JPH0348268B2 - - Google Patents

Info

Publication number
JPH0348268B2
JPH0348268B2 JP62312509A JP31250987A JPH0348268B2 JP H0348268 B2 JPH0348268 B2 JP H0348268B2 JP 62312509 A JP62312509 A JP 62312509A JP 31250987 A JP31250987 A JP 31250987A JP H0348268 B2 JPH0348268 B2 JP H0348268B2
Authority
JP
Japan
Prior art keywords
cleaning
gas
fluorine
clf
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62312509A
Other languages
Japanese (ja)
Other versions
JPH01152274A (en
Inventor
Satoshi Watanabe
Chitoshi Nogami
Makoto Horiguchi
Hiroshi Kawabata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Corp filed Critical Iwatani Corp
Priority to JP31250987A priority Critical patent/JPH01152274A/en
Publication of JPH01152274A publication Critical patent/JPH01152274A/en
Publication of JPH0348268B2 publication Critical patent/JPH0348268B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、例えば、半導体、太陽電池、感光体
ドラム等の製造で使用される薄膜形成用のCVD
炉、PVD炉などの稼働に際して、基板などの目
的物以外の炉内壁や治具類などに付着したアモル
フアスSi、BNなどをNF3、CF4などのフツ素系
クリーニングガスでクリーニングした後に、今度
は炉内に残留して、次回に形成される薄膜を汚染
するフツ素系物質などを除去する方法に関し、迅
速且つ強力に汚染物質を除去できるうえ、安価に
実施できるものを提供する。
Detailed Description of the Invention <Industrial Application Field> The present invention is applicable to, for example, CVD for forming thin films used in the manufacture of semiconductors, solar cells, photoreceptor drums, etc.
When operating a furnace, PVD furnace, etc., after cleaning the amorphous Si, BN, etc. that adhered to the furnace inner wall and jigs other than the target object such as the substrate with a fluorine-based cleaning gas such as NF 3 or CF 4 , The present invention relates to a method for removing fluorine-based substances that remain in a furnace and contaminate a thin film to be formed next time, and provides a method that can quickly and powerfully remove contaminants and can be carried out at low cost.

<従来技術> 上記膜形成操作系において汚染成分を除去する
公知技術としては、昭和62年10月に開催された第
48回応用物理学会の予稿集第277頁、19a−C−
4に開示された方法がある。
<Prior art> As a known technique for removing contaminant components in the above-mentioned film forming operation system, the
Proceedings of the 48th Japan Society of Applied Physics, p. 277, 19a-C-
There is a method disclosed in No. 4.

即ち、GD法により基板上にアモルフアスSi薄
膜を形成した場合、基板以外の反応室の内壁にも
当該アモルフアスSi膜が付着するので、NF3ガス
でプラズマクリーニングしてこの内壁付着Siを排
除しているが、NF3ガスのプラズマ化で生じるN
−F活性物質、フツ素イオン或いはフツ素ラジカ
ルなどのフツ素系物質が今度は反応室の内壁に残
留する結果、次回に形成されるアモルフアスSi膜
に上記フツ素系物質が付着してこれを汚染してし
まう。
That is, when an amorphous Si thin film is formed on a substrate by the GD method, the amorphous Si film also adheres to the inner wall of the reaction chamber other than the substrate, so plasma cleaning with NF 3 gas is performed to remove this Si adhering to the inner wall. However, N generated when NF3 gas becomes plasma
As a result of the fluorine-based substances such as -F active substances, fluorine ions, or fluorine radicals remaining on the inner wall of the reaction chamber, the above-mentioned fluorine-based substances adhere to the amorphous Si film to be formed next time. It gets contaminated.

そこで、このSi膜へのフツ素汚染を防止するた
め、NF3クリーニング後に反応室に活性な水素の
プラズマガスを導入して、フツ素系物質を除去し
ている。
Therefore, in order to prevent fluorine contamination of the Si film, active hydrogen plasma gas is introduced into the reaction chamber after NF 3 cleaning to remove fluorine-based substances.

<発明が解決しようとする問題点> しかしながら、上記公知技術では、水素のプラ
ズマガスを用いるために、NF3ガスによるプラズ
マクリーニングに引き続いて、水素ガスのプラズ
マ化のための高周波電力を必要とすることにな
り、ランニングコストが高くなる。
<Problems to be Solved by the Invention> However, in the above-mentioned known technology, since hydrogen plasma gas is used, high frequency power is required to turn hydrogen gas into plasma following plasma cleaning with NF 3 gas. This results in higher running costs.

また、上記予稿集の図1によれば、略1時間
NF3ガスによるプラズマクリーニングをした直後
の反応室(即ち、フツ素汚染されている反応室)
にて薄膜形成されたアモルフアスSi膜の暗伝導度
(この膜を当初分とする、また、暗伝導度は膜の
フツ素濃度に比例して増加する。)は略2×10-7
(Ωcm)-1を示すのに比べて、NF3ガスによるプラ
ズマクリーニングと水素によるプラズマ処理を併
用した反応室で(即ち、汚染フツ素系物質を除去
してから)薄膜形成されたアモルフアスSi膜(こ
の膜を第1回分とする)の暗伝導度は8×10-8
(Ωcm)-1を示して、当初分より若干低い数値を示
すだけである。
Also, according to Figure 1 of the above-mentioned proceedings, approximately 1 hour
Reaction chamber immediately after plasma cleaning with NF3 gas (i.e., reaction chamber contaminated with fluorine)
The dark conductivity of the amorphous Si film formed as a thin film (this film is taken as the initial value, and the dark conductivity increases in proportion to the fluorine concentration of the film) is approximately 2 × 10 -7
(Ωcm) -1 , compared to the amorphous Si film formed as a thin film in a reaction chamber that combined plasma cleaning with NF 3 gas and plasma treatment with hydrogen (i.e., after removing contaminant fluorine-based substances). The dark conductivity of (this film is the first batch) is 8×10 -8
(Ωcm) -1 , which is only a slightly lower value than the initial value.

また、上記第1回目のアモルフアスSi膜に再び
水素のプラズマ処理を施したSi膜(この膜を第2
回分とする)の暗伝導度は略2×10- 9(Ωcm)-1
示し、当初分より大幅に低下している(即ち、フ
ツ素系物質は大幅に除去されている)。
In addition, the first amorphous Si film was subjected to hydrogen plasma treatment again (this film was replaced with a second Si film).
The dark conductivity of the sample (batch) was approximately 2× 10 -9 ( Ωcm) -1 , which was significantly lower than the initial value (that is, the fluorine-based substances were largely removed).

従つて、水素プラズマ処理の効果は、第1回目
では顕著には現れず、ようやく第2回目で顕著に
なつてフツ素系物質が大幅に除去されることが判
る。
Therefore, it can be seen that the effect of hydrogen plasma treatment is not noticeable in the first treatment, but becomes noticeable in the second treatment, and fluorine-based substances are removed to a large extent.

このことは、NF3クリーニング直後(即ち、当
初)における反応室内のフツ素系物質の汚染濃度
は、10000ppmであつたのが、第1回目のH2プラ
ズマ処理後には100ppm、第2回処理後には10〜
20ppmになることからも理解できる。
This means that the contamination concentration of fluorine-based substances in the reaction chamber immediately after NF 3 cleaning (i.e., at the beginning) was 10,000 ppm, but after the first H 2 plasma treatment it was 100 ppm, and after the second treatment it was 10000 ppm. is 10~
This is understandable since it is 20ppm.

本発明は、クリーニングガスに起因する反応室
内の汚染を迅速且つ強力に除去するとともに、安
価に実施することを技術的課題とする。
The technical problem of the present invention is to quickly and powerfully remove contamination in a reaction chamber caused by cleaning gas, and to do so at low cost.

<問題点を解決するための手段> 本発明者等は、薄膜形成後におけるCVD炉の
クリーニングをClF3ガスで行つた後に、炉内に
残留する汚染フツ素系物質は、H2のプラズマレ
ス処理で迅速に除去できることを発見し、本発明
を完成した。
<Means for solving the problem> The present inventors have discovered that after cleaning the CVD furnace after forming a thin film with ClF 3 gas, the contaminated fluorine-based substances remaining in the furnace can be removed using H 2 plasma-free cleaning. They discovered that it can be quickly removed through treatment and completed the present invention.

即ち、本発明は、少なくとも一部が金属類物質
又はその化合物から成る部材を製造した処理操作
系内にフツ素系クリーニングガスを導入して、そ
の処理操作系内の金属類物質又はその化合物の一
部をクリーニング処理した後に、当該クリーニン
グガスから生じて処理操作系に残留する汚染物質
を除去する、膜形成操作系におけるクリーニング
後の汚染除去方法において、 上記フツ素系クリーニングガスがClF、ClF3
ClF5のうちの少なくとも一種を含有するガスで
あつて、クリーニング後の処理操作系に全体が分
子状態にある水素を流して、汚染物質を水素分子
で除去することを特徴とするものである。
That is, the present invention introduces a fluorine-based cleaning gas into a processing operation system in which a member at least partially made of a metallic substance or a compound thereof is manufactured, and removes the metallic substance or its compound in the processing operation system. In a method for removing contamination after cleaning in a film forming operation system, which removes contaminants generated from the cleaning gas and remaining in the treatment operation system after a part of the cleaning gas is cleaned, the fluorine-based cleaning gas is ClF, ClF 3 ,
It is a gas containing at least one type of ClF 5 and is characterized by flowing hydrogen, which is entirely in a molecular state, through the treatment system after cleaning to remove contaminants with hydrogen molecules.

上記金属類物質とは、化学的な意味での狭義の
金属及びこれに類するものを指し、具体的には、
Si(単結晶或いはアモルフアス)、Ti、Wなどを
意味する。
The above-mentioned metallic substances refer to metals in a narrow chemical sense and similar substances, and specifically,
It means Si (single crystal or amorphous), Ti, W, etc.

また、金属類物質の化合物とは主にセラミツク
スを意味し、具体的には、SiO2、TiO2などの金
属類物質の酸化物、Si3N4、TiN、BNなどの金
属類物質の窒化物、アモルフアスSiC、TiCなど
の炭化物などを指す。
Compounds of metallic substances mainly mean ceramics, specifically oxides of metallic substances such as SiO 2 and TiO 2 , and nitrides of metallic substances such as Si 3 N 4 , TiN, and BN. This refers to carbides such as amorphous SiC and TiC.

従つて、少なくとも一部が金属類物質又はその
化合物から成る部材とは、例えば、ウエハーの上
にアモルフアスSi或いはSi3N4などの薄膜を形成
した部材を意味し、当該部材の製造操作系とは、
例えば半導体、太陽電池、感光体ドラムなどの製
造プロセスにおける薄膜形成用のCVD炉、PVD
炉、溶射炉などを意味する。
Therefore, a member at least partially made of a metallic substance or a compound thereof means, for example, a member in which a thin film of amorphous Si or Si 3 N 4 is formed on a wafer, and the manufacturing operation system of the member teeth,
For example, CVD furnaces and PVD for forming thin films in the manufacturing process of semiconductors, solar cells, photoreceptor drums, etc.
Refers to furnace, spraying furnace, etc.

上記フツ素系クリーニングガスは、フツ素塩素
を含有するガスであつて、ClF、ClF3、ClF5
(ClF3が最も安定で、取り扱い・貯蔵がし易い。)
のいずれか或いはこれらの複合ガスを含むものを
意味するが、実際にはこれを不活性なN2ガスや
Ar、Heなどの希ガスで希釈したものを用いる。
The above-mentioned fluorine-based cleaning gas is a gas containing fluorine-chlorine, and includes ClF, ClF 3 , ClF 5
(ClF 3 is the most stable and easy to handle and store.)
or a combination of these gases, but in reality, it can be replaced with inert N 2 gas or a combination of these gases.
Use one diluted with a rare gas such as Ar or He.

そして、クリーニングガスとして、他の物質を
フツ素化、塩素化する能力が極めて高いフツ化塩
素系のガスを用いることにより、プラズマせずに
クリーニングを行なうことが可能であり、本発明
の効果を一層高めるものである。
By using a fluorinated chlorine-based gas that has an extremely high ability to fluorinate and chlorinate other substances as a cleaning gas, cleaning can be performed without plasma, and the effects of the present invention can be achieved. This is something that will further enhance this.

上記クリーニングの対象になる製造操作系内と
は、操作系内でフツ素汚染される部位を示し、前
記部材の表面或いは製造装置の内壁表面や治具類
などの付属物の表面又はこれらの表面寄りの内部
を意味する。
The inside of the manufacturing operation system that is subject to the above cleaning refers to the parts of the operation system that are contaminated with fluorine, and includes the surfaces of the above-mentioned members, the inner wall surfaces of the manufacturing equipment, the surfaces of accessories such as jigs, or these surfaces. It means the inside of the area.

フツ化塩素クリーニングによる上記汚染物質と
は、F・、F-などのフツ素系物質やCl・、Cl-
どを意味する。
The above-mentioned contaminants caused by chlorine fluoride cleaning refer to fluorine-based substances such as F. and F - , Cl., Cl - and the like.

上記汚染物質を除去する水素は、全体が分子状
態にあるH2であつて、プラズマ化されてプロト
ンH+や水素原子Hに励起された水素は含まない
ものであつて、実際に処理操作系に流す場合には
不活性なN2ガスやAr、Heなどの希ガスで希釈し
て行うことが好ましい。
The hydrogen used to remove the above contaminants is H2 , which is entirely in the molecular state, and does not contain hydrogen that has been converted into plasma and excited into protons H + or hydrogen atoms H, and is not used in the actual treatment operation system. When flowing into the atmosphere, it is preferable to dilute with inert N 2 gas or a rare gas such as Ar or He.

従つて、操作系内に残留する上記汚染物質は、
あくまで水素のプラズマレス処理によつて除去さ
れるのである。
Therefore, the above contaminants remaining in the operating system are
It is only removed by hydrogen plasma-less processing.

<作用> CVD炉によりソーダガラス基板の上にアモル
フアスSiの薄膜を形成する操作系を例にとると、
フツ化塩素によつてクリーニングされた薄膜形成
操作系内には、F・、F-、Cl・、Cl-などの汚染
物質が残留しているが、この操作系内に分子状態
にある水素、即ち、プラズマ化されることなく水
素ボンベから直接供給された水素を導入すると、
水素が当該汚染物質に作用して、操作系内の内壁
表面やアモルフアスSiの表面と汚染物質との間の
化学結合を切断し、汚染物質を水素との結合を新
たに形成して、操作系外に汚染物質を排除するも
のと推定できる。
<Operation> Taking as an example an operation system that forms a thin film of amorphous Si on a soda glass substrate using a CVD furnace,
Contaminants such as F, F - , Cl, and Cl - remain in the thin film forming operation system that has been cleaned with chlorine fluoride, but hydrogen in the molecular state, In other words, when hydrogen is introduced directly from a hydrogen cylinder without being turned into plasma,
Hydrogen acts on the contaminant, breaks the chemical bond between the contaminant and the inner wall surface in the operating system or the surface of the amorphous Si, and forms a new bond with hydrogen, which causes the contaminant to dissolve in the operating system. It can be assumed that this removes pollutants from outside.

この結果、次にこの操作系内でアモルフアスSi
の薄膜形成操作を行うと、汚染物質が排除されて
いるので、Si膜に対するF・、F-、Cl・、Cl-
どによる汚染の影響はなく、高純度のアモルフア
スSi膜を円滑に製造できる。
As a result, amorphous Si is then used within this operating system.
When performing the thin film formation operation, contaminants are removed, so there is no effect of contamination from F, F - , Cl, Cl - on the Si film, and a high purity amorphous Si film can be produced smoothly. .

<実施例> 半導体製造工場などにおける実際の汚染除去操
作では、例えばアモルフアスSiの薄膜形成で使用
されるCVD炉或いはPVD炉などの内部におい
て、 (1) アモルフアスSiの薄膜形成 (2) ClF3ガスによるクリーニング (3) H2ガスによる汚染物質の除去 の各工程が順番に行われるが、当該汚染除去実験
においては、便宜上、ClF3クリーニング装置を
利用して実験することにした。
<Example> In actual decontamination operations in semiconductor manufacturing factories, for example, inside a CVD or PVD furnace used to form a thin film of amorphous Si, (1) Formation of a thin film of amorphous Si (2) ClF 3 gas Cleaning by (3) Each step of removing contaminants by H 2 gas is performed in sequence, but for convenience, it was decided to use a ClF 3 cleaning device in this contamination removal experiment.

図面は上記ClF3クリーニング装置であつて、
当該クリーニング装置は反応室1とガス供給ライ
ン2とガス排出ライン3とから構成され、ガス供
給ライン2の一端は反応室1の上方に、また、そ
の他端は二股に分岐されて各レギユレータ4,5
を介してClF3ボンベ6とArボンベ7とに夫々接
続される。
The drawing shows the above ClF 3 cleaning device,
The cleaning device is composed of a reaction chamber 1, a gas supply line 2, and a gas discharge line 3. One end of the gas supply line 2 is above the reaction chamber 1, and the other end is branched into two to connect each regulator 4, 5
are connected to the ClF 3 cylinder 6 and the Ar cylinder 7, respectively.

また、上記ガス排出ライン3の一端は反応室1
の下方に、また、その他端はブースターポンプ
8、ロータリーポンプ10及びClF3除去用のア
ルカリ水溶液充填式除害装置12を介して大気に
夫々接続される。
Further, one end of the gas discharge line 3 is connected to the reaction chamber 1.
The lower end and the other end are connected to the atmosphere through a booster pump 8, a rotary pump 10, and an alkaline aqueous solution-filled abatement device 12 for removing ClF3, respectively.

≪実験例≫ ソーダガラス表面にアモルフアスSiを薄膜形成
して、当該部材を30の反応室1内で取り出した
後、当該反応室1の内壁に付着したアモルフアス
Si膜を、Arガスで1vol%に希釈したClF3ガスを
内圧600Torr、流量20/min、流通時間3分の
条件下で流通させてプラズマレスクリーニングを
行い、このクリーニング後の反応室1で再びアモ
ルフアスSiの薄膜を形成して、当該Si膜のフツ素
汚染濃度をSIMS分析で測定したところ、
5200pppmであつた。
≪Experiment example≫ After forming a thin film of amorphous silicon on the surface of soda glass and taking out the member in 30 reaction chambers 1, the amorphous amorphous silicon attached to the inner wall of the reaction chamber 1 was removed.
Plasmaless cleaning was performed on the Si film by flowing ClF 3 gas diluted to 1 vol% with Ar gas under conditions of an internal pressure of 600 Torr, a flow rate of 20/min, and a flow time of 3 minutes. When a thin film of amorphous Si was formed and the concentration of fluorine contamination in the Si film was measured by SIMS analysis,
It was 5200ppm.

そこで、今度は、 (1) アモルフアスSi膜をを形成し、 (2) ClF3で反応室1をプラズマレスクリーニン
グした後に、クリーニング装置のClF3ボンベ
6をH2ボンベに切り換えて、Arガスで希釈し
たH2ガスをそのままで(即ち、プラズマ化し
ないで分子状態のままで)反応室1に室温、内
圧600Torr、流量2/minの条件下で10分間
流して、しかるのちに、再び反応室1でアモル
フアスSi膜を形成して、当該Si膜のフツ素汚染
濃度をSIMS分析で測定し、下記の実験結果を
得た。
Therefore, this time, after (1) forming an amorphous Si film and (2) performing plasmaless cleaning of the reaction chamber 1 with ClF 3 , the ClF 3 cylinder 6 of the cleaning device was switched to an H 2 cylinder, and Ar gas was used to clean the reaction chamber 1. The diluted H 2 gas is passed as it is (that is, in its molecular state without being turned into plasma) into the reaction chamber 1 for 10 minutes at room temperature, internal pressure of 600 Torr, and flow rate of 2/min, and then is returned to the reaction chamber. An amorphous Si film was formed in step 1, and the fluorine contamination concentration of the Si film was measured by SIMS analysis, and the following experimental results were obtained.

但し、上記実験では、H2ガスの希釈濃度を
変化させた場合における、アモルフアスSi膜の
フツ素濃度の値を各々測定した。
However, in the above experiment, the values of the fluorine concentration of the amorphous Si film were measured when the dilution concentration of H 2 gas was changed.

H2ガス希釈濃度 フツ素濃度 1vol% 50ppm 10vol% 30ppm 100vol% 20ppm 上記結果によれば、アモルフアスSi膜のフツ
素汚染濃度は、当初5200ppmであつたが、1vol
%のH2ガスを10分間流すだけで50ppmに大幅
に低減し、10vol%では30ppmに減少したこと
が判る。
H2 gas dilution concentration Fluorine concentration 1vol% 50ppm 10vol% 30ppm 100vol% 20ppm According to the above results, the fluorine contamination concentration of the amorphous Si film was initially 5200ppm, but 1vol%
% H2 gas for 10 minutes significantly reduced it to 50 ppm, and at 10 vol% it decreased to 30 ppm.

そして、希釈しない純粋のH2だけを10分間
流した場合には、フツ素汚染濃度は20ppmであ
つて、1vol%の希釈濃度の場合と同桁の数値を
示す。
When pure H 2 without dilution is flowed for 10 minutes, the fluorine contamination concentration is 20 ppm, which is on the same order of magnitude as in the case of a diluted concentration of 1 vol%.

従つて、実際のH2のプラズマレス処理にあ
つては、高純度のH2ガスを流す必要はなく、
1〜10vol%前後の希釈H2ガスを流すだけでも
有効な汚染除去率を達成できる。
Therefore, in actual H 2 plasma-less processing, there is no need to flow high-purity H 2 gas.
An effective contamination removal rate can be achieved simply by flowing diluted H 2 gas of around 1 to 10 vol%.

尚、フツ化塩素に代えてフツ化臭素をクリー
ニングガスとして使用した場合にも反応室はフ
ツ素汚染されるが、上記実施例と同様にして
H2のプラズマレス処理を行うと、やはりフツ
素汚染はスムーズに除去できる。
Note that if bromine fluoride is used as a cleaning gas instead of chlorine fluoride, the reaction chamber will be contaminated with fluorine, but the same method as in the above example will be used.
Fluorine contamination can be removed smoothly by H 2 plasma-less processing.

<発明の効果> (1) 冒述の公知技術では、NF3、CF4ガスなどで
クリーニングしたのちプラズマ処理をする必要
があつたが、本発明では、分子状態にある水素
をそのままでクリーニング後の操作系内に流通
させるだけで、汚染物質を迅速に排除できるの
で、水素をプラズマ化するための高周波装置の
稼動を要さず、ランニングコストを下げて、安
価に実施できる。
<Effects of the Invention> (1) In the previously mentioned known technology, it was necessary to perform plasma treatment after cleaning with NF 3 or CF 4 gas, but in the present invention, hydrogen in the molecular state is left intact after cleaning. Contaminants can be quickly eliminated simply by flowing the hydrogen into the operating system, so there is no need to operate a high-frequency device to turn hydrogen into plasma, reducing running costs and making it possible to implement the process at low cost.

(2) 上記実験結果から明らかなように、1vol%に
希釈したH2ガスでも一段で汚染物質を大幅に
低減できるので、前記公知技術に比べて、汚染
物質の排除を迅速且つ強力にできる。
(2) As is clear from the above experimental results, contaminants can be significantly reduced in one step even with H 2 gas diluted to 1 vol %, so contaminants can be eliminated more quickly and more powerfully than with the above-mentioned known technology.

(3) 実際的な汚染除去操作では、フツ化塩素のク
リーニング装置におけるフツ化塩素供給源を水
素供給源に切り換えるだけで良いので、操作が
簡便になるとともに、既存の装置を有効に利用
できる。
(3) In practical decontamination operations, it is sufficient to simply switch the chlorine fluoride supply source in the chlorine fluoride cleaning device to a hydrogen supply source, which simplifies the operation and allows effective use of existing equipment.

(4) さらに、クリーニングガスとして、他の物質
をフツ素化、塩素化する能力が極めて高い
ClF、ClF3、ClF5のうちの少なくとも一種を含
有するフツ化塩素系のガスを用いることによ
り、プラズマ化せずにクリーニングを行なうこ
とが可能であり、本発明の効果を一層高めるも
のである。
(4) Furthermore, it has extremely high ability to fluorinate and chlorinate other substances as a cleaning gas.
By using a chlorine fluoride gas containing at least one of ClF, ClF 3 and ClF 5 , it is possible to perform cleaning without turning into plasma, which further enhances the effects of the present invention. .

【図面の簡単な説明】[Brief explanation of drawings]

図面は、ClF3クリーニング装置の概略系統図
である。 1……反応室、2……ガス供給ライン、3……
ガス排出ライン、6……ClF3ボンベ、7……Ar
ボンベ。
The drawing is a schematic diagram of a ClF 3 cleaning device. 1...Reaction chamber, 2...Gas supply line, 3...
Gas exhaust line, 6...ClF 3 cylinders, 7...Ar
cylinder.

Claims (1)

【特許請求の範囲】 1 少なくとも一部が金属類物質又はその化合物
から成る部材を製造した処理操作系内にフツ素系
クリーニングガスを導入して、その処理操作系内
の金属類物質又はその化合物の一部をクリーニン
グ処理した後に、当該クリーニングガスから生じ
て処理操作系に残留する汚染物質を除去する、膜
形成操作系におけるクリーニング後の汚染除去方
法において、 上記フツ素系クリーニングガスがClF、ClF3
ClF5のうちの少なくとも一種を含有するガスで
あつて、クリーニング後の処理操作系に全体が分
子状態にある水素を流して、汚染物質を水素分子
で除去することを特徴とする膜形成操作系におけ
るフツ化塩素クリーニング後の汚染除去方法。
[Scope of Claims] 1. Introducing a fluorine-based cleaning gas into a processing system in which a member at least partially made of a metallic substance or its compound is manufactured, thereby removing the metallic substance or its compound within the processing system. In a method for removing contamination after cleaning in a film forming operation system, which removes contaminants generated from the cleaning gas and remaining in the treatment operation system after cleaning a part of the cleaning gas, the fluorine-based cleaning gas is ClF, ClF. 3 ,
A film forming operation system characterized in that hydrogen, which is a gas containing at least one type of ClF5 and is entirely in a molecular state, is flowed through the treatment operation system after cleaning to remove contaminants with hydrogen molecules. Method for removing contamination after cleaning with chlorine fluoride.
JP31250987A 1987-12-09 1987-12-09 Method for removing pollutant after chlorine fluoride cleaning in film forming operation system Granted JPH01152274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31250987A JPH01152274A (en) 1987-12-09 1987-12-09 Method for removing pollutant after chlorine fluoride cleaning in film forming operation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31250987A JPH01152274A (en) 1987-12-09 1987-12-09 Method for removing pollutant after chlorine fluoride cleaning in film forming operation system

Publications (2)

Publication Number Publication Date
JPH01152274A JPH01152274A (en) 1989-06-14
JPH0348268B2 true JPH0348268B2 (en) 1991-07-23

Family

ID=18030076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31250987A Granted JPH01152274A (en) 1987-12-09 1987-12-09 Method for removing pollutant after chlorine fluoride cleaning in film forming operation system

Country Status (1)

Country Link
JP (1) JPH01152274A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390944B2 (en) 2017-04-18 2022-07-19 Tokyo Electron Limited Film-forming device and method for cleaning same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2773078B2 (en) * 1988-03-11 1998-07-09 東京エレクトロン株式会社 Processing apparatus and cleaning method thereof
JPH02185977A (en) * 1989-01-12 1990-07-20 Sanyo Electric Co Ltd Film forming vacuum device
JP2539917B2 (en) * 1989-07-10 1996-10-02 セントラル硝子株式会社 Method for cleaning carbon material with chlorine fluoride gas
JP2892694B2 (en) * 1989-07-31 1999-05-17 株式会社日立製作所 Plasma cleaning method
JPH0375373A (en) * 1989-08-18 1991-03-29 Fujitsu Ltd Method for cleaning plasma treating device
JP3004696B2 (en) * 1989-08-25 2000-01-31 アプライド マテリアルズ インコーポレーテッド Cleaning method for chemical vapor deposition equipment
JPH03130368A (en) * 1989-09-22 1991-06-04 Applied Materials Inc Cleaning of semiconductor wafer process device
US5043299B1 (en) * 1989-12-01 1997-02-25 Applied Materials Inc Process for selective deposition of tungsten on semiconductor wafer
JPH03243775A (en) * 1990-02-20 1991-10-30 Iwatani Internatl Corp Gas for cleaning off contaminant in plasma-containing ceramics film forming device
JP2646811B2 (en) * 1990-07-13 1997-08-27 ソニー株式会社 Dry etching method
US6849872B1 (en) 1991-08-26 2005-02-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
JP2909364B2 (en) * 1993-09-20 1999-06-23 東京エレクトロン株式会社 Processing apparatus and cleaning method thereof
KR0164922B1 (en) * 1994-02-21 1999-02-01 모리시다 요이치 Manufacturing equipment of semiconductor
JP2000124195A (en) 1998-10-14 2000-04-28 Tokyo Electron Ltd Surface treatment method and device
JP4669605B2 (en) * 2000-11-20 2011-04-13 東京エレクトロン株式会社 Cleaning method for semiconductor manufacturing equipment
JP2003077839A (en) * 2001-08-30 2003-03-14 Toshiba Corp Purging method of semiconductor-manufacturing apparatus and manufacturing method of semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351142A (en) * 1976-10-19 1978-05-10 Kernforschungsanlage Juelich Method of and device for cleaning surface
JPS62214175A (en) * 1986-03-13 1987-09-19 Fujitsu Ltd Cleaning method for reduced pressure treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351142A (en) * 1976-10-19 1978-05-10 Kernforschungsanlage Juelich Method of and device for cleaning surface
JPS62214175A (en) * 1986-03-13 1987-09-19 Fujitsu Ltd Cleaning method for reduced pressure treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390944B2 (en) 2017-04-18 2022-07-19 Tokyo Electron Limited Film-forming device and method for cleaning same

Also Published As

Publication number Publication date
JPH01152274A (en) 1989-06-14

Similar Documents

Publication Publication Date Title
JPH0348268B2 (en)
JP4669605B2 (en) Cleaning method for semiconductor manufacturing equipment
KR102158307B1 (en) Plasma treatment process to improve in-situ chamber cleaning efficiency in plasma processing chamber
KR100293830B1 (en) Plasma Purification Method for Removing Residues in Plasma Treatment Chamber
US5679215A (en) Method of in situ cleaning a vacuum plasma processing chamber
US6182603B1 (en) Surface-treated shower head for use in a substrate processing chamber
JP2009050854A (en) Process of removing titanium nitride
KR100263958B1 (en) Nitrogen trifluoride-oxygen thermal cleaning process
CN1497666A (en) Fluoration thermal active for semiconductor working chamber
WO1997023663A1 (en) A plasma cleaning method for removing residues in a plasma process chamber
US20070144557A1 (en) Cleaning method of apparatus for depositing AI-containing metal film and AI-containing metal nitride film
TW202000327A (en) Technique to enable high temperature clean for rapid processing of wafers
JPH0663097B2 (en) Decontamination method after cleaning with fluoride gas in film forming operation system
US6360754B2 (en) Method of protecting quartz hardware from etching during plasma-enhanced cleaning of a semiconductor processing chamber
JP2008060171A (en) Method of cleaning semiconductor processing equipment
US7624742B1 (en) Method for removing aluminum fluoride contamination from aluminum-containing surfaces of semiconductor process equipment
JP2000323467A (en) Semiconductor processing device equipped with remote plasma discharge chamber
JPS62127397A (en) Nitrogen trifluoride as in-site detergent and method for washing ship shaped container and pipe using the same
JP4320389B2 (en) CVD chamber cleaning method and cleaning gas used therefor
JP3338123B2 (en) Semiconductor manufacturing apparatus cleaning method and semiconductor device manufacturing method
JP4961064B2 (en) Process and vacuum processing reactor apparatus for dry etching
JP2004510573A (en) Electronic device cleaning method
JPH09139349A (en) Method of cleaning deposit from sputtering cleaning chamber
JP2836891B2 (en) Cleaning method of SiOx with chlorine fluoride gas
JPH03243774A (en) Gas for cleaning off contaminant in plasma-containing ceramics film forming device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 17