JPH0352753A - Complex casting method - Google Patents

Complex casting method

Info

Publication number
JPH0352753A
JPH0352753A JP19000889A JP19000889A JPH0352753A JP H0352753 A JPH0352753 A JP H0352753A JP 19000889 A JP19000889 A JP 19000889A JP 19000889 A JP19000889 A JP 19000889A JP H0352753 A JPH0352753 A JP H0352753A
Authority
JP
Japan
Prior art keywords
casting
cast
crystal
blade
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19000889A
Other languages
Japanese (ja)
Inventor
Daisaku Yoshida
大作 吉田
Takeshi Tanaka
猛 田中
Tetsuya Fukumoto
哲也 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Haumetto KK
Original Assignee
Komatsu Haumetto KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Haumetto KK filed Critical Komatsu Haumetto KK
Priority to JP19000889A priority Critical patent/JPH0352753A/en
Publication of JPH0352753A publication Critical patent/JPH0352753A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To effectively utilize material strength being suitable to the necessary characteristics in each part of a casting product and to improve creep character istic, fatigue strength and toughness by combining merits of respective casting method by using two or more kinds of the casting methods. CONSTITUTION:In each part in the integrated machining member, while manufac turing each part with the casting methods for giving the characteristics matching to need at each part in these, the process for integrating by complexing these is executed. Therefore, in the case of exemplifying a turbine wheel for small size turbine, a blade part corresponding to a second member planted may be cast with unidirectional solidification in order to utilize this alloy characteristic. Further, a disk part corresponding to a first member may be cast as making fine crystal with rotary solidifying method in order to satisfy the characteristic to be needed. In this result, the blade part has metallurgical structure with the crystal grown in stress direction and improved in creep resistance and the disk part can have uniform characteristic to the whole direction.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、求められる特性が異る部分を、それぞれに適
する金属組織として得られるようにした複合鋳造法に係
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a composite casting method in which parts having different required properties can be obtained as metal structures suitable for each part.

[従来の技術] 細密な形状で高い精度が要求される機械部材は、通常ロ
ストワックス精密鋳造法により製造されている。例えば
、小型ガスタービン用のタービンホイールのように、中
心部を形成する円形のデスクの外縁周から多数のブレー
ドが突設している形態のものは、使用材料のタービン用
合金自体が切削・加工が非常に困難な材質であるため切
削によるときは加エコストが高価になっている。そのた
め、ブレード部とデスク部とを一体化してロストワック
ス法により製作される例が多い。一般的なロストワック
ス精密鋳造法によれば、第5図に示すようなろう型を脱
ろうした鋳型Cに、溶融金属Mを注湯し、押湯をかける
。しかる後、放置冷却し第6図に示すような鋳造品Pが
得られている。しかし、このような通常結晶品の製造方
法によれば鋳造品Pは、全体として同じ結晶構造のもの
として得られている。
[Prior Art] Mechanical parts that have minute shapes and require high precision are usually manufactured by a lost wax precision casting method. For example, in the case of turbine wheels for small gas turbines, which have many blades protruding from the outer periphery of a circular disk that forms the center, the turbine alloy used itself is cut and processed. Since it is a very difficult material to cut, machining is expensive. Therefore, there are many examples in which the blade part and the desk part are integrated and manufactured by the lost wax method. According to the general lost wax precision casting method, a molten metal M is poured into a mold C which has been dewaxed from a wax mold as shown in FIG. 5, and a riser is applied. Thereafter, it was left to cool and a cast product P as shown in FIG. 6 was obtained. However, according to such a manufacturing method for a normal crystal product, the cast product P is obtained as having the same crystal structure as a whole.

[発明が解決しようとする課題] 従って、例えばデスク部およびブレード部からなるター
ビンホイールにおけるデスク部のような第一部材とそれ
に取付くブレード部のような第二部材とからなる機械部
材では、従来法による限りは第一部材と第二部材とは全
体として同じ結晶構造より鋳造されることとなり、例え
ばタービンホイールのような第一部材のデスク部と第二
部材のブレード部にみるごとく、各部分の特性に差異が
求められる場合でもやむを得ず平均的な結晶構造により
析出させ、以後は局部的な熱処理等により所要の機能を
充足するための加工を余儀なくされている。
[Problems to be Solved by the Invention] Therefore, for example, in a turbine wheel consisting of a disk portion and a blade portion, a mechanical member consisting of a first member such as a disk portion and a second member such as a blade portion attached thereto is conventionally As far as the method is concerned, the first part and the second part are cast from the same crystal structure as a whole; for example, in a turbine wheel, the desk part of the first part and the blade part of the second part have different parts. Even when a difference in properties is required, it is unavoidable to precipitate with an average crystal structure, and then to process it by local heat treatment etc. to satisfy the required function.

[課題を解決するための手段] 本発明は、前述した従来法の問題点を解消して第一部材
または第二部材について、それぞれに求められる特性を
保持させるためになされたものである。すなわち、第一
部材および第二部材にそれぞれ最も適応した鋳造手段を
採りつつ一体鋳造と3 する複合鋳造法を提案する。
[Means for Solving the Problems] The present invention has been made in order to solve the problems of the conventional method described above and to allow the first member or the second member to maintain the characteristics required for each. That is, we propose a composite casting method that employs the most suitable casting means for the first and second members, and performs monolithic casting.

従って、本発明は、 (a)第一部材に付設される第二部材を、鋳物合金によ
りその第二部材の機能に適応する結晶析出状態を制御で
きる凝固法を用いて所定の鋳造法により鋳造し、 (b)鋳造せられた第二部材の結合部を、第一部材の所
定位置にさせて第一部材のろう型を作成し、(c)第一
部材の所定位置に第二部材が植設された状態で鋳型を形
成し、しかる後、前記ろうを脱ろうし、 (d)第一部材を、鋳物合金によりその機能に適応した
結晶析出状態を制御できる凝固法を用いて、前記第二部
材の結合部を鋳ぐるむ状態で鋳造する、 ことにより、第二部材については、例えば一方向性凝固
結晶となし、また第一部材については、例えば微細化処
理結晶とした鋳造製品を一体的につくりだすのである。
Therefore, the present invention provides: (a) Casting a second member attached to the first member by a predetermined casting method using a solidification method that can control the crystal precipitation state adapted to the function of the second member using a casting alloy. (b) creating a wax mold of the first member by placing the joint portion of the cast second member in a predetermined position on the first member; (c) placing the second member in a predetermined position on the first member; forming a mold in the implanted state, then dewaxing the solder; Casting is carried out in a state where the joint of the two members is surrounded by casting, whereby the second member is made into, for example, a unidirectionally solidified crystal, and the first member is made into an integrated cast product, for example, with a finely treated crystal. It is created with a purpose.

[発明の作用] 4 本発明方法では、一体の機械部材中の各部において、こ
れらの部分ごとの二−ズに合った特性を付与することが
できる鋳造方法により各部をつくりだしながら、これら
を複合して一体化する工程がとられる。従って、小型ガ
スタービン用タービンホイールに例をとれば、植設され
る第二部材に相当するブレード部は、その合金特性を生
かすために一方向性凝固による鋳造が可能であり、また
第一部材に相当するデスク部は、求められる特性を満足
させるために回転凝固法による微細化結晶とする鋳造が
可能となった。その結果、第二部材であるブレード部は
、応力方向に結晶が戒長し、耐クリープ性が向上した金
属組織となっており、第一部材であるデスク部は、回転
凝固法を用いることにより金属結晶を微 細化し、゛全
方向に対し均等な性質を持たせることができ、凝固を遠
心方向に生威させた場合に得られる特性に近付けること
ができる。
[Function of the invention] 4 In the method of the present invention, each part in an integrated mechanical member is created by a casting method that can impart characteristics that suit the needs of each part, and then composited. A step is taken to integrate them. Therefore, taking the example of a turbine wheel for a small gas turbine, the blade part corresponding to the second member to be implanted can be cast by unidirectional solidification to take advantage of its alloy properties, and the first member can be cast by unidirectional solidification. In order to satisfy the required properties, the desk part corresponding to the above can be cast into fine crystals using the rotational solidification method. As a result, the blade part, which is the second member, has a metal structure with crystals lengthened in the stress direction and has improved creep resistance, and the desk part, which is the first member, has a metal structure that has improved creep resistance. By making metal crystals finer, it is possible to give them properties that are uniform in all directions, making it possible to approach the properties obtained when solidification occurs in the centrifugal direction.

[実 施 例] 以下、本発明の実施の具体例につき説明する。[Example] Hereinafter, specific examples of implementing the present invention will be described.

5 本発明方法により小型ガスタービン用タービンボイール
を製作した。このものは、第一部材であるデスク部につ
いては、自体が高速回転するから靭性に富み、低サイク
ル疲労に対する耐久性がすぐれている必要がある。また
、第一部材から突出する第二部材である各ブレードは、
高速回転に伴って大きな遠心力の影響を受けるから通常
結晶となる凝固状態では引張強度が不足するからこの状
態を回避する必要がある。
5 A turbine boiler for a small gas turbine was manufactured by the method of the present invention. In this case, the first member, the desk part, must have high toughness and excellent durability against low cycle fatigue since it rotates at high speed. Further, each blade, which is a second member protruding from the first member,
Since it is affected by a large centrifugal force due to high-speed rotation, it is necessary to avoid this state because it lacks tensile strength in the solidified state where it normally becomes a crystal.

(1)ブレードの作成 この実施例におけるブレードは、冷却効果を上げるとと
もに蓄熱性を低減するために中空部を含んでいる。この
中空部はセラミック中子によりつくりだす。セラミック
中子はアルミナ、ジルコン、スピネル等の微粉末を骨材
とし、無機質または有機質のバインダを用いて或形した
。このセラξツク中子を、所定の中空部が形成される位
置にセットしてろう模型を戒形し、鋳型とした後脱ろう
した。そして、一方向性凝固結晶が得られるように結晶
制御装置を用いてブレードを製作した。すな6 わち、第1図に示すように鋳型Cの下部を水冷板2によ
り冷却可能とし、溶融金属Mを注湯する。
(1) Creation of the blade The blade in this example includes a hollow portion in order to increase the cooling effect and reduce heat accumulation. This hollow part is created by a ceramic core. The ceramic core was formed using fine powder of alumina, zircon, spinel, etc. as an aggregate and an inorganic or organic binder. This ceramic core was set at a position where a predetermined hollow portion would be formed, a wax model was formed, a mold was made, and the wax was removed. Then, a blade was manufactured using a crystal control device so as to obtain unidirectionally solidified crystals. 6 That is, as shown in FIG. 1, the lower part of the mold C can be cooled by a water cooling plate 2, and the molten metal M is poured into it.

そして、この状態で鋳型Cを高周波加熱装置3による加
熱雰囲気H中を降下させる。鋳型Cが高周波加熱装置3
を過ぎた部分からは放熱hが行われ、鋳型C内の溶融金
属Mは、は放熱h域に達して凝固する。第1図にlとし
て凝固線が示されている。
Then, in this state, the mold C is lowered into the heating atmosphere H by the high-frequency heating device 3. Mold C is high frequency heating device 3
Heat radiation h is performed from a portion past h, and the molten metal M in the mold C reaches the heat radiation h region and solidifies. The coagulation line is shown as l in FIG.

このように方向性を保たせながら凝固させることができ
る結晶制御装置10を用いることにより、一方向性凝固
結晶となった金属組織を有する部材11が得られる(第
2図参照。) ついで、セラミック中子を保持したままのブレードから
水酸化ナトリウム、フッ化アンモニウム、フッ化水素等
の溶剤によりセラミック中子を除去した。この第二部材
としてのブレード部を、第7図に示すように鋳型C中に
溶融金属Mを注湯し、冷却後に鋳造品を取出す従来の方
法により、鋳造すれば、得られる部材l1は通常結晶の
金属組織のものとなる。この部材は第8図に示すように
、金属組織は通常結晶となっており、結晶は方向性を有
していない。
By using the crystal control device 10 that can solidify while maintaining the directionality in this way, a member 11 having a metal structure with a unidirectionally solidified crystal can be obtained (see FIG. 2). The ceramic core was removed from the blade while holding the core using a solvent such as sodium hydroxide, ammonium fluoride, or hydrogen fluoride. If the blade part as the second member is cast by the conventional method of pouring molten metal M into a mold C and taking out the cast product after cooling as shown in FIG. 7, the obtained member l1 is usually It has a crystalline metal structure. As shown in FIG. 8, the metal structure of this member is usually crystalline, and the crystals have no directionality.

(2)デスクの作戒 前記のようにして得られたブレードをろう模型ブレード
の代りに用いて、従来の一体ロータの組立て方法に準じ
てデスクのろう模型を威形した。
(2) Preparation of the desk The blade obtained as described above was used in place of the wax model blade, and a wax model of the desk was made according to the conventional method for assembling an integral rotor.

そして、植設された多数のブレードとともに、吹付けま
たは浸漬等により鋳型材のコーティングを行い、鋳型と
した。脱ろう後、製品として得られた後に要求される特
性に適応した鋳物合金を用い、回転凝固法により各ブレ
ードの結合部をそれぞれ鋳ぐるむ状態でデスクを鋳造す
る。
Then, along with a large number of implanted blades, a mold material was coated by spraying or dipping to form a mold. After dewaxing, the disk is cast using a rotary solidification method, using a casting alloy that matches the properties required after the product is obtained, with the joints of each blade being individually cast.

この鋳造法に際しては、第3図に示すように一方向性凝
固結晶組織の第二部材に相当する部材11を所要部にセ
ットした鋳型Cに溶融金属Mを注湯する。注湯後、この
鋳型Cに対して回転R、振動B等を与え、静止状態での
凝固を抑止する。このようにすることにより結晶は前記
第二部材に相当する部材11の結合部1Fを鋳ぐるみな
がら鋳型Cに接する各部から凝固し、第4図に示すよう
に微細化された結晶の金属組織をもつ製品12となる。
In this casting method, as shown in FIG. 3, molten metal M is poured into a mold C in which a member 11 corresponding to the second member with a unidirectional solidification crystal structure is set at a required position. After pouring the metal, rotation R, vibration B, etc. are applied to the mold C to prevent solidification in a stationary state. By doing this, the crystal solidifies from each part in contact with the mold C while casting the joint part 1F of the member 11 corresponding to the second member, and the metal structure of the refined crystal is formed as shown in FIG. This is product 12.

この結晶の微細化は溶融金属Mの注湯後に、鋳型Cに付
与する回転、振動の度合いにより制御できる。
This crystal refinement can be controlled by the degree of rotation and vibration applied to the mold C after pouring the molten metal M.

(3)複合鋳造品 このように、本発明方法により得られる、例えばタービ
ンホイールでは、ブレードは一方向性結晶、デスクは微
細化結晶とした金属組織が複合された一体製品となる。
(3) Composite casting product As described above, for example, a turbine wheel obtained by the method of the present invention is an integral product in which the metal structure is composite, with the blade having a unidirectional crystal and the disk having a fine crystal structure.

本実施例にみるようなタービンホイルまたはタービンノ
ズル等の複合鋳造法においては、第一部材が第二部材の
結合部を鋳ぐるむに際して、結合部に遠心方向への抜け
止めとなる逆勾配を設けるのがよいが、第一部材の鋳造
時に回転および/または振動させながら凝固を行うので
、溶湯の流動がスムーズに行れる形状としなければない
。さらに、第一部材と第二部材との結合部分において、
第二部材の結合部を第一部材に溶け込まさない手段と溶
け込ませる手段との両手段が採用できる。
In the composite casting method for turbine foils, turbine nozzles, etc. as shown in this example, when the first member is cast around the joint part of the second member, a reverse gradient is created in the joint part to prevent it from coming off in the centrifugal direction. However, since the first member is solidified while being rotated and/or vibrated during casting, the shape must be such that the molten metal can flow smoothly. Furthermore, in the joint portion between the first member and the second member,
It is possible to adopt both a means of not melting the joint portion of the second member into the first member and a means of melting the joint portion of the second member into the first member.

第一部材に溶け込ませないときは、第二部材の結合部に
ニッケル、プラチナ、クロム等の高融点金9一 属のメッキを施せばよく、また溶け込ませるときは第一
部材の脱ろう焼或後のスケールを除去し、酸洗いにより
クリーニングするかもしくは結合部をアルミナイズ加工
し、これを第一部材鋳造用の溶湯により溶去させるとよ
い。この実施例においては、第二部材を一方向性凝固結
晶として予め鋳造しているため、従来の一体鋳造におけ
る等軸結晶の場合に比べ、650〜750℃における引
張強さ( kgf/mm”)は、6〜7%程向上し、同
じ温度における破断時のストレスは約20%増している
。また第一部材を回転凝固により微細化処理するときは
、従来の一体鋳造における等軸結晶の場合に比べ、41
0〜430℃における引張強さ( kgf/mm”)は
約16%向上し、同一荷重のもとにおける低サイクル疲
労については、その強度が5〜6倍増している。
If it cannot be melted into the first member, the joint part of the second member may be plated with a high-melting point metal such as nickel, platinum, or chromium. It is preferable to remove the remaining scale and clean it by pickling, or to aluminize the joint, and to dissolve it with the molten metal for casting the first member. In this example, since the second member is cast in advance as a unidirectionally solidified crystal, the tensile strength at 650 to 750°C (kgf/mm") is higher than in the case of equiaxed crystal in conventional monolithic casting. has improved by about 6 to 7%, and the stress at break at the same temperature has increased by about 20%.Also, when the first member is refined by rotational solidification, it is difficult to obtain compared to 41
The tensile strength (kgf/mm'') at 0 to 430°C is improved by about 16%, and the low cycle fatigue strength under the same load is increased by 5 to 6 times.

[効 果] 本発明方法によれば、少なくとも二種類の鋳造法を用い
てそれぞれの鋳造法、例えば一方向性凝固、回転凝固等
の利点を組合せることにより、以1 〇一 下のような効果が得られた。
[Effects] According to the method of the present invention, by using at least two types of casting methods and combining the advantages of each casting method, such as unidirectional solidification and rotational solidification, the following effects can be achieved. It worked.

(1)鋳造品の各部における必要な特性に適合する材料
強度を有効に生かすことが可能となり、鋳造品のクリー
プ特性、疲労強度、靭性が向上する。
(1) It becomes possible to effectively utilize the material strength that matches the required properties in each part of the cast product, and the creep characteristics, fatigue strength, and toughness of the cast product are improved.

(2)複数部材間の位置決め精度の高い鋳造品が得られ
る。
(2) A cast product with high positioning accuracy between multiple members can be obtained.

(3)第二部材の結合部を、第一部材へ溶け込ませる手
段でも、溶け込ませない手段であっても、第二部材は第
一部材に確実に結合できる。
(3) The second member can be reliably joined to the first member, whether by means of melting the joint portion of the second member into the first member or by means of not melting it into the first member.

(4)異種合金の組合せ鋳造が可能となる。(4) Combination casting of different alloys becomes possible.

(5)中空構造を有する一体鋳造品の鋳造が容易となる
(5) It becomes easy to cast an integrally cast product having a hollow structure.

(6)オーバーハング部分を有する複数部材の組合せ鋳
造が可能となる。
(6) Combination casting of multiple members having overhang portions is possible.

従って、本発明方法により得られる一実施例としての小
型ガスタービン用タービンホイールは前述の特性のもの
が得られ、他にもそれぞれのニーズに合った多様な特性
を組合わせた鋳造を実現するもので、産業上の利用性は
大きい。
Therefore, the turbine wheel for a small gas turbine as an example obtained by the method of the present invention has the above-mentioned characteristics, and can also be cast with a combination of various characteristics that meet each individual's needs. Therefore, it has great industrial applicability.

1 1−1 1-

【図面の簡単な説明】[Brief explanation of drawings]

第1〜第4図は本発明の実施の一興体例を示す図で、第
1図は一方向性凝固結晶を得る手段の説明図、第2図は
同手段により得られた部材の結晶状態を示す図、第3図
は微細化結晶を得る手段の説明図、第4図は同手段によ
り得られた製品の結晶状態を示す図、第5図および第7
図は従来法による鋳造の断説明図で、第6図および第8
図はそれぞれ第5図および第7図に示す従来法により得
られる鋳造品の結晶状態を示す図である。 1・・・ 3・・・ 10・・・ 11・・・ H・・・ ■・・・ 凝固線 高周波加熱装置 結晶制御装置 部材 溶融金属 加熱雰囲気 2・・・水冷板 12・・・製品 C・・・鋳型 h・・・放熱 l2 第1 図 第2図 M 第3図 12 第4 図 第5図 第7図 第6図 第8図
1 to 4 are diagrams showing an example of the implementation of the present invention. FIG. 1 is an explanatory diagram of a means for obtaining unidirectionally solidified crystals, and FIG. 2 is an illustration of the crystal state of a member obtained by the same means. Figure 3 is an explanatory diagram of the means for obtaining fine crystals, Figure 4 is a diagram showing the crystalline state of the product obtained by the same means, Figures 5 and 7 are
The figure is a cross-sectional view of casting by the conventional method, and Figures 6 and 8
The figures show the crystalline state of the cast products obtained by the conventional method shown in FIGS. 5 and 7, respectively. 1... 3... 10... 11... H... ■... Coagulation wire high frequency heating device Crystal control device parts Molten metal heating atmosphere 2... Water cooling plate 12... Product C. ...Mold h...Heat radiation l2 Fig. 1 Fig. 2 M Fig. 3 12 Fig. 4 Fig. 5 Fig. 7 Fig. 6 Fig. 8

Claims (1)

【特許請求の範囲】 (a)第一部材に付設される第二部材を、鋳物合金によ
りその第二部材の機能に適応する結晶析出状態を制御で
きる凝固法を用いて所定の鋳造法により鋳造し、 (b)鋳造せられた第二部材の結合部を第一部材の所定
位置にさせて第一部材のろう型を作成し、 (c)第一部材の所定位置に第二部材が植設された状態
で鋳型を形成し、しかる後、前記ろうを脱ろうし、 (d)第一部材を鋳物合金によりその機能に適応する結
晶析出状態を制御できる凝固法を用いて、前記第二部材
の結合部を鋳ぐるむ状態で鋳造する、 ことを特徴とする複合鋳造法。
[Scope of Claims] (a) A second member attached to the first member is cast by a predetermined casting method using a solidification method that can control the state of crystal precipitation adapted to the function of the second member using a casting alloy. (b) creating a wax mold of the first member by placing the joint portion of the cast second member in a predetermined position on the first member; (c) implanting the second member in a predetermined position on the first member; (d) solidifying the first member with a casting alloy using a solidification method capable of controlling the state of crystallization to adapt the function of the first member to the second member; A composite casting method characterized by casting in a state where the joints of the parts are covered.
JP19000889A 1989-07-20 1989-07-20 Complex casting method Pending JPH0352753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19000889A JPH0352753A (en) 1989-07-20 1989-07-20 Complex casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19000889A JPH0352753A (en) 1989-07-20 1989-07-20 Complex casting method

Publications (1)

Publication Number Publication Date
JPH0352753A true JPH0352753A (en) 1991-03-06

Family

ID=16250844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19000889A Pending JPH0352753A (en) 1989-07-20 1989-07-20 Complex casting method

Country Status (1)

Country Link
JP (1) JPH0352753A (en)

Similar Documents

Publication Publication Date Title
US4008052A (en) Method for improving metallurgical bond in bimetallic castings
EP0398895B1 (en) Casting turbine components with integral airfoils
US3847203A (en) Method of casting a directionally solidified article having a varied composition
JPH0251704B2 (en)
US9802248B2 (en) Castings and manufacture methods
JPS58138554A (en) Method and mold for preparing casted single crystal
US3598167A (en) Method and means for the production of columnar-grained castings
CN107130237A (en) Utilize the casting of metal parts and metal skin layer
KR980000704A (en) How to Form Product Extensions by Casting with Ceramic Molds
US5312584A (en) Moldless/coreless single crystal castings of nickel-aluminide
US9616489B2 (en) Casting pattern
EP2859968B1 (en) Process for casting a turbine wheel
CN109351951B (en) Process method for reducing loosening defect of single crystal blade platform
EP0873803B1 (en) Production process of wax pattern
GB2346340A (en) A ceramic core, a disposable pattern, a method of making a disposable pattern, a method of making a ceramic shell mould and a method of casting
JP2003520313A (en) Turbine blade and method of manufacturing turbine blade
EP2859969A2 (en) Process for making a turbine wheel and shaft assembly
JP3937460B2 (en) Precast casting method
JPH0352753A (en) Complex casting method
US3985176A (en) Unitary pattern assembly method
JP3395019B2 (en) Manufacturing method of single crystal blade for gas turbine
JPH1085928A (en) Formation of extending part of product by melting mandrel in ceramic mold
Newman et al. Titanium and titanium alloys
JP2002283043A (en) Method for producing turbine blade having unidirectional solidified columnar crystal structure and turbine blade produced by the method
JP2002331353A (en) Manufacturing method for casting having fine unidirectional solidified columnar crystal structure