の断面図で
ある。SOG30をフィールド酸化膜20の表面の一部
に塗布し、表面段差の勾配をなだらかにしている。この
ようにすると、フィールド酸化膜20上に設けられるA
I配線の断線は減少するが、段差量L1はほとんど改善
されない。
FIG. 5 is a cross-sectional view when SOG 30 is applied to the surface. SOG 30 is applied to a part of the surface of the field oxide film 20 to make the slope of the surface step gentle. In this way, A provided on the field oxide film 20
Although the number of disconnections in the I wiring is reduced, the step amount L1 is hardly improved.

第6図は熱処理によりPSG40をフィールド酸化膜2
0の表面全体に塗布した場合の断面図である。PSG4
0を表面全体に塗布し、表面段差の勾配をなだらかにす
るとともに段差量を減少さ,せるようにしている。しか
し、高温・長時間の熱処理を行わなければならないので
、デノくイスに影響を及ほす。また、段差量L2はSO
G30を塗布した場合よりも改善されるが、完全には改
善されない。
Figure 6 shows that PSG40 is formed into field oxide film 2 by heat treatment.
0 is a cross-sectional view when the entire surface of 0 is coated. PSG4
0 is applied to the entire surface to make the slope of the surface level difference gentle and to reduce the amount of the level difference. However, since it requires heat treatment at high temperatures and for a long time, it has an impact on the denocent chair. In addition, the step amount L2 is SO
Although it is improved compared to when G30 is applied, it is not completely improved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体集積回路装置は以上のように構成されてお
り、段差の勾配はなだらかになったが、段差量はあまり
改善されていない。そのため写真製版によりA2配線の
パターニングを行う際前述のようにパターン寸法が変わ
ったり、パターン寸法にばらつきが生じるという問題点
があった。
The conventional semiconductor integrated circuit device is configured as described above, and although the slope of the step has become gentle, the amount of the step has not been improved much. Therefore, when patterning the A2 wiring by photolithography, there is a problem that the pattern dimensions change or vary as described above.

この発明は上記のような問題点を解消するためになされ
たもので、表面段差のない半導体集積回路装置を得るこ
とを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain a semiconductor integrated circuit device having no surface steps.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体集積回路装置の製造方法は、表面
に段差を有する下地層を平坦化するための半導体集積回
路装置の製造方法であって、表面に段差を有する下地層
の全面に表面平坦化のための平坦化層を形成する工程と
、下地層の段差の凹語域よりも若干狭い領域に対応した
平坦化層上にレジストを形成する工程と、レジストをマ
スクとして平坦化層に等方エッチングを施す工程と、レ
ジストを除去する工程とを備えている。
A method for manufacturing a semiconductor integrated circuit device according to the present invention is a method for manufacturing a semiconductor integrated circuit device for planarizing a base layer having a step on the surface, the method comprising flattening the entire surface of the base layer having a step on the surface. , a step of forming a resist on the planarization layer corresponding to a region slightly narrower than the concave area of the step of the base layer, and a step of forming an isotropic layer on the planarization layer using the resist as a mask. The process includes an etching process and a resist removal process.

〔作用〕[Effect]

この発明においては、下地層の段差の凹領域よりも若干
狭い領域に対応した平坦化層上にレジストを形威し、こ
のレジストをマスクとして平坦化層に等方エッチングを
施すので、下地層の凸部と等方エッチングの施された平
坦化層の表面とに段差はなくなる。
In this invention, a resist is formed on the flattening layer corresponding to an area slightly narrower than the concave area of the step of the base layer, and the flattening layer is isotropically etched using this resist as a mask. There is no difference in level between the convex portion and the surface of the flattened layer subjected to isotropic etching.

〔実施例〕〔Example〕

第1図はこの発明に係る半導体集積回路装置の一実施例
を示す断面図であり、バイボーラLSIの分離領域周辺
の断面図を示す。素子形成領域2をGする基板1の表面
を覆うようにS t 0 2より或るフィールド酸化膜
20が形或される。フィールド酸化II!20は段差を
有する。フィールド酸化膜20の凹領域Aには段差をな
くすための平坦化層の役割をするポリシリコン3が形成
される。ポリシリコン3およびフィールド酸化膜20上
には{V坦化された酸化膜4が形威される。
FIG. 1 is a cross-sectional view showing one embodiment of a semiconductor integrated circuit device according to the present invention, and shows a cross-sectional view around an isolation region of a bibolar LSI. A field oxide film 20 is formed from S t 0 2 so as to cover the surface of the substrate 1 that covers the element formation region 2 . Field oxidation II! 20 has a step. In the recessed region A of the field oxide film 20, polysilicon 3 is formed which serves as a flattening layer to eliminate steps. A {V planarized oxide film 4 is formed on the polysilicon 3 and the field oxide film 20.

第2八図ないし第2E図を用いて第1図に示した圭導体
集積回路装置の製造方法について説明する。基板1上の
所定領域を選択的に酸化しフィールド酸化膜20を形成
する。このとき、フィールド酸化膜20は段差を有する
形状となる(第2A図)。次に、CVD法によりフィー
ルド酸化膜20上全面にポリシリコン3を形或する(第
2B図)。次に、スピンコートによりポリシリコン3上
にレジスト5を形威し、その後写真製版によりレジスト
5がフィールド酸化膜20の凹領域Aより若干狭い領域
上に残るようにする(第2C図)。つまり、写真製版時
に用いるマスクとしてその端がフィールド酸化膜20の
ピーク部より若干(1.0μm以下)凹領域Aの内側に
よっているものを使用し、第2C図に示したBが、1.
0μm以下になるようにレジスト5を形或する。これは
、ポリシリコン3に後述する等方エッチングを施した場
合、フィールド酸化膜20とエッチング後のポリシリコ
ン3との間に段差が生じないようにするためである。
A method for manufacturing the conductor integrated circuit device shown in FIG. 1 will be explained using FIGS. 28 to 2E. A field oxide film 20 is formed by selectively oxidizing a predetermined region on the substrate 1 . At this time, the field oxide film 20 has a stepped shape (FIG. 2A). Next, polysilicon 3 is formed on the entire surface of field oxide film 20 by the CVD method (FIG. 2B). Next, a resist 5 is formed on the polysilicon 3 by spin coating, and then by photolithography so that the resist 5 remains on an area slightly narrower than the concave area A of the field oxide film 20 (FIG. 2C). That is, a mask used in photolithography whose end is slightly (1.0 μm or less) inside the concave area A from the peak part of the field oxide film 20 is used, and B shown in FIG. 2C is 1.
The resist 5 is shaped to have a thickness of 0 μm or less. This is to prevent a difference in level between the field oxide film 20 and the etched polysilicon 3 when the polysilicon 3 is subjected to isotropic etching, which will be described later.

次に、第2C図のようにパターニングされたレジスト5
をマスクとしてポリシリコン3に等方エッチングを施す
。すると、等方エッチング後のポリシリコン3とフィー
ルド酸化膜20とに段差がほとんどなくなる(第2D図
)。その後、レジスト5を除去し、All配線を形或す
るわけであるが、ポリシリコン3は導電体であるため、
ポリシリコン3上に直接AI配線を形或するわけにはい
かない。そこで、再び表面を酸化し、ポリシリコン3の
表而に絶縁の役目をする酸化膜4を形成する。
Next, the resist 5 is patterned as shown in FIG. 2C.
Isotropically etching is performed on polysilicon 3 using as a mask. Then, there is almost no difference in level between the polysilicon 3 and the field oxide film 20 after isotropic etching (FIG. 2D). After that, the resist 5 is removed and the All wiring is formed, but since the polysilicon 3 is a conductor,
AI wiring cannot be formed directly on the polysilicon 3. Therefore, the surface is oxidized again to form an oxide film 4 on the surface of the polysilicon 3, which serves as an insulator.

酸化膜4を形戊することにより、ポリシリコン3の角ば
ったエッジ(第2D図)が丸くなり、表面段差はさらに
小さくなる(第2E図)。
By shaping the oxide film 4, the angular edges of the polysilicon 3 (FIG. 2D) are rounded, and the surface level difference is further reduced (FIG. 2E).

上記のように表面段差がほとんどなくなるので、酸化膜
4上にA1配線を形成しても断線することがない。また
、写真製版によりAI配線のバターニングを行う際、段
差部での光の反射によりパターン寸法が変化したり、段
差の深い箇所と浅い箇所とで黒点深度が相違しパターン
寸法がばらつくことはない。
Since there are almost no surface steps as described above, even if the A1 wiring is formed on the oxide film 4, there will be no disconnection. In addition, when patterning AI wiring using photolithography, pattern dimensions do not change due to reflection of light at step portions, and pattern dimensions do not vary due to differences in sunspot depth between deep and shallow step portions. .

第3図はこの発明の他の実施例を示す断面図である。こ
の実施例では、下層配線として複数の平i〒な配線を設
け、その上に上層配線を設ける場合(2層妃線を行う場
合)、下層配線を・設けることにより生しる表面段差を
上記実施例と同様、ポリシリコン3を用いてなくすよう
にしている。酸化膜50上に互いに平行な位置関係にあ
るA2配線51a,5lbが形或される。AI配線51
a,5lbおよび酸化膜50上に酸化膜52が形戊され
る。この場合、AI配線51a,51.bのrr:在に
より酸化膜52は段差を有する形状となる。酸化膜52
の凹領域Aには凹領域Aを満たし段差をなくするように
ポリシリコン3が形或される。酸化膜52およびボリン
リコン53上を覆うように酸化膜54が形成される。酸
化膜54の表面は、ポリシリコン3を設けているため平
坦となる。この実施例においてもポリシリコン3により
表面段差をなくするようにしているので、酸化膜54上
にAN配線を形成する場合、上記実施例と同様の効果が
得られる。なお、酸化膜52の凹領域Aにポリシリコン
3を設け、その後、酸化膜54を形或する製造工程は、
第2B図ないし第2E図に示した工程と同様である。
FIG. 3 is a sectional view showing another embodiment of the invention. In this example, when a plurality of flat wirings are provided as lower layer wirings and upper layer wirings are provided on top of them (when performing double layer wiring), the surface level difference caused by providing the lower layer wirings is Similar to the embodiment, polysilicon 3 is used to eliminate this. A2 wirings 51a and 5lb are formed on the oxide film 50 in a parallel positional relationship to each other. AI wiring 51
An oxide film 52 is formed on the oxide film 50 and the oxide film 50. In this case, AI wiring 51a, 51 . rr of b: Due to the presence of the oxide film 52, the oxide film 52 has a stepped shape. Oxide film 52
Polysilicon 3 is formed in the concave area A so as to fill the concave area A and eliminate the step. An oxide film 54 is formed to cover the oxide film 52 and the borin silicon 53. The surface of the oxide film 54 is flat because the polysilicon 3 is provided thereon. In this embodiment as well, the polysilicon 3 is used to eliminate surface steps, so that when an AN wiring is formed on the oxide film 54, the same effect as in the above embodiment can be obtained. Note that the manufacturing process of providing polysilicon 3 in the concave region A of oxide film 52 and then forming oxide film 54 is as follows:
The steps are similar to those shown in FIGS. 2B to 2E.

なお、上記実施例ではフィールド酸化膜20上の段差お
よび2層配線時に生じる段差の改善について説明したが
、これらの場合に限らず、段差の生じる箇所すべてにこ
の発明は適用できる。
In the above embodiments, improvement of the step difference on the field oxide film 20 and the step difference that occurs during two-layer wiring has been described, but the present invention is not limited to these cases, but can be applied to all locations where the step difference occurs.

また、上記実施例では表面平坦化のための平坦化層とし
てポリシリコン3を用いた場合について説明したが、そ
の他の物質でもよい。
Further, in the above embodiment, a case was explained in which polysilicon 3 was used as a flattening layer for surface flattening, but other materials may be used.

また、平坦化層が非導電体である場合には第2E図,第
3図に示した酸化膜4,54を必ずしも設ける必要はな
い。
Further, when the planarization layer is a non-conductor, it is not necessary to provide the oxide films 4 and 54 shown in FIGS. 2E and 3.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、下地層の段差の凹領
域よりも若干狭い領域に対応した平坦化層上にレジスト
を形成し、このレジストをマスクとして平坦化層に等方
エッチングを施すので、下地層の凸部と等方エッチング
の施された平坦化層の表面とに段差はなくなる。従って
、表面に配線を設けたとしても断線するおそれがないと
いう効果がある。また、写真製版により配線のバターニ
ングを行ったとしてもパターン寸法が変化したり、パタ
ーン寸法がばらつくことがないという効果がある。
As described above, according to the present invention, a resist is formed on the planarization layer corresponding to an area slightly narrower than the recessed area of the step of the base layer, and isotropic etching is performed on the planarization layer using this resist as a mask. Therefore, there is no difference in level between the convex portion of the base layer and the surface of the flattening layer subjected to isotropic etching. Therefore, even if wiring is provided on the surface, there is no risk of disconnection. Further, even if patterning of the wiring is performed by photolithography, there is an effect that the pattern dimensions do not change or vary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る半導体集積回路装置の一実施例
を示す断面図、第2八図ないし第2E図はこの発明に係
る半導体集積回路装置の製造工程を示す図、第3図はこ
の発明に係る半導体集積回路装置の他の実施例を示す断
面図、第4図ないし第6図は従来の半導体集積回路装置
を示す断面図である。 図において、1は基板、3はポリシリコン、5はレジス
ト、20はフィールド酸化膜である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a sectional view showing an embodiment of the semiconductor integrated circuit device according to the present invention, FIGS. 28 to 2E are views showing the manufacturing process of the semiconductor integrated circuit device according to the present invention, and FIG. FIGS. 4 to 6 are cross-sectional views showing other embodiments of the semiconductor integrated circuit device according to the invention, and FIGS. 4 to 6 are cross-sectional views showing conventional semiconductor integrated circuit devices. In the figure, 1 is a substrate, 3 is polysilicon, 5 is a resist, and 20 is a field oxide film. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)表面に段差を有する下地層を平坦化するための半
導体集積回路装置の製造方法であって、表面に段差を有
する下地層の全面に表面平坦化のための平坦化層を形成
する工程と、 前記下地層の前記段差の凹領域よりも若干狭い領域に対
応した前記平坦化層上にレジストを形成する工程と、 前記レジストをマスクとして前記平坦化層に等方エッチ
ングを施す工程と、 前記レジストを除去する工程とを備えた半導体集積回路
装置の製造方法。
(1) A method for manufacturing a semiconductor integrated circuit device for planarizing a base layer having a step on the surface, the step of forming a flattening layer for surface flattening over the entire surface of the base layer having a step on the surface. a step of forming a resist on the planarization layer corresponding to a region slightly narrower than a concave region of the step of the base layer; a step of isotropically etching the planarization layer using the resist as a mask; A method of manufacturing a semiconductor integrated circuit device, comprising the step of removing the resist.
JP19353989A 1989-07-25 1989-07-25 Manufacture of semiconductor integrated circuit device Pending JPH0357220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19353989A JPH0357220A (en) 1989-07-25 1989-07-25 Manufacture of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19353989A JPH0357220A (en) 1989-07-25 1989-07-25 Manufacture of semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0357220A true JPH0357220A (en) 1991-03-12

Family

ID=16309758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19353989A Pending JPH0357220A (en) 1989-07-25 1989-07-25 Manufacture of semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0357220A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269535A (en) * 1987-04-27 1988-11-07 Fuji Electric Co Ltd Method for flattening surface of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269535A (en) * 1987-04-27 1988-11-07 Fuji Electric Co Ltd Method for flattening surface of semiconductor device

Similar Documents

Publication Publication Date Title
US6063702A (en) Global planarization method for inter level dielectric layers using IDL blocks
JPH01290236A (en) Method of levelling wide trench
JPH0917708A (en) Formation of alignment key pattern of semiconductor device
US5792707A (en) Global planarization method for inter level dielectric layers of integrated circuits
JPH09107028A (en) Element isolation method for semiconductor device
JPH08236526A (en) Method of making all surfaces of wafer for integrated circuit device global plane or flattening it
JPH0669351A (en) Manufacture of contact of multilayer metal interconnection structure
JP2000040737A (en) Forming method of element isolation region
US6143596A (en) Planarization for interlayer dielectric
JP4227727B2 (en) Method for forming overlay vernier of semiconductor element
JPH0357220A (en) Manufacture of semiconductor integrated circuit device
JPH033346A (en) Manufacture of semiconductor device
JP2590711B2 (en) Method for manufacturing semiconductor device
JPH1174174A (en) Manufacture of semiconductor device
JP3589580B2 (en) Method for manufacturing semiconductor device
JP2597424B2 (en) Method for manufacturing semiconductor device
KR100338948B1 (en) Manufacturing method for isolation in semiconductor device
JPH06112308A (en) Element isolation region of semiconductor device and its manufacture
JPH0481329B2 (en)
KR100190065B1 (en) Trench isolation method
KR100275940B1 (en) Method of fabricating an interlayer in semiconductor devices
KR20040003649A (en) Method for planation in semiconductor device
JPS6367747A (en) Device isolation of semiconductor device
JPH04333235A (en) Manufacture of semiconductor integrated circuit
JPH07105389B2 (en) Method for manufacturing semiconductor device