JPH0354769B2 - - Google Patents

Info

Publication number
JPH0354769B2
JPH0354769B2 JP59188028A JP18802884A JPH0354769B2 JP H0354769 B2 JPH0354769 B2 JP H0354769B2 JP 59188028 A JP59188028 A JP 59188028A JP 18802884 A JP18802884 A JP 18802884A JP H0354769 B2 JPH0354769 B2 JP H0354769B2
Authority
JP
Japan
Prior art keywords
optical fiber
core member
sensor
fiber sensor
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59188028A
Other languages
Japanese (ja)
Other versions
JPS6166134A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59188028A priority Critical patent/JPS6166134A/en
Publication of JPS6166134A publication Critical patent/JPS6166134A/en
Publication of JPH0354769B2 publication Critical patent/JPH0354769B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、温度の測定に好適に用いられる光
フアイバセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to an optical fiber sensor suitably used for temperature measurement.

「従来技術およびその問題点」 光フアイバ中に光を伝搬せしめると、伝搬する
光は光フアイバ中でレーリー散乱を受ける。この
レーリー散乱の強度は温度に依存するので、光フ
アイバにパルス光を入射せしめ、光フアイバの各
部分でレーリー散乱されて入射端側に散乱されて
戻つて来るレーリー後方散乱光を測定することに
よつて、光フアイバの長さ方向の温度分布を知る
ことができる。この性質を利用した温度分布測定
用の光フアイバセンサは、光フアイバの長さ方向
に沿つて温度の分布を測定できる特徴がある。
"Prior Art and its Problems" When light is propagated through an optical fiber, the propagating light undergoes Rayleigh scattering within the optical fiber. The intensity of this Rayleigh scattering depends on the temperature, so we inject pulsed light into the optical fiber and measure the Rayleigh backscattered light that is Rayleigh scattered at each part of the optical fiber and returned to the input end. Therefore, the temperature distribution in the length direction of the optical fiber can be known. An optical fiber sensor for measuring temperature distribution that utilizes this property has the characteristic of being able to measure temperature distribution along the length of the optical fiber.

ところが、光フアイバ中を光が伝搬する速度は
約5ns/mと高速であるため、この種の光フアイ
バセンサは、たとえパルス幅10nsのパルス光が入
射されたとしても、入射光は2mの幅で光フアイ
バ中を進行するので光フアイバの長さ方向に温度
の分布を識別する分解能は2mが限度となる。こ
のため、この種の光フアイバセンサには、温度の
分布を精度良く測定できない不満があつた。
However, since the speed at which light propagates through an optical fiber is as high as approximately 5 ns/m, this type of optical fiber sensor is capable of transmitting light with a width of 2 m even if pulsed light with a pulse width of 10 ns is input. Since it travels through the optical fiber, the resolution for identifying the temperature distribution along the length of the optical fiber is limited to 2 m. For this reason, this type of optical fiber sensor has been dissatisfied with its inability to accurately measure temperature distribution.

「発明の目的」 この発明は上記事情に鑑みてなされたもので、
温度の分布を精度良く測定することができる光フ
アイバセンサを提供することを目的とする。
"Object of the invention" This invention was made in view of the above circumstances,
An object of the present invention is to provide an optical fiber sensor that can accurately measure temperature distribution.

「問題点を解決するための手段」 この発明は、円柱状あるいは管状の芯部材と、
この芯部材の外周に巻回された光フアイバと、こ
の光フアイバが巻回された芯部材を収容する管状
の外筒部材とからなり、この外筒部材と上記芯部
材との間の空間を減圧あるいは真空状態とするこ
とにより上記問題点の解決を図るものである。
"Means for Solving the Problems" This invention provides a cylindrical or tubular core member,
It consists of an optical fiber wound around the outer periphery of this core member, and a tubular outer cylinder member that accommodates the core member around which this optical fiber is wound, and the space between this outer cylinder member and the core member is The above problem is solved by reducing the pressure or creating a vacuum state.

「作用」 この発明の光フアイバセンサにあつては、温度
測定に直接係わる光フアイバを芯部材に巻回した
ので、センサの所定の区画に長尺の光フアイバを
集積して収容した状態となる。従つて、光フアイ
バの長さ方向に沿う分解能が粗くてもセンサとし
ては細かい間隔で温度の分布を観測することがで
きることとなり、温度分布を精度良く測定できる
センサとなる。
"Function" In the optical fiber sensor of the present invention, since the optical fiber directly involved in temperature measurement is wound around the core member, the long optical fibers are accumulated and housed in a predetermined section of the sensor. . Therefore, even if the resolution along the length of the optical fiber is coarse, the sensor can observe the temperature distribution at fine intervals, resulting in a sensor that can accurately measure the temperature distribution.

また、この発明の光フアイバセンサは、光フア
イバが、外筒部材と芯部材とにより形成された空
間に減圧あるいは真空状態で封入されているの
で、光フアイバが水分等により侵されることがな
く、光フアイバは不活性な状態に保たれている。
従つて、芯部材に巻き付けられて曲げ応力を受け
るうえに高温にさらされるため、表面傷が生長し
破断し易い状態にある光フアイバの劣化は長期間
防止されており、これにより、この発明の光フア
イバセンサは長寿命のものとなる。
Further, in the optical fiber sensor of the present invention, the optical fiber is sealed in the space formed by the outer cylinder member and the core member under reduced pressure or in a vacuum state, so that the optical fiber is not corroded by moisture or the like. The optical fiber is kept inactive.
Therefore, deterioration of the optical fiber, which is prone to surface scratches and breakage due to being wrapped around a core member and subjected to bending stress and exposed to high temperatures, is prevented for a long period of time. Fiber optic sensors have a long lifespan.

「実施例」 第1図は、この発明の光フアイバセンサの一実
施例を示すもので、図中符号1は芯部材である。
芯部材1は円柱状あるいは管状のもので、この例
にあつては円柱状とされている。また、この芯部
材1は、アルミニウム、ステンレス鋼等の熱伝導
性の良好な金属により形成されている。この芯部
材1の外周には光フアイバ2が一層に巻回されて
いる。この光フアイバ2は、コアとクラツドから
なるフアイバ裸線に、一次被覆が施されたものが
好適に用いられ、特に一次被覆がアルミニウム等
の金属により形成されている金属コート光フアイ
バが、フアイバ裸線に外部の熱が良好に伝わる点
で好ましい。また、フアイバ裸線としては、コ
ア、クラツドが共に石英からなる通常の光フアイ
バ裸線の他に、石英パイプ中にコアとなる液体が
封入された液体コア光フアイバ裸線等が用いられ
る。
Embodiment FIG. 1 shows an embodiment of the optical fiber sensor of the present invention, and reference numeral 1 in the figure represents a core member.
The core member 1 is cylindrical or tubular, and in this example is cylindrical. Further, the core member 1 is made of a metal with good thermal conductivity, such as aluminum or stainless steel. An optical fiber 2 is wound around the outer periphery of the core member 1. The optical fiber 2 is preferably a bare fiber consisting of a core and a cladding with a primary coating applied thereto. In particular, a metal-coated optical fiber in which the primary coating is made of a metal such as aluminum is preferable. This is preferable because external heat is transferred well to the wire. Further, as the bare fiber wire, in addition to a normal bare optical fiber wire whose core and cladding are both made of quartz, a liquid core bare optical fiber wire in which a liquid serving as a core is sealed in a quartz pipe is used.

この光フアイバ2を巻回するピツチと、上記芯
部材1の外径は、この光フアイバセンサの温度分
布の測定精度に直接係わる。つまり、光フアイバ
2の長さ方向の分解能に相当する長さの光フアイ
バ2が巻回された芯部材1の幅が、この光フアイ
バセンサの温度分布測定精度になるので、光フア
イバ2を巻回するピツチおよび芯部材1の外径
は、所望するセンサの精度を勘案して定められ
る。
The pitch at which the optical fiber 2 is wound and the outer diameter of the core member 1 are directly related to the measurement accuracy of the temperature distribution of the optical fiber sensor. In other words, the width of the core member 1 around which the optical fiber 2 with a length corresponding to the resolution in the longitudinal direction of the optical fiber 2 is wound determines the temperature distribution measurement accuracy of this optical fiber sensor. The rotation pitch and the outer diameter of the core member 1 are determined in consideration of the desired accuracy of the sensor.

このような光フアイバ2が巻回された芯部材1
は、外筒部材3に収容されている。この外筒部材
3は、アルミニウム、ステンレス鋼等の熱伝導性
の良い金属で形成されており、その内径は、芯部
材1に巻回された光フアイバの外周にできるだけ
隙間なく嵌り合うように定められる。また、外筒
部材3の肉厚は、後述するようにこの外筒部材3
と芯部材1との間の空間が真空状態あるいは減圧
状態とされた時、外部の圧力ににより変形するこ
とがないように定められる。この外筒部材3は、
両端部を蓋体4,4により閉じられており、その
一方の蓋体4からは、上記芯部材1に巻回された
光フアイバ2の一端が引き出されている。この光
フアイバ2が引き出された部分は、アルミハンダ
などを用いたろう付け等により気密に封止されて
いる。また、外筒部材3には、この外筒部材3と
上記芯部材1との間の空間5の空気を排気するた
めの排気管6が設けられている。この排気管6に
は、さらに、これを封止するためのバルブ7が設
けられている。そして、この光フアイバセンサの
空間5は、排気管6とバルブ7とを介して排気さ
れ、10-3Torr以下の減圧状態あるいは真空状態
とされている。
A core member 1 around which such an optical fiber 2 is wound
is housed in the outer cylinder member 3. This outer cylindrical member 3 is made of a metal with good thermal conductivity such as aluminum or stainless steel, and its inner diameter is determined so that it fits as closely as possible to the outer periphery of the optical fiber wound around the core member 1. It will be done. In addition, the wall thickness of the outer cylinder member 3 is as described below.
The space between the core member 1 and the core member 1 is defined so that it will not be deformed by external pressure when the space is in a vacuum state or a reduced pressure state. This outer cylinder member 3 is
Both ends are closed by lids 4, 4, and one end of the optical fiber 2 wound around the core member 1 is drawn out from one of the lids 4. The portion from which the optical fiber 2 is drawn out is hermetically sealed by brazing using aluminum solder or the like. Further, the outer cylinder member 3 is provided with an exhaust pipe 6 for exhausting air in the space 5 between the outer cylinder member 3 and the core member 1. This exhaust pipe 6 is further provided with a valve 7 for sealing it. The space 5 of this optical fiber sensor is evacuated via an exhaust pipe 6 and a valve 7, and is brought into a reduced pressure state or a vacuum state of 10 -3 Torr or less.

このような光フアイバセンサにあつては、芯部
材1に光フアイバ2を巻回したので、光フアイバ
センサには長尺の光フアイバ2が収容されてい
る。よつて、光フアイバ2の長さ方向に対する分
解能は粗くとも、光フアイバセンサの長さ方向に
対しては、細かいピツチで温度分布を観測できる
ことになり、この光フアイバセンサは温度の分布
測定を精度良く行うことのできるものとなる。
In such an optical fiber sensor, since the optical fiber 2 is wound around the core member 1, the long optical fiber 2 is accommodated in the optical fiber sensor. Therefore, even if the resolution in the longitudinal direction of the optical fiber 2 is coarse, it is possible to observe the temperature distribution at fine pitches in the longitudinal direction of the optical fiber sensor, and this optical fiber sensor can accurately measure temperature distribution. It becomes something you can do well.

また、この光フアイバセンサの光フアイバ2に
は曲げ応力が加わつているうえ、センサ使用時に
光フアイバ2は高温状態におかれるので、この点
からは光フアイバ2は表面傷の生長し易い、つま
り破断し易い状態にある。しかしこの光フアイバ
2は、芯部材1と外筒部材3との間の空間5に真
空あるいは減圧状態で気密に封入されているの
で、光フアイバ2の石英からなる裸線にこれを劣
化させる水分等が作用することはなく、光フアイ
バは不活性な雰囲気下におかれている。従つて、
この光フアイバセンサの光フアイバ2の劣化は長
期間防止され、この光フアイバセンサは長期間の
使用に耐えるものとなる。
In addition, bending stress is applied to the optical fiber 2 of this optical fiber sensor, and the optical fiber 2 is placed in a high temperature state when the sensor is used, so from this point of view, the optical fiber 2 is prone to surface scratches. It is in a state where it is easy to break. However, since this optical fiber 2 is hermetically sealed in a space 5 between the core member 1 and the outer cylinder member 3 in a vacuum or reduced pressure state, moisture that can deteriorate the bare quartz wire of the optical fiber 2 etc., and the optical fiber is placed under an inert atmosphere. Therefore,
Deterioration of the optical fiber 2 of this optical fiber sensor is prevented for a long period of time, and this optical fiber sensor can be used for a long period of time.

「実験例 1」 第1図に示した光フアイバセンサを試作して、
反応槽の温度と反応槽が設置された室内の温度と
を同時に測定した。
"Experiment Example 1" The optical fiber sensor shown in Figure 1 was prototyped,
The temperature of the reaction tank and the temperature of the room in which the reaction tank was installed were measured simultaneously.

試作した光フアイバセンサの仕様を次に示す。 The specifications of the prototype optical fiber sensor are shown below.

● 芯部材1の形状、外径40mmの円柱状 ● 〃 材質、 アルミニウム ● 光フアイバ2のコアの径、 80μm ● 光フアイバ2のクラツドの外径、125μm ● 一次被覆層を形成する金属、アルミニウムの
外径、170μm ● 〃 の比屈折率差、2.0% ● 外筒部材3の内径、41mm ● 〃 外径、52mm ● 〃 材質、アルミニウム ● 空間5の圧力、10-5Torr 光フアイバ2の芯部材1への巻き付けは、1cm
当り6回とし、約400mの光フアイバ2を約5m
の芯部材1へ巻き付けた。
● Shape of core member 1: cylindrical with outer diameter of 40 mm ● Material: aluminum ● Core diameter of optical fiber 2: 80 μm ● Outer diameter of cladding of optical fiber 2: 125 μm ● Metal forming the primary coating layer: aluminum Outer diameter, 170 μm ● Relative refractive index difference, 2.0% ● Inner diameter of outer tube member 3, 41 mm ● Outer diameter, 52 mm ● Material, aluminum ● Pressure in space 5, 10 -5 Torr Core member of optical fiber 2 The wrapping around 1 is 1cm.
6 times per hit, about 400m optical fiber 2 about 5m
It was wound around the core member 1 of.

光フアイバセンサに入射するパルス光には、パ
ルス幅10ns、波長0.9μm、パルス繰返し1kHzのも
のを用いた。
The pulsed light incident on the optical fiber sensor had a pulse width of 10 ns, a wavelength of 0.9 μm, and a pulse repetition rate of 1 kHz.

光フアイバセンサの先端部250cmを深さ4mの
反応槽に浸漬して、これに上記パルス光を入射
し、得られた後方散乱光の強度を測定したところ
第2図に示した結果を得た。その際、室温は25℃
とし、反応槽の温度は25℃〜250℃まで変化させ
た。
The 250cm tip of the optical fiber sensor was immersed in a 4m deep reaction tank, the above pulsed light was incident on it, and the intensity of the backscattered light was measured, and the results shown in Figure 2 were obtained. . At that time, the room temperature is 25℃
The temperature of the reaction tank was varied from 25°C to 250°C.

第2図に示したグラフからわかるように、反応
槽の温度が上昇すると、反応槽に浸漬された部分
から伝搬されてくる後方散乱光の強度は減少す
る。また、光フアイバセンサの反応槽に浸漬され
た部分と室温部分との間に生じた段差aは、その
幅が光フアイバの長さに換算すると約2mに相当
し、これは光フアイバセンサの長さの約3cmに相
当した。この段差の位置は光フアイバセンサの先
端から250±1.5cmの位置に生じていた。この結果
から、この光フアイバセンサは、温度の分布を精
度良く測定し得るものであることが確認できた。
As can be seen from the graph shown in FIG. 2, as the temperature of the reaction tank increases, the intensity of backscattered light propagating from the portion immersed in the reaction tank decreases. In addition, the width of the step a created between the part of the optical fiber sensor immersed in the reaction tank and the room temperature part is equivalent to approximately 2 m when converted to the length of the optical fiber, which is equivalent to the length of the optical fiber sensor. It was equivalent to about 3 cm in diameter. The position of this step was 250±1.5cm from the tip of the optical fiber sensor. From this result, it was confirmed that this optical fiber sensor can accurately measure temperature distribution.

「実験例 2」 実験例1と同様の光フアイバセンサを、液体コ
ア光フアイバを用いて作成した。この液体コア光
フアイバは、外径250μm、内径150μmの石英パイ
プの中空部にαブロムナフタリンが充填され、外
周にアルミニウムが被覆されたもので、150℃ま
で測定することができる。
"Experimental Example 2" An optical fiber sensor similar to Experimental Example 1 was created using a liquid core optical fiber. This liquid core optical fiber is a quartz pipe with an outer diameter of 250 μm and an inner diameter of 150 μm, with the hollow part filled with α-bromnaphthalene and coated with aluminum on the outer periphery, and is capable of measuring temperatures up to 150°C.

この光フアイバセンサを用いて実験例1と同様
の試験を行つたところ、このものも約3cm程度の
精度で温度分布を測定できることが確認できた。
When the same test as in Experimental Example 1 was conducted using this optical fiber sensor, it was confirmed that this sensor could also measure temperature distribution with an accuracy of about 3 cm.

「発明の効果」 以上説明したように、この発明の光フアイバセ
ンサは、円柱状あるいは管状の芯部材と、この芯
部材の外周に巻回された光フアイバと、この光フ
アイバが巻回された芯部材を収容する管状の外筒
部材とからなり、この外筒部材と上記芯部材との
間の空間を減圧あるいは真空状態としたので、温
度測定に直接係わる光フアイバが長距離センサの
短い距離の間に収容されている。従つて、光フア
イバ中を伝搬する光の速度が高速であることに起
因して光フアイバの長さ方向への測定精度の粗く
とも、センサの所定の区画に長尺の光フアイバを
集積して収容しているから、センサとしては細か
い精度が達成でき、この光フアイバセンサは、温
度の分布を細かい精度で測定し得るものとなる。
"Effects of the Invention" As explained above, the optical fiber sensor of the present invention includes a cylindrical or tubular core member, an optical fiber wound around the outer periphery of the core member, and an optical fiber sensor wound around the core member. It consists of a tubular outer cylinder member that accommodates a core member, and the space between this outer cylinder member and the core member is made into a reduced pressure or vacuum state, so that the optical fiber directly involved in temperature measurement can be used over a short distance for long-distance sensors. is housed between. Therefore, even if the measurement accuracy in the length direction of the optical fiber is poor due to the high speed of light propagating in the optical fiber, it is possible to integrate a long optical fiber in a predetermined section of the sensor. Since the optical fiber sensor is housed in the optical fiber, it is possible to achieve fine precision as a sensor, and this optical fiber sensor can measure temperature distribution with fine precision.

また、この光フアイバセンサは、光フアイバが
芯部材と外筒部材との間の空間に減圧あるいは真
空状態で封入され保護されているので、光フアイ
バの劣化が長期に渡り防止されており、従つてこ
の光フアイバセンサは耐用期間の長いものとな
る。
In addition, in this optical fiber sensor, the optical fiber is sealed and protected in a reduced pressure or vacuum state in the space between the core member and the outer cylinder member, so deterioration of the optical fiber is prevented over a long period of time. This fiber optic sensor has a long service life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の光フアイバセンサの一実施
例を示す一部断面視した斜視図、第2図はこの発
明の光フアイバセンサの精度を確認する実験の際
に得られた後方散乱光の強度と伝搬時間、光フア
イバ長さおよび光フアイバセンサの長さの関係を
示すグラフである。 図において、1:芯部材、2:光フアイバ、
3:外筒部材、5:空間、6:排気管。
Fig. 1 is a partially cross-sectional perspective view showing an embodiment of the optical fiber sensor of the present invention, and Fig. 2 shows backscattered light obtained during an experiment to confirm the accuracy of the optical fiber sensor of the present invention. 3 is a graph showing the relationship between intensity, propagation time, optical fiber length, and optical fiber sensor length. In the figure, 1: core member, 2: optical fiber,
3: Outer cylinder member, 5: Space, 6: Exhaust pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 円柱状あるいは管状の芯部材と、この芯部材
の外周に巻回された光フアイバと、この光フアイ
バが巻回された芯部材を収容する管状の外筒部材
とからなり、この外筒部材と上記芯部材との間の
空間を減圧あるいは真空状態としたことを特徴と
する光フアイバセンサ。
1 Consists of a cylindrical or tubular core member, an optical fiber wound around the outer periphery of the core member, and a tubular outer cylinder member that accommodates the core member around which the optical fiber is wound. An optical fiber sensor characterized in that a space between the core member and the core member is reduced in pressure or in a vacuum state.
JP59188028A 1984-09-10 1984-09-10 Optical fiber sensor Granted JPS6166134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59188028A JPS6166134A (en) 1984-09-10 1984-09-10 Optical fiber sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59188028A JPS6166134A (en) 1984-09-10 1984-09-10 Optical fiber sensor

Publications (2)

Publication Number Publication Date
JPS6166134A JPS6166134A (en) 1986-04-04
JPH0354769B2 true JPH0354769B2 (en) 1991-08-21

Family

ID=16216396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59188028A Granted JPS6166134A (en) 1984-09-10 1984-09-10 Optical fiber sensor

Country Status (1)

Country Link
JP (1) JPS6166134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140009270A (en) * 2011-03-04 2014-01-22 토호 케미컬 엔지니어링 앤드 컨스트럭션 가부시키가이샤 Method for removing organic solvent, and removal device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210232A (en) * 1988-06-29 1990-01-16 Matsushita Electric Ind Co Ltd Optical fiber sensor
JPH04339227A (en) * 1991-01-22 1992-11-26 Chubu Electric Power Co Inc Non-contact type temperature measuring apparatus using optical fiber
JPH0588109U (en) * 1992-04-23 1993-11-26 内外電機株式会社 Electric equipment board
US9476294B2 (en) * 2010-01-29 2016-10-25 Baker Hughes Incorporated Device and method for discrete distributed optical fiber pressure sensing
US8740455B2 (en) * 2010-12-08 2014-06-03 Baker Hughes Incorporated System and method for distributed environmental parameter measurement
CN104776934A (en) * 2015-04-10 2015-07-15 清华大学 Micro-distance distributed optical fiber temperature sensor
JP7011214B2 (en) * 2017-08-31 2022-01-26 横河電機株式会社 Fiber optic sensor measurement unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140009270A (en) * 2011-03-04 2014-01-22 토호 케미컬 엔지니어링 앤드 컨스트럭션 가부시키가이샤 Method for removing organic solvent, and removal device

Also Published As

Publication number Publication date
JPS6166134A (en) 1986-04-04

Similar Documents

Publication Publication Date Title
Swart Long-period grating Michelson refractometric sensor
US7269320B2 (en) Fiber optic cable with miniature bend incorporated
US7650051B2 (en) Distributed optical fiber sensor with controlled response
JP2795146B2 (en) Double coated optical fiber for temperature measurement
JPH0354769B2 (en)
WO2007066146A2 (en) Sensing system using optical fiber suited to high temperatures
JPWO2012023219A1 (en) Polarization maintaining fiber and optical fiber sensor using the same
JPS5611329A (en) Measuring method of melted metal temperature in vessel
JP5073215B2 (en) Optical fiber cable, optical fiber physical quantity fluctuation detection sensor using the same, and physical quantity fluctuation detection method
US5130535A (en) Methods of and apparatus for measuring bending loss along a length of optical fiber
JPH03206927A (en) High temperature sensor
EP1674854A1 (en) Optical fiber sensor and measuring device using the same
US20150219851A1 (en) Termination Of Optical Fiber With Low Backreflection
US5839830A (en) Passivated diamond film temperature sensing probe and measuring system employing same
US20190277747A1 (en) Optically Heated and Optically Measured Fouling Sensor
JPH061231B2 (en) Optical fiber sensor for leak detection
JPH0380252B2 (en)
Sato et al. Infrared hollow waveguides for capillary flow cells
CN108844655A (en) A kind of fiber grating Temperature Humidity Sensor
CN111897063A (en) Temperature measurement optical cable for oil well
JP2001042142A (en) Manufacture of fiber grating and temperature sensor using fiber grating
JP2008232947A (en) Optical fiber type surface plasmon sensor and measuring device using it
JPS6269131A (en) Optical fiber temperature sensor
KR20020017290A (en) Optical fiber ribbon cable
JP2006029878A (en) Optical fiber for radiation sensor, and optical fiber type radiometer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term