JPH0342927A - Monitor system for optical amplifying and repeating transmission line - Google Patents

Monitor system for optical amplifying and repeating transmission line

Info

Publication number
JPH0342927A
JPH0342927A JP1175714A JP17571489A JPH0342927A JP H0342927 A JPH0342927 A JP H0342927A JP 1175714 A JP1175714 A JP 1175714A JP 17571489 A JP17571489 A JP 17571489A JP H0342927 A JPH0342927 A JP H0342927A
Authority
JP
Japan
Prior art keywords
repeater
optical
terminal station
signal
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1175714A
Other languages
Japanese (ja)
Other versions
JP2719654B2 (en
Inventor
Masaki Amamiya
正樹 雨宮
Mamoru Yosogi
四十木 守
Hiroyuki Kasai
宏之 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1175714A priority Critical patent/JP2719654B2/en
Publication of JPH0342927A publication Critical patent/JPH0342927A/en
Application granted granted Critical
Publication of JP2719654B2 publication Critical patent/JP2719654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0777Monitoring line amplifier or line repeater equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/078Monitoring an optical transmission system using a supervisory signal using a separate wavelength

Abstract

PURPOSE:To miniaturize the system, to simplify the constitution, and to reduce the power consumption by sending a light signal back to a terminal station not through a movable part like a switch without converting the light signal into electricity at each repeater, and monitoring the repeating transmission line or locating a faulty repeater. CONSTITUTION:If a repeater gets out of order, the optical transmission part 2 of the terminal station A sends out a light pulse signal P1 for monitoring which has wavelength lambda1 so as to locate the faulty repeater. Consequently, a signal having the wavelength passes through a filter lambda1 of each repeater and the light signal is sent back to the terminal station. The terminal station A separate signals with lambda0 through a branching filter 10. At this time, light pulses arrive at the terminal station after the time corresponding to the length of an optical fiber. Consequently, if one repeater 5 deteriorates or breaks, a 3rd pulse decreases in amplitude or does not return. The transmission period of sent pulses need to be made much longer than the pulse sending-back time from the farthest repeater.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光ファイバを用いて2地点間で情報のやりとり
を行う伝送方式において、途中で減衰した光信号の増幅
に光直接増幅器を用いた多中継伝送路の状態の常時監視
及び、故障した中継器の標定を行うための監視システム
に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is a transmission system that uses optical fibers to exchange information between two points, and uses an optical direct amplifier to amplify optical signals that are attenuated on the way. The present invention relates to a monitoring system for constantly monitoring the status of a multi-relay transmission line and locating a failed repeater.

(従来の技術) 第5図は従来の伝送路を示しており、陸上の伝送路ある
いは海底の伝送路等がある。端局から送信された光信号
は光ファイバの損失により減衰するため、ある間隔で中
継器を挿入し光信号を増幅する必要がある。この増幅装
置としては光ファイバを用いたものや半導体レーザな用
いたものがあり入力された光を直接増幅し入力光と同じ
波長の光を送出する。
(Prior Art) FIG. 5 shows conventional transmission lines, including land transmission lines and submarine transmission lines. Since the optical signal transmitted from the terminal station is attenuated due to loss in the optical fiber, it is necessary to insert repeaters at certain intervals to amplify the optical signal. These amplifying devices include those using optical fibers and those using semiconductor lasers, which directly amplify input light and send out light having the same wavelength as the input light.

第5図で端局(A)からの光信号は上り用の伝送路を中
継器5(1〜n)を介して伝送され、端局(B)からの
信号は下り用の伝送路を中継器5(n−1)を介して伝
送される。
In Figure 5, the optical signal from the terminal station (A) is transmitted through the upstream transmission line via repeaters 5 (1 to n), and the signal from the terminal station (B) is relayed through the downstream transmission line. 5(n-1).

(発明が解決しようとする課M) しかしながら、このような構成の伝送路では中継器での
折り返し信号路が無いため各中継器の動作状態を監視す
ることができない。また−旦、光直接増幅器が故障した
場合にどの中継器で故障したかを標定することがむずか
しいという欠点があった。一方、中継器内で光を電気に
変換して信号処理する方法も考えられるが回路規模の増
大、消費電力の増加等のため光直接増幅器の長所である
小型で構成が容易かつ低消費電力といった点が生かされ
なくなる。
(Problem M to be Solved by the Invention) However, in a transmission line having such a configuration, since there is no return signal path at the repeater, it is not possible to monitor the operating state of each repeater. Another disadvantage is that when an optical direct amplifier fails, it is difficult to determine which repeater has failed. On the other hand, a method of converting light into electricity and signal processing within a repeater could be considered, but this would increase the circuit scale and power consumption. Points will not be utilized.

本発明は、これらの欠点を解決するもので、各中継器に
おいて光信号を電気に変換することなく、スイッチのよ
うな可動部分もなしに光信号を端局に向けて折り返すこ
とにより、高信頼に中継伝送路の監視あるいは故障中継
器を標定する中増幅中継増幅器の監視方式を提供するこ
とを目的とする。
The present invention solves these shortcomings by returning the optical signal to the terminal station without converting the optical signal into electricity at each repeater and without moving parts such as switches, thereby achieving high reliability. The purpose of this invention is to provide a method for monitoring intermediate amplification repeater amplifiers for monitoring repeater transmission lines or locating faulty repeaters.

(課題を解決するための手段) 本発明の特徴は、光信号の送出及び受信のための端局、
この光信号を伝える上り伝送路と下り伝送路用の光ファ
イバ、光ファイバを伝送して減衰した光信号を直接増幅
して送出する光中継器を複7数個設置したデジタル双方
向中継伝送路において、各中継器は、各伝送路毎の光増
幅器と、該光増幅器の出力に結合して主信号の波長とは
異なり主信号の波長に近接した波長を持つ監視用信号を
抽出して反対側の伝送路の光増幅器の入力に印加するフ
ィルタとを有し、一方の端局より監視用の波長を持つ光
パルス信号を光ファイバに送出したさいに、当該端局か
ら各中継器までの距離に対応した伝播時間で、当該端局
に折り返ってくるパルス列の各パルスの振幅から故障中
継器を標定する光増幅中継伝送路の監視方式にある。
(Means for Solving the Problems) The present invention has a terminal station for transmitting and receiving optical signals;
A digital two-way relay transmission line equipped with optical fibers for upstream and downstream transmission lines that transmit this optical signal, and seven or more optical repeaters that directly amplify and send out the attenuated optical signal transmitted through the optical fiber. In the above, each repeater connects an optical amplifier for each transmission line and the output of the optical amplifier to extract a monitoring signal having a wavelength different from the wavelength of the main signal and close to the wavelength of the main signal, and then It has a filter that is applied to the input of the optical amplifier of the transmission line on the side, and when an optical pulse signal with a monitoring wavelength is sent from one terminal station to the optical fiber, the signal from the terminal station to each repeater is This is a monitoring method for optical amplification repeater transmission lines that locates a failed repeater from the amplitude of each pulse in a pulse train that returns to the terminal station with a propagation time corresponding to the distance.

本発明の別の特徴は、前記端局より送出する監視用の光
パルス信号の繰り返し周期を、端局から最も遠い中継器
と端局間を光信号が往復する時間以上に設定し、各中継
器で折り返され端局で受信されたパルス列を、端局で各
中継器毎に抽出してモニタし、その結果によって伝送路
の各中継器の伝送特性の常時監視あるいは故障中継器の
標定を行う光増幅中継伝送路′の監視方式にある。
Another feature of the present invention is that the repetition period of the monitoring optical pulse signal sent from the terminal station is set to be longer than the time it takes for the optical signal to travel back and forth between the repeater farthest from the terminal station and the terminal station, and each relay The pulse train that is returned by the transmitter and received by the terminal station is extracted and monitored for each repeater at the terminal station, and the results are used to constantly monitor the transmission characteristics of each repeater on the transmission path or to locate a faulty repeater. It is a monitoring method for optical amplification repeater transmission lines.

(作用) 送信側の端局は波長入。の主信号と共に、入〇に近い波
長λ□の監視用信号を送出する。各中継器はλ。とλ、
を増幅した後、フィルタにより監視用の波長λ、のみを
抽出して、帰路の光ファイバにより送信側の端局に折り
返す。従って、送信側の端局では、各中継器の送信端局
からの距離に従った時刻に折り返しパルスが受信される
ことになる。この折り返しパルスを観測することにより
中継器の故障の標定、または伝送路の監視を行う。
(Operation) The terminal station on the transmitting side inputs the wavelength. Along with the main signal, a monitoring signal with a wavelength λ□ close to the input 〇 is sent out. Each repeater is λ. and λ,
After amplifying the signal, only the wavelength λ for monitoring is extracted by a filter, and the signal is returned to the transmitting end station via a return optical fiber. Therefore, the transmitting terminal station receives the return pulse at a time according to the distance of each repeater from the transmitting terminal station. By observing this folded pulse, it is possible to locate a failure in a repeater or monitor a transmission path.

従って、前述の本発明の目的が達成される。Therefore, the above-mentioned objectives of the invention are achieved.

(実施例1〉 第1図は本監視システムの実施例を示しており、3中継
の伝送路の場合を示す、第1図で1は端局であり、光信
号により情報のやりとりを端局(A)と端局(B)の間
で行う。端局1(A)はλ0とλ、の波長の光源を有す
る光送信部2とこの波長範囲の光を受信できる光受信部
3を有する。光送信部2での主信号の波長をλ。とする
(Example 1) Figure 1 shows an example of this monitoring system, and shows the case of a transmission line with three relays. (A) and the terminal station (B).The terminal station 1 (A) has an optical transmitter 2 having a light source with wavelengths λ0 and λ, and an optical receiver 3 capable of receiving light in this wavelength range. .The wavelength of the main signal in the optical transmitter 2 is assumed to be λ.

波長λ、は監視用であり、主信号の波長より僅かに長波
長側が短波長側とし、かつ光増幅器で増幅できる帯域内
に設定する。
The wavelength λ is for monitoring purposes, and is set so that the wavelength side is slightly longer than the wavelength of the main signal, and the wavelength side is slightly shorter than the wavelength of the main signal, and within a band that can be amplified by an optical amplifier.

この光送信部2から送出された光信号は4の光ファイバ
(上り伝送路〉を伝送されて5の中継器に到達する。減
衰した光信号は6の光直接増幅器により元の振幅にまで
増幅され、再び光ファイバ4に伝送される。ここで1か
ら3までの各中継器5は監視用の波長を選択するための
同一のフィルタ7を有している。ただし上りと下りのフ
ィルタの透過波長は異なるように設定しておく必要があ
る。またこれらの波長は光直接増幅器の帯域内に入って
いるように設定する必要がある。第2図は光増幅器の利
得帯域特性と監視信号用に設定した光源の波長の一例を
示している。
The optical signal sent from the optical transmitter 2 is transmitted through the optical fiber 4 (upstream transmission line) and reaches the repeater 5.The attenuated optical signal is amplified to its original amplitude by the optical direct amplifier 6. is transmitted again to the optical fiber 4, where each repeater 5 from 1 to 3 has an identical filter 7 for selecting the wavelength for monitoring.However, the transmission of the upstream and downstream filters The wavelengths must be set to be different. Also, these wavelengths must be set so that they are within the band of the optical direct amplifier. Figure 2 shows the gain band characteristics of the optical amplifier and the monitoring signal. An example of the wavelength of the light source set to .

さらに各中継器5において上り伝送路の光直接増幅器6
の主信号の一部は光分岐部8により一方はそのまま伝送
路にいき、他方はフィルタを通過して下り伝送路の光増
幅器6に光結合部9を介して入力される構成になってい
る。また波長λ0の主信号と波長λ1の監視用信号を分
けるためには分波器を用いてもよい。下りの伝送路につ
いては監視用の波長がλ′1となったのみで他の構成は
同じである。
Furthermore, in each repeater 5, an optical direct amplifier 6 on the upstream transmission line
One part of the main signal is sent to the transmission line as it is by the optical branching part 8, and the other part passes through a filter and is input to the optical amplifier 6 on the downstream transmission line via the optical coupling part 9. . Further, a demultiplexer may be used to separate the main signal of wavelength λ0 and the monitoring signal of wavelength λ1. Regarding the downstream transmission path, the other configurations are the same except that the wavelength for monitoring is λ'1.

このような構成になっているため通常の主信号は中継器
で折り返すことなく、上りと下りの回線をそれぞれ伝送
されることになる。
Because of this configuration, the normal main signal is transmitted through the uplink and downlink lines without being looped back at the repeater.

最初に特許請求の範囲(1)の監視方式について説明す
る。中継器が故障した場合に、どの中継器が故障したか
を標定するためには、端局(A)の光送信部2で、波長
λ1の監視用光パルス信号P1を第3図に示すように送
出する。こうすると各中継器のフィルタλ1でこの波長
の信号が通過して端局に光信号が折り返ってくる。端局
(A)では分波器10でλ。と入、の波長を分ける。こ
のとき光パルスは光ファイバの長さに対応する時間で端
局に到達するため、中継器が3台ある場合には第3図に
示すような3個のパルスの列S、が得られる。
First, the monitoring method according to claim (1) will be explained. When a repeater fails, in order to locate which repeater has failed, the optical transmitter 2 of the terminal station (A) sends a monitoring optical pulse signal P1 of wavelength λ1 as shown in FIG. Send to. In this way, the signal of this wavelength passes through the filter λ1 of each repeater, and the optical signal is returned to the terminal station. At the terminal station (A), the demultiplexer 10 outputs λ. Separate the wavelengths of and. At this time, the optical pulses arrive at the terminal station in a time corresponding to the length of the optical fiber, so if there are three repeaters, a train of three pulses S as shown in FIG. 3 is obtained.

例どして中継器(3)が劣化あるいは断になった場合に
は第3図の82のパルス列のように3番目のパルスの振
幅が減少するかあるいは3番目のパルスが返ってこない
ということになる。中継器(2)が故障した場合にはS
3のパルス列のように2番目以降のパルスが、また中継
器(1)で故障した場合にはS4のように1番目以降の
パルスが得られないということになり、故障した中継器
はどれであるかまたその劣化度合いはどの程度であるか
を知ることができる。なお、送信パルスの送信周期は、
最も遠い中継器からのパルス折り返し時間より十分に大
きくとる必要がある。
For example, if the repeater (3) deteriorates or is disconnected, the amplitude of the third pulse will decrease or the third pulse will not be returned, as shown in the pulse train 82 in Figure 3. become. If repeater (2) fails, S
If the second and subsequent pulses as in pulse train 3 fail, and if repeater (1) fails, the first and subsequent pulses as in S4 will not be obtained, so which repeater is the failed one? You can find out if there is any, and what the degree of deterioration is. Note that the transmission period of the transmission pulse is
It is necessary to take a time that is sufficiently longer than the pulse return time from the farthest repeater.

次に特許請求の範囲(2)について説明する。これは、
中継器自体の故障を監視するより、中継区間の伝送特性
をインサービスで監視する場合に適する。伝送路は特許
請求の範囲(1)と同様の構成とする。監視パルスは第
4図に示すように、端局から最も遠い中継器から光信号
が折り返ってくるまでの時間の整数倍の周期を持つよう
に設定する。こうすると端局で得られるパルスが第4図
の91のように各中継器から折り返ってきた信号が送出
したパルスの周期で繰り返し得られることになる。
Next, claim (2) will be explained. this is,
This method is more suitable for in-service monitoring of the transmission characteristics of a repeater section than for monitoring failures in the repeater itself. The transmission path has the same configuration as claimed in claim (1). As shown in FIG. 4, the monitoring pulse is set to have a cycle that is an integral multiple of the time it takes for the optical signal to return from the repeater farthest from the terminal station. In this way, the pulse obtained at the terminal station will be obtained repeatedly at the period of the pulse sent by the signal returned from each repeater, as shown at 91 in FIG.

第3図の場合には、中継器の故障の有無のみを発見すれ
ばよかったから、監視パルスの送信周期は大きくてよか
ったが、ここでは符号誤り率の測定により中継伝送路の
伝送特性を測定するために監視パルスは短い周期で送出
する必要がある。
In the case of Figure 3, it was only necessary to discover whether there was a failure in the repeater, so the transmission period of the monitoring pulse could have been large, but here we will measure the transmission characteristics of the repeater transmission line by measuring the bit error rate. Therefore, it is necessary to send out monitoring pulses at short intervals.

(例えば誤り率10−4を得るためには測定時間内に1
08程度のパルスを送信する必要がある。)従って各中
継器で折り返されるパルスの識別が可能となるように最
も遠い中継器からの折り返し時間を基準に監視パルスを
送信するようにした。
(For example, to obtain an error rate of 10-4,
It is necessary to transmit a pulse of about 0.08. ) Therefore, in order to make it possible to identify the pulses returned by each repeater, the monitoring pulses are transmitted based on the return time from the farthest repeater.

このパルス列を第1図の時分割装置11で分割すると第
4図のq*、q3. Q4のパルス列が得られる。
When this pulse train is divided by the time division device 11 shown in FIG. 1, it becomes q*, q3, . A Q4 pulse train is obtained.

q2は中継器(1)から折り返ってくる信号のみであり
、Ql、 q4はそれぞれ中継器(2)と(3)から折
り返ってくる信号である。こうして得られた信号q21
 q31 q4から各中継器別の信号の符号誤り率等の
伝送特性を一斉に監視することができる。符号誤り率の
監視方法は従来と同様の方法を用いればよい、従って時
分割装置11には特に新しさはない。この監視は主信号
λ。を伝送させながら行うこともできるし、また主信号
λ。を伝送させずに行うこともできるが、適用形態とし
ては主信号λ。を伝送させながら行うことに利点がある
q2 is only the signal returned from repeater (1), and Ql and q4 are signals returned from repeaters (2) and (3), respectively. The signal q21 thus obtained
From q31 to q4, transmission characteristics such as the bit error rate of signals for each repeater can be monitored all at once. The code error rate may be monitored by the same method as in the past, so there is nothing particularly new about the time division device 11. This monitoring is the main signal λ. It can also be done while transmitting the main signal λ. Although it is possible to do this without transmitting the main signal λ, it is preferable to use the main signal λ. There is an advantage to doing this while transmitting the data.

同様な操作は端局(B)からも行うことができる。Similar operations can also be performed from the terminal station (B).

(発明の効果) 以上説明したように、中継器内で光信号を電気に変換せ
ずに、かつスイッチのような機械的可動部も有すること
なく、信号を折り返して、故障中継器の標定を行うこと
や伝送路を常時監視ができるため、中継器の消費電力を
押え、かつ小型で高信頼な監視システムを実現すること
ができる。
(Effects of the Invention) As explained above, it is possible to locate a failed repeater by returning the signal without converting the optical signal into electricity within the repeater and without having a mechanically moving part such as a switch. Since it is possible to constantly monitor operations and transmission paths, it is possible to reduce the power consumption of repeaters and realize a compact and highly reliable monitoring system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光増幅中継伝送路の監視システムの実施例、 第2図は光直接増幅器の利得帯域特性と監視用光信号の
波長の例を示す図、 第3図は本発明の第1の実施例の動作を説明するパルス
列の例を示し、 第4図は本発明の第2の実施例の動作を説明するパルス
列の例を示し、 第5図は従来の光直接増幅器を用いた伝送路を示す。 1:端局(A)(B)、 2:光送信部、3:光受信部
、 4:光ファイバ(上り下り)、 5:中継器(1〜n)、 7:フィルタ、 9:光結合部、 11:時分割装置。 6:光直接増幅器、 8:光分岐部、 10:分波器、
FIG. 1 is an embodiment of a monitoring system for an optical amplification repeater transmission line. FIG. 2 is a diagram showing an example of the gain band characteristics of an optical direct amplifier and the wavelength of a monitoring optical signal. FIG. FIG. 4 shows an example of a pulse train to explain the operation of the second embodiment of the present invention, and FIG. 5 shows a transmission line using a conventional optical direct amplifier. shows. 1: Terminal station (A) (B), 2: Optical transmitter, 3: Optical receiver, 4: Optical fiber (up and down), 5: Repeater (1 to n), 7: Filter, 9: Optical coupling Part 11: Time division device. 6: Optical direct amplifier, 8: Optical branching section, 10: Demultiplexer,

Claims (2)

【特許請求の範囲】[Claims] (1)光信号の送出及び受信のための端局、この光信号
を伝える上り伝送路と下り伝送路用の光ファイバ、光フ
ァイバを伝送して減衰した光信号を直接増幅して送出す
る光中継器を複数個設置したデジタル双方向中継伝送路
において、 各中継器は、各伝送路毎の光増幅器と、該光増幅器の出
力に結合して主信号の波長とは異なり主信号の波長に近
接した波長を持つ監視用信号を抽出して反対側の伝送路
の光増幅器の入力に印加するフィルタとを有し、 一方の端局より監視用の波長を持つ光パルス信号を光フ
ァイバに送出したさいに、当該端局から各中継器までの
距離に対応した伝播時間で、当該端局に折り返ってくる
パルス列の各パルスの振幅から故障中継器を標定するこ
とを特徴とする光増幅中継伝送路の監視方式。
(1) Terminals for transmitting and receiving optical signals, optical fibers for upstream and downstream transmission lines that transmit this optical signal, and light that directly amplifies and transmits attenuated optical signals transmitted through optical fibers. In a digital bidirectional repeating transmission line with multiple repeaters installed, each repeater has an optical amplifier for each transmission line, and the output of the optical amplifier is coupled to the wavelength of the main signal, which is different from the wavelength of the main signal. It has a filter that extracts monitoring signals with adjacent wavelengths and applies them to the input of the optical amplifier on the opposite transmission line, and sends out an optical pulse signal with the monitoring wavelength from one end station to the optical fiber. The optical amplification relay is characterized in that the faulty repeater is located from the amplitude of each pulse of a pulse train that returns to the terminal station with a propagation time corresponding to the distance from the terminal station to each repeater. Transmission path monitoring method.
(2)前記端局より送出する監視用の光パルス信号の繰
り返し周期を、端局から最も遠い中継器と端局間を光信
号が往復する時間以上に設定し、各中継器で折り返され
端局で受信されたパルス列を、端局で各中継器毎に抽出
してモニタし、その結果によって伝送路の各中継器の伝
送特性の常時監視あるいは故障中継器の標定を行うこと
を特徴とする請求項1記載の光増幅中継伝送路の監視方
式。
(2) The repetition period of the monitoring optical pulse signal sent from the terminal station is set to be longer than the time it takes for the optical signal to travel back and forth between the repeater furthest from the terminal station and the The pulse train received at the station is extracted and monitored for each repeater at the end station, and the results are used to constantly monitor the transmission characteristics of each repeater on the transmission path or to locate a faulty repeater. A monitoring system for an optical amplification repeater transmission line according to claim 1.
JP1175714A 1989-07-10 1989-07-10 Monitoring method of optical amplification repeater transmission line Expired - Fee Related JP2719654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1175714A JP2719654B2 (en) 1989-07-10 1989-07-10 Monitoring method of optical amplification repeater transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1175714A JP2719654B2 (en) 1989-07-10 1989-07-10 Monitoring method of optical amplification repeater transmission line

Publications (2)

Publication Number Publication Date
JPH0342927A true JPH0342927A (en) 1991-02-25
JP2719654B2 JP2719654B2 (en) 1998-02-25

Family

ID=16000957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1175714A Expired - Fee Related JP2719654B2 (en) 1989-07-10 1989-07-10 Monitoring method of optical amplification repeater transmission line

Country Status (1)

Country Link
JP (1) JP2719654B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436746A (en) * 1992-12-15 1995-07-25 Northern Telecom Limited Optical transmission system
US5943146A (en) * 1995-07-26 1999-08-24 Nec Corporation Optical transmission system in which no arrival of a first light signal is notified from a first station to a second station by an alarm light signal multiplexed with a second light signal in wavelength
FR2776440A1 (en) * 1998-03-17 1999-09-24 Nec Corp Repeater supervision/surveillance circuit
EP0981215A2 (en) * 1998-08-14 2000-02-23 Nec Corporation Optical amplifier repeater
EP0935356A3 (en) * 1998-02-09 2000-07-12 Nec Corporation System for monitoring a digital bidirectional optical communication line
US7103275B2 (en) 2001-07-16 2006-09-05 Fujitsu Limited Optical transmission system
JP2018169234A (en) * 2017-03-29 2018-11-01 アンリツ株式会社 Optical pulse testing device and method for testing optical pulse
JP2019036180A (en) * 2017-08-18 2019-03-07 ホーチキ株式会社 Tunnel emergency facility
EP3599726A1 (en) * 2018-07-25 2020-01-29 Alcatel Submarine Networks Monitoring equipment for an optical transport system
US11095370B2 (en) 2019-02-15 2021-08-17 Alcatel Submarine Networks Symmetrical supervisory optical circuit for a bidirectional optical repeater
WO2021166686A1 (en) * 2020-02-19 2021-08-26 日本電気株式会社 Fault detection apparatus, fault detection method, and submarine cable system
US11368216B2 (en) 2017-05-17 2022-06-21 Alcatel Submarine Networks Use of band-pass filters in supervisory signal paths of an optical transport system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436746A (en) * 1992-12-15 1995-07-25 Northern Telecom Limited Optical transmission system
US5943146A (en) * 1995-07-26 1999-08-24 Nec Corporation Optical transmission system in which no arrival of a first light signal is notified from a first station to a second station by an alarm light signal multiplexed with a second light signal in wavelength
EP0935356A3 (en) * 1998-02-09 2000-07-12 Nec Corporation System for monitoring a digital bidirectional optical communication line
FR2776440A1 (en) * 1998-03-17 1999-09-24 Nec Corp Repeater supervision/surveillance circuit
US6301404B1 (en) 1998-03-17 2001-10-09 Nec Corporation Supervisory signal optical bypass circuit, optical amplifying repeater and supervisory system
EP0981215A2 (en) * 1998-08-14 2000-02-23 Nec Corporation Optical amplifier repeater
EP0981215A3 (en) * 1998-08-14 2000-07-12 Nec Corporation Optical amplifier repeater
US6603587B1 (en) 1998-08-14 2003-08-05 Nec Corporation Optical amplifier repeater
US7103275B2 (en) 2001-07-16 2006-09-05 Fujitsu Limited Optical transmission system
JP2018169234A (en) * 2017-03-29 2018-11-01 アンリツ株式会社 Optical pulse testing device and method for testing optical pulse
US11368216B2 (en) 2017-05-17 2022-06-21 Alcatel Submarine Networks Use of band-pass filters in supervisory signal paths of an optical transport system
JP2019036180A (en) * 2017-08-18 2019-03-07 ホーチキ株式会社 Tunnel emergency facility
EP3599726A1 (en) * 2018-07-25 2020-01-29 Alcatel Submarine Networks Monitoring equipment for an optical transport system
US10833766B2 (en) 2018-07-25 2020-11-10 Alcatel Submarine Networks Monitoring equipment for an optical transport system
US11095370B2 (en) 2019-02-15 2021-08-17 Alcatel Submarine Networks Symmetrical supervisory optical circuit for a bidirectional optical repeater
WO2021166686A1 (en) * 2020-02-19 2021-08-26 日本電気株式会社 Fault detection apparatus, fault detection method, and submarine cable system
CN115136514A (en) * 2020-02-19 2022-09-30 日本电气株式会社 Fault detection apparatus, fault detection method and submarine cable system
US11936423B2 (en) 2020-02-19 2024-03-19 Nec Corporation Fault detection apparatus, fault detection method, and submarine cable system

Also Published As

Publication number Publication date
JP2719654B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
US8135274B2 (en) System and method for fault identification in optical communication systems
US6137603A (en) Optical network, optical division and insertion node and recovery system from network failure
CN102100018B (en) High loss loop back for long repeater span
US8351790B2 (en) Optical OADM transmission system with loopback
EP1023587B1 (en) Side-tone otdr for in-service optical cable monitoring
US5521734A (en) One-dimensional optical data arrays implemented within optical networks
EP1041747A2 (en) Optical bidirectional communication system with supervisory channel
CN103973363A (en) System And Method For Fault Identification In Optical Communication Systems
JPH0342927A (en) Monitor system for optical amplifying and repeating transmission line
EP1591768B1 (en) Optical amplification relay method and optical amplification relay system
JPH11225116A (en) Monitor system and loopback circuit used for it
JP2000150997A (en) Optical amplifier, optical transmission device equipped therewith and with fracture point detecting function and bidirectional optical transmission device
US5510925A (en) Relay transmission system including optical amplification
US5444238A (en) Device for assessing the transmission quality of an optical amplifier equipment
JPH0313018A (en) Supervisory system for optical direct amplification relay transmission line
US6472655B1 (en) Remote amplifier for an optical transmission system and method of evaluating a faulty point
JPS5844832A (en) Communication equipment with optical fiber multiple access
JP3093510B2 (en) Optical relay transmission system
JPH022228A (en) Monitor system and apparatus for long range optical communication system
JP2781720B2 (en) Optical subscriber system monitoring system
JPH04137833A (en) Optical relay system
JPH10262030A (en) Supervisory and controlling system in wdm light transmission and terminal station therefor
JPH02121537A (en) Optical intermediate repeater
JPS6239935A (en) Testing system for optical bus net
JPS6352826B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees