JPH0353454Y2 - - Google Patents

Info

Publication number
JPH0353454Y2
JPH0353454Y2 JP1985118710U JP11871085U JPH0353454Y2 JP H0353454 Y2 JPH0353454 Y2 JP H0353454Y2 JP 1985118710 U JP1985118710 U JP 1985118710U JP 11871085 U JP11871085 U JP 11871085U JP H0353454 Y2 JPH0353454 Y2 JP H0353454Y2
Authority
JP
Japan
Prior art keywords
terminal
power receiving
power
winding
moving mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985118710U
Other languages
Japanese (ja)
Other versions
JPS6228412U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985118710U priority Critical patent/JPH0353454Y2/ja
Publication of JPS6228412U publication Critical patent/JPS6228412U/ja
Application granted granted Critical
Publication of JPH0353454Y2 publication Critical patent/JPH0353454Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は電路開閉装置付超伝導電磁石に関す
る。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a superconducting electromagnet with a circuit switching device.

〈従来技術〉 超伝導電磁石においては、その超伝導体より成
る巻線は断熱低温容器に納められ、液体ヘリウム
により冷却されている。巻線のリードは、低温容
器の蒸発ヘリウム・ガス排気管、または、別に設
けられたリード線用配管を通じて常温部まで導か
れ、そこに設けられた端子を介して、または、直
接、電源配線に接続されている。
<Prior Art> In a superconducting electromagnet, a winding made of a superconductor is housed in an insulated cryogenic container and cooled with liquid helium. The winding leads are led to the room temperature area through the evaporated helium gas exhaust pipe of the cryogenic container or separately provided lead wire piping, and then connected to the power supply wiring via the terminals provided there or directly. It is connected.

このように巻線のリードが常温部にまで達して
いるので、電源より巻線に電流を供給する必要の
ない場合(電磁石を使用しない場合または永久電
流モードで作動させている場合)、電源配線と巻
線リード間の接続を断つていても、巻線リードの
端部より熱が低温容器内部に侵入し、寒剤である
液体ヘリウムの蒸発を促進させる。
In this way, the winding leads have reached room temperature, so if there is no need to supply current to the windings from the power supply (when not using an electromagnet or when operating in persistent current mode), power wiring Even if the connection between the winding lead and the winding lead is broken, heat enters the cryogenic container from the end of the winding lead, promoting the evaporation of liquid helium, which is a cryogen.

〈考案が解決しようとする問題点〉 本考案は、超伝導電磁石巻線のリード部が、そ
れが使用されていない場合にも、低温容器内への
熱の導入に寄与し、液体ヘリウムの蒸発を促進さ
せるという、従来技術による超伝導電磁石の、上
記のような欠点を解決する。
<Problems to be solved by the invention> The invention proposes that the lead part of the superconducting electromagnet winding contributes to the introduction of heat into the cryogenic vessel even when it is not in use, and prevents the evaporation of liquid helium. The present invention solves the above-mentioned drawbacks of prior art superconducting electromagnets in promoting .

〈問題点を解決するための手段〉 問題解決のため、本考案による超伝導電磁石に
おいては、電磁石巻線を収容するデユワー瓶型低
温容器の断熱空間内に、外部から操作可能な電路
開閉装置を設け、巻線に外部より電流を供給する
必要のない場合には、上記電路開閉装置に接続す
べく断熱空間内に導かれた巻線のリードと電源配
線の接続が、上記断熱空間内で断たれるようにな
つている。また、場合によつては、接続が断たれ
た巻線リードと電源配線との間に輻射熱遮断板を
挿入する。
<Means for solving the problem> In order to solve the problem, in the superconducting electromagnet according to the present invention, an electrical circuit switching device that can be operated from the outside is installed in the insulation space of the dewar bottle-shaped cryogenic container that houses the electromagnet winding. If there is no need to supply current to the winding from the outside, the connection between the power supply wiring and the lead of the winding led into the heat insulation space to be connected to the circuit switching device is disconnected within the heat insulation space. It's starting to sag. In some cases, a radiant heat shielding plate is inserted between the disconnected winding lead and the power supply wiring.

〈作用〉 電路開閉装置の配設場所から明らかなように、
同装置が開放状態にある場合には、巻線リードの
先端部は断熱空間中に弧立させられるので、断熱
空間が同リードを常温より遮断し、熱の侵入を防
止する。また、輻射熱遮断板を用いる場合には、
断熱空間に導入されている電源配線の先端より、
巻線リードの先端に伝達される極く僅かな輻射熱
も輻射熱遮断板によつて阻止され、断熱効果は一
層増大する。
<Function> As is clear from the installation location of the circuit switchgear,
When the device is in the open state, the tip of the winding lead is erected in the heat insulating space, so the heat insulating space insulates the lead from room temperature and prevents heat from entering. In addition, when using a radiant heat shield,
From the tip of the power supply wiring introduced into the insulation space,
Even the slightest amount of radiant heat transmitted to the tip of the winding lead is blocked by the radiant heat shielding plate, further increasing the heat insulation effect.

〈実施例〉 以下に本考案の実施例を図面に基づいて説明す
る。
<Examples> Examples of the present invention will be described below based on the drawings.

第1図は本考案実施例の全体構成を示す、超伝
導電磁石の軸方向に直交する断面図である。図に
おいて、外側外壁11と内側外壁11aを有する
2重筒型外殻容器内に断熱空間12を介して同軸
的に2重筒型低温槽13が設けられている。低温
槽13の上部からは寒剤である液体ヘリウムを注
入するための液体ヘリウム注入管14が、低温槽
13の囲りを1周して上方に延び、液体ヘリウム
注入口15に達している。また、液体ヘリウム注
入管14の外側には、低温槽13の長手方向をカ
バーするだけの幅を有する断熱板16がろう付け
されている。この断熱板16は低温槽13よりの
蒸発ヘリウム・ガスによつて冷却され、低温槽1
3に対する断熱効果をたかめている。低温槽13
の中には超伝導巻線17が収容され、液体ヘリウ
ムにより超伝導転移点以下の低温に保たれる。超
伝導巻線17のリード線18は液体ヘリウム注入
管14の一部区間を通過した後管壁を貫き、先端
の受電端子1が断熱空間12に露出している。こ
の受電端子1は、外殻容器の外側外壁11を貫通
して断熱空間に導入されている端子移動機構3の
先端に設けられた送電端子2と共に、電路開閉装
置を形成している。送電端子2には、同じく上記
外壁11を貫通して導入された電流供給用リード
線4が接続されている。
FIG. 1 is a sectional view orthogonal to the axial direction of a superconducting electromagnet, showing the overall configuration of an embodiment of the present invention. In the figure, a double cylindrical cryostat 13 is coaxially provided with a heat insulating space 12 interposed in a double cylindrical shell container having an outer wall 11 and an inner outer wall 11a. A liquid helium injection pipe 14 for injecting liquid helium as a cryogen from the upper part of the cryostat 13 extends upward around the cryostat 13 and reaches a liquid helium injection port 15 . Furthermore, a heat insulating plate 16 having a width sufficient to cover the longitudinal direction of the cryostat 13 is brazed to the outside of the liquid helium injection pipe 14 . This heat insulating plate 16 is cooled by evaporated helium gas from the cryostat 13 and
The insulation effect for 3 is enhanced. Low temperature chamber 13
A superconducting winding 17 is housed inside, and is kept at a low temperature below the superconducting transition point by liquid helium. The lead wire 18 of the superconducting winding 17 passes through a partial section of the liquid helium injection tube 14 and then penetrates the tube wall, and the power receiving terminal 1 at the tip is exposed to the heat insulating space 12. This power receiving terminal 1 forms an electric circuit switching device together with a power transmitting terminal 2 provided at the tip of a terminal moving mechanism 3 that penetrates the outer wall 11 of the outer shell container and is introduced into the heat insulating space. A current supply lead wire 4, which is also introduced through the outer wall 11, is connected to the power transmission terminal 2.

以上の構成において、第1図に鎖線19で囲ん
だ部分に含まれる、上述の受電端子1、送電端子
2、端子移動機構3、および電流供給用リード線
4が本考案の主要特徴部を成し以下にその構成と
作用詳細を第2図に基づいて説明する。
In the above configuration, the above-described power receiving terminal 1, power transmitting terminal 2, terminal moving mechanism 3, and current supply lead wire 4 included in the area surrounded by the chain line 19 in FIG. 1 constitute the main features of the present invention. The structure and operation details will be explained below based on FIG. 2.

第2図は第1図において鎖線19で示した部分
の拡大詳細図である。第2図から明らかなよう
に、超伝導巻線のリード18は、低温槽につなが
つている液体ヘリウム注入管14の管壁を貫いて
その先端の受電端子が断熱空間部に露出し、一
方、外殻容器の外側外壁11には、いわゆる真空
回転導入端子(電気回路でいう「端子」とは関係
ない)から成る端子移動機構3が断熱空間に向け
て配設されており、その断熱空間側の先にネジ機
構を介して電路開閉駆動片3aがはめ込まれ、そ
の電路開閉駆動片3aの先端面には、上記受電端
子1に対応して送電端子2が設けられている。送
電端子2には電流供給用リード線4が接続され、
同リード線4は外壁11を貫通する外部端子5を
介して電源に接続されるようになつている。以上
の構成において、端子移動機構3を回転駆動する
ことにより、受電端子1と送電端子2が互いに接
触・離反し、外部電源より超伝導巻線への電流が
供給・遮断される。電流の供給が遮断された状態
では、受電端子1は断熱空間内に孤立し、リード
線を通じての、外部より低温槽への熱侵入は大幅
に抑制される。
FIG. 2 is an enlarged detailed view of the portion indicated by the chain line 19 in FIG. As is clear from FIG. 2, the lead 18 of the superconducting winding penetrates the pipe wall of the liquid helium injection pipe 14 connected to the cryostat, and the power receiving terminal at its tip is exposed to the heat insulating space. On the outer wall 11 of the outer shell container, a terminal moving mechanism 3 consisting of a so-called vacuum rotation introduction terminal (not related to a "terminal" in an electric circuit) is arranged toward the heat insulating space, and a terminal moving mechanism 3 is disposed toward the heat insulating space. An electrical circuit opening/closing driving piece 3a is fitted into the tip of the electrical circuit opening/closing driving piece 3a via a screw mechanism, and a power transmitting terminal 2 is provided on the tip surface of the electrical circuit opening/closing driving piece 3a in correspondence with the power receiving terminal 1. A current supply lead wire 4 is connected to the power transmission terminal 2,
The lead wire 4 is connected to a power source via an external terminal 5 passing through the outer wall 11. In the above configuration, by rotationally driving the terminal moving mechanism 3, the power receiving terminal 1 and the power transmitting terminal 2 are brought into contact with and separated from each other, and current is supplied to and cut off from the external power source to the superconducting winding. When the supply of current is cut off, the power receiving terminal 1 is isolated in the heat insulating space, and heat intrusion from the outside into the low temperature chamber through the lead wire is significantly suppressed.

また本考案は、リード線を通じての熱侵入に対
する抑制効果をさらに向上させるために、電路開
閉装置を第3図に示すように実施することもでき
る。
Further, the present invention can also be implemented in an electrical circuit switching device as shown in FIG. 3 in order to further improve the effect of suppressing heat intrusion through the lead wires.

第3図においては、端子移動機構(後述するよ
うに第2図のものと異なる)の先端に設けた電路
開閉駆動片3bに先端を固定したワイヤー7によ
り、受電端子1と給電端子2が互いに離反させら
れた時、その両者間の空間に輻射熱遮断板6が挿
入されるようになつている。この輻射熱遮断板6
が給電端子2の先端より受電端子1へ向かう熱輻
射を遮断し、電路開閉装置の熱侵入抑制効果をさ
らに高めている。
In FIG. 3, a power receiving terminal 1 and a power feeding terminal 2 are connected to each other by a wire 7 whose tip is fixed to a circuit opening/closing drive piece 3b provided at the tip of a terminal moving mechanism (which is different from the one in FIG. 2 as described later). When they are separated, a radiant heat shielding plate 6 is inserted into the space between them. This radiant heat shield plate 6
blocks heat radiation from the tip of the power supply terminal 2 toward the power reception terminal 1, further enhancing the effect of suppressing heat intrusion into the circuit switching device.

なお、第3図における端子移動機構3は、通常
のネジ機構と、ネジ部分を通じて断熱空間へ大気
が侵入を防止するためのベローズ3cで構成され
ているが、当実施例においても端子移動機構に第
2図に示した実施例の場合と同様、真空回転導入
端子を用いることができるのは勿論である。
The terminal moving mechanism 3 in FIG. 3 is composed of a normal screw mechanism and a bellows 3c for preventing air from entering the heat insulating space through the threaded portion. Of course, as in the case of the embodiment shown in FIG. 2, a vacuum rotation introduction terminal can be used.

〈効果〉 以上の説明から明らかなように、本考案によれ
ば、低温容器の断熱空間内に機械的に電路遮断装
置が設けられているので、超伝導電磁石に電流を
供給する必要のない場合、外部より給電回路を通
じて低温槽に侵入する熱を大幅に抑制することが
でき、超伝導電磁石の寒剤である液体ヘリウムの
消費が節約される。
<Effects> As is clear from the above explanation, according to the present invention, a circuit breaker is mechanically provided within the heat insulating space of the cryogenic container, so that it is not necessary to supply current to the superconducting electromagnet. , heat entering the cryostat from the outside through the power supply circuit can be significantly suppressed, and the consumption of liquid helium, the cryogen for superconducting electromagnets, can be saved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案実施例の全体構成を示す図であ
る。第2図は上記実施例の要部を説明する詳細図
である。第3図は本考案の他の実施例の要部を説
明する詳細図である。 1……受電側端子、2……給電側端子、3……
端子移動機構、4……外部接続リード線、11…
…外殻容器、12……断熱空間、13……低温
槽、17……超伝導巻線。
FIG. 1 is a diagram showing the overall configuration of an embodiment of the present invention. FIG. 2 is a detailed diagram illustrating the main part of the above embodiment. FIG. 3 is a detailed diagram illustrating the main parts of another embodiment of the present invention. 1...Power receiving side terminal, 2...Power feeding side terminal, 3...
Terminal moving mechanism, 4...External connection lead wire, 11...
... Outer shell container, 12 ... Heat insulation space, 13 ... Low temperature chamber, 17 ... Superconducting winding.

Claims (1)

【実用新案登録請求の範囲】 (1) 液体ヘリウムを収容する低温槽と、この低温
槽のまわりに断熱空間を形成する外殻容器とを
有するデユワー瓶型低温容器の、上記低温槽内
に超伝導線が巻回されて成る超伝導電磁石であ
つて、上記断熱空間内で互いに接触・離反でき
るよう構成された受電側端子および給電側端子
と、これら受電側端子および給電側端子間の接
触と離反を外部より操作するために上記外殻容
器に配設された壁面貫通型の端子移動機構より
成る電路開閉装置を有し、上記受電側端子に上
記超伝導巻線が接続され、上記給電側端子に上
記外殻容器を貫通して外部に引き出されたリー
ド線が接続されて成ることを特徴とする、電路
開閉装置付超伝導電磁石。 (2) 端子移動機構がそれに連動する輻射熱遮断板
を有し、受電側端子と給電側端子が上記端子移
動機構により互いに離反させられたとき、上記
輻射熱遮断板が上記受電側端子と上記給電側端
子間に介在するよう構成されていることを特徴
とする、実用新案登録請求の範囲第1項に記載
の電路開閉装置付超伝導電磁石。
[Claims for Utility Model Registration] (1) A dewar bottle-type cryocontainer having a cryostat containing liquid helium and an outer shell container forming an insulating space around the cryochamber, A superconducting electromagnet formed by winding a conductive wire, with a power receiving terminal and a power feeding terminal configured to be able to contact and separate from each other within the above-mentioned adiabatic space, and a contact between the power receiving terminal and the power feeding terminal. In order to operate separation from the outside, there is provided an electric circuit opening/closing device consisting of a wall penetrating terminal moving mechanism disposed in the outer shell container, the superconducting winding is connected to the power receiving terminal, and the power supplying side A superconducting electromagnet with an electric circuit switching device, characterized in that a terminal is connected to a lead wire that penetrates the outer shell container and is drawn out to the outside. (2) The terminal moving mechanism has a radiant heat shielding plate interlocked therewith, and when the power receiving terminal and the power feeding side terminal are separated from each other by the terminal moving mechanism, the radiant heat shielding plate moves the power receiving side terminal and the power feeding side terminal away from each other. A superconducting electromagnet with an electric circuit switching device according to claim 1 of the utility model registration, characterized in that the superconducting electromagnet is configured to be interposed between terminals.
JP1985118710U 1985-08-01 1985-08-01 Expired JPH0353454Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985118710U JPH0353454Y2 (en) 1985-08-01 1985-08-01

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985118710U JPH0353454Y2 (en) 1985-08-01 1985-08-01

Publications (2)

Publication Number Publication Date
JPS6228412U JPS6228412U (en) 1987-02-20
JPH0353454Y2 true JPH0353454Y2 (en) 1991-11-22

Family

ID=31005422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985118710U Expired JPH0353454Y2 (en) 1985-08-01 1985-08-01

Country Status (1)

Country Link
JP (1) JPH0353454Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369355A (en) * 1989-08-10 1991-03-25 Jiyanisu Kogyo Kk Sheet-shaped material forming intermediate layer of ceramic decorative panel and manufacture thereof

Also Published As

Publication number Publication date
JPS6228412U (en) 1987-02-20

Similar Documents

Publication Publication Date Title
JP2010123887A (en) Superconducting apparatus
US4754249A (en) Current lead structure for superconducting electrical apparatus
JPH0353454Y2 (en)
JPS60173883A (en) Superconductive magnet
JP2952552B2 (en) Current leads for superconducting equipment
JPH07131079A (en) High-temperature superconductor current lead
JPS63292610A (en) Current supply lead for superconducting device
JPH0810937Y2 (en) Insulation support structure for current leads for cryogenic equipment
JPH04321205A (en) Current lead of superconducting device
JP2581283B2 (en) Current lead for superconducting coil
JP3316986B2 (en) Current leads for superconducting devices
CN114300218A (en) Large-air-gap ultralow-temperature power transformer structure
JPH0216704A (en) Superconducting magnet apparatus
JPH0517853Y2 (en)
JPH04332105A (en) Superconducting magnet device
JPH05267727A (en) Connecting lead of current lead for superconducting device and power supply
JP2604055B2 (en) Superconducting device
JPH07335044A (en) Superconductive cable
JPH0512873B2 (en)
JPS62142378A (en) Current lead for superconductive electromagnet device
JPS6225909Y2 (en)
JPS56150882A (en) Superconductive magnet current supplying device
JPH05167109A (en) High-temperature superconducting current lead
JPS6156855B2 (en)
JPS60207306A (en) Superconductive coil device