JPH0342511B2 - - Google Patents

Info

Publication number
JPH0342511B2
JPH0342511B2 JP14777783A JP14777783A JPH0342511B2 JP H0342511 B2 JPH0342511 B2 JP H0342511B2 JP 14777783 A JP14777783 A JP 14777783A JP 14777783 A JP14777783 A JP 14777783A JP H0342511 B2 JPH0342511 B2 JP H0342511B2
Authority
JP
Japan
Prior art keywords
cooling
cooling plate
liquid
module
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14777783A
Other languages
Japanese (ja)
Other versions
JPS6039855A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14777783A priority Critical patent/JPS6039855A/en
Publication of JPS6039855A publication Critical patent/JPS6039855A/en
Publication of JPH0342511B2 publication Critical patent/JPH0342511B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は高密度実装したプリント配線モジユー
ルの強制冷却構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a forced cooling structure for printed wiring modules mounted in high density.

(b) 技術の背景 半導体IC、LSIは年と共に高密度化が進んでお
り、単位素子中の構成ビツト数は年と共に増加し
ている。またこれらIC、LSIのプリント配線基板
への実装密度も増加し従つて10層を越す多層配線
構造がとられている。
(b) Background of technology Semiconductor ICs and LSIs are becoming denser over the years, and the number of constituent bits in a unit element is increasing over the years. Furthermore, the mounting density of these ICs and LSIs on printed wiring boards has increased, and accordingly, multilayer wiring structures with more than 10 layers have been adopted.

こゝでプリント配線基板上には上記のIC、LSI
などの半導体素子以外にモジユール抵抗など発熱
素子が数多く設けられているのでプリント配線基
板(以下略して基板)は使用中にかなりの温度上
昇を伴う。そしてこの対策として基板をポリイミ
ド樹脂のような耐熱性有機絶縁材料で形成するか
或はアルミナなどの磁器で形成して基板の耐熱性
を高めている。一方基板上への装着部品は一般に
最高使用温度として85〔℃〕の値がとられている
ので、部品の信頼性と寿命を保持するためにはこ
の規定温度以内に保つことが必要でそのため冷却
が必要となる。本発明は高密度実装基板の冷却機
構に関するものである。
Here, the above IC and LSI are installed on the printed wiring board.
Printed wiring boards (hereinafter simply referred to as "boards") are subject to a considerable temperature rise during use because they are provided with a large number of heat generating elements such as modular resistors in addition to semiconductor elements such as these. As a countermeasure to this problem, the heat resistance of the substrate is increased by forming the substrate from a heat-resistant organic insulating material such as polyimide resin or from porcelain such as alumina. On the other hand, the maximum operating temperature for components mounted on a board is generally 85 [℃], so in order to maintain the reliability and lifespan of the components, it is necessary to maintain the temperature within this specified temperature. Is required. The present invention relates to a cooling mechanism for a high-density mounting board.

(c) 従来技術と問題点 従来の冷却法は、IC、LSIなどの半導体部品に
ついてはパツケージ上に放熱フインを設けこれに
扇風機(以後フアン)を用いて空冷するのが一般
的である。すなわち架台に部品の実装高に見合つ
た間隔をとつて配列している多数のコネクタに部
品装着が終つた基板の雄コンタクト部を挿入する
ことにより全部の基板を装着し、架台の下部に設
けられたフアンを用いて送風することにより並列
に並んでいる基板の間を通つて風が通り強制空冷
が行われている。然し乍ら部品の実装密度特に
IC、LSIの実装密度が増大しまたIC、LSI自体の
構成ビツト数が増加すると強制通風によつては部
品の温度を最高使用温度以内に保持することは不
可能となり、別の方法を必要とするようになつ
た。
(c) Conventional technology and problems In conventional cooling methods, semiconductor components such as ICs and LSIs are generally cooled by installing heat dissipation fins on the package and using an electric fan (hereinafter referred to as "fan"). In other words, all the boards are mounted by inserting the male contacts of the board on which the components have been mounted into the numerous connectors arranged at intervals commensurate with the mounting height of the parts on the mount, and then Forced air cooling is performed by blowing air using a fan that passes between the boards arranged in parallel. However, the mounting density of parts, especially
As the packaging density of ICs and LSIs increases, and the number of bits constituting the ICs and LSIs themselves increases, it becomes impossible to maintain component temperatures within the maximum operating temperature using forced ventilation, and other methods are required. I started to do that.

本発明に係る液冷モジユールはかゝる必要性か
ら生じたものである。
The liquid cooling module of the present invention arose from such a need.

第1図は従来の液冷モジユールの構造でLSI、
抵抗などの発熱素子1を装着した基板2を密封容
器3の底部に置き容器3を上部にはフイン4を備
えた冷却板5があり、この中に冷媒6が入れてあ
る。こゝで発熱素子1が通電により発熱して生じ
た気泡或は冷媒6の温度上昇により液面から発生
した冷媒の蒸気は冷却板5で冷却されて液化し、
滴下すると云うサイクルを繰返すことにより発熱
素子1を含む基板2の冷却が行われている。
Figure 1 shows the structure of a conventional liquid cooling module.
A substrate 2 mounted with a heat generating element 1 such as a resistor is placed at the bottom of a sealed container 3, and a cooling plate 5 with fins 4 is provided on the top of the container 3, into which a refrigerant 6 is placed. Here, the bubbles generated when the heating element 1 generates heat due to the energization or the refrigerant vapor generated from the liquid surface due to the temperature rise of the refrigerant 6 are cooled by the cooling plate 5 and liquefied.
By repeating the cycle of dropping, the substrate 2 including the heating element 1 is cooled.

然し乍ら容器3の内部を冷媒6のガスだけで充
すことは困難であり、空気などが混在し易く、こ
の場合は冷却能力が著しく低下する缺点があり、
優れた冷却構造であるとは云えなかつた。
However, it is difficult to fill the inside of the container 3 with only the gas of the refrigerant 6, and air etc. are likely to be mixed in, and in this case, there is a drawback that the cooling capacity is significantly reduced.
It could not be said that the cooling structure was excellent.

(d) 発明の目的 本発明の目的は冷却機能の優れた液冷モジユー
ルの構造を提供するにある。
(d) Object of the invention The object of the invention is to provide a liquid cooling module structure with excellent cooling function.

(e) 発明の構成 本発明の目的は冷媒液を入れた密封容器の中に
モジユールを構成する配線基板を垂直にして浸漬
して格納すると共に、この配線基板の相互間に冷
却板をおき、この冷却板を冷却することにより配
線基板を強制冷却する構造をとることにより達成
することができる。
(e) Structure of the Invention The object of the present invention is to store the wiring boards constituting a module by vertically immersing them in a sealed container containing a refrigerant liquid, and to place a cooling plate between the wiring boards. This can be achieved by adopting a structure in which the wiring board is forcibly cooled by cooling the cooling plate.

(f) 発明の実施例 本発明は複数個の基板を縦にして冷媒液中に配
列すると共にこの基板の間に冷却板を介在させて
冷却を行うものである。
(f) Embodiments of the Invention In the present invention, a plurality of substrates are arranged vertically in a refrigerant liquid, and cooling is performed by interposing a cooling plate between the substrates.

第2図は本発明の実施例で密封容器7の底部に
は気密構造のコネクタ端子8が設けられており、
基板9のオスコンタクトが挿着されるよう構成さ
れている。次に縦に平行に配列している基板9の
間には多孔金属を外側に持ち内部に蛇管を備えた
冷却板10が配列しており、上部より冷媒(この
実施例の場合は水)が供給され循還している。
FIG. 2 shows an embodiment of the present invention, in which an airtight connector terminal 8 is provided at the bottom of a sealed container 7.
It is configured so that a male contact of the board 9 can be inserted. Next, cooling plates 10 having porous metal on the outside and corrugated pipes on the inside are arranged between the substrates 9 arranged vertically in parallel, and a coolant (water in this embodiment) is supplied from the top. It is supplied and circulated.

また基板9を完全に浸漬する形で冷媒11が入
れてある。
Further, a coolant 11 is placed in such a manner that the substrate 9 is completely immersed therein.

こゝで冷媒としては化学的に安定であつて腐食
作用を伴わずまた沸点が室温から85〔℃〕以内の
液体を用いることが必要であり、この条件を満す
ものとしてはCmF2m+2(但しmは正数)の分子式
で表わされるフルオロカーボンがある。例えば
C5F12の沸点は30〔℃〕であり、C6F14は56〔℃〕で
あり、かつ腐食性はない。また冷却板10は第3
図に断面構造を示すように銅(Cu)製の蛇管1
2の外側を極めて多孔質な板状の発泡金属で覆つ
たもので泡状の空隙部13を通つて沸騰によつて
生じた気泡および冷媒は自由に通過することがで
き、気泡の通過速度は、ゆるやかになるので蛇管
12に水を通じて冷却すれば通常の蛇管だけに較
べて遥かに大きな冷却効果を生ずることができ
る。
As a refrigerant, it is necessary to use a liquid that is chemically stable, does not cause corrosive effects, and has a boiling point within 85 [℃] of room temperature.CmF 2 m + There is a fluorocarbon represented by the molecular formula 2 (where m is a positive number). for example
The boiling point of C 5 F 12 is 30 [°C], and that of C 6 F 14 is 56 [°C], and is not corrosive. Further, the cooling plate 10 is
Copper (Cu) flexible pipe 1 as shown in the figure shows the cross-sectional structure.
2 is covered with an extremely porous plate-shaped foamed metal, through which air bubbles generated by boiling and the refrigerant can freely pass through the foam-like voids 13, and the passing speed of the air bubbles is , so that if water is passed through the corrugated tube 12 for cooling, a much greater cooling effect can be produced than with a normal corrugated tube alone.

さて基板9の上に設けられているLSIや抵抗モ
ジユールなどの発熱素子1は通電の際の温度上昇
により冷媒11の沸点以上の温度になるので発熱
素子1が沸騰源となつて気泡の発生が起る。こゝ
で発熱素子1は縦に並んだ基板9の上に密に装着
されているので下方の発熱素子1で発生した気泡
が、上方にある発熱素子1を覆い冷媒との接触を
遮断し易く、この場合は冷却効果を無くしてしま
う。それ故に発生した気泡は速かに冷却して戻す
ことが必要で液面にまで上昇しないよう工夫する
必要がある。本発明に係る冷却板10はこの対策
の1つで冷却板10と発熱素子1との間隔を狭め
て配置することが必要である。更に有効な方法は
第4図に示すように基板9の上に配列している発
熱素子1の間にガス誘導板14を基板9に直角に
且つ容器の底面に平行に設け、下方の発熱素子1
から発生した気泡15が上方の発熱素子1に当ら
ないよう工夫されている。
Now, the heating element 1, such as an LSI or a resistance module, provided on the substrate 9 becomes heated to a temperature higher than the boiling point of the refrigerant 11 due to the temperature rise when electricity is applied, so the heating element 1 becomes a boiling source and bubbles are generated. It happens. Since the heating elements 1 are closely mounted on the vertically arranged substrates 9, air bubbles generated in the lower heating elements 1 easily cover the upper heating elements 1 and cut off contact with the refrigerant. , in this case, the cooling effect will be lost. Therefore, it is necessary to quickly cool and return the generated bubbles, and it is necessary to take measures to prevent them from rising to the liquid level. The cooling plate 10 according to the present invention is one of the measures against this problem, and it is necessary to narrow the distance between the cooling plate 10 and the heating element 1. A more effective method is to provide a gas guide plate 14 between the heating elements 1 arranged on the substrate 9 at right angles to the substrate 9 and parallel to the bottom of the container, as shown in FIG. 1
It is designed to prevent the bubbles 15 generated from hitting the heating element 1 above.

また気泡15は冷却板10に触れ急速に液化す
ることが望ましくそのためにはガス誘導板14は
冷却板10に殆んど接触する程度にまで近づける
ことが必要である。次に冷却板10への冷却は第
2図の本実施例の場合、密封容器7の上部に設け
た送入管17と送入管との間を冷却板10の中の
蛇管12が結ぶ構造をとり冷媒として水を用いて
いるが、これよりも低温冷却が可能なフレオン等
の冷媒を用いれば更に冷却温度を下げることがで
きる。このように基板を垂直に配列すると共にこ
の間に冷却板を置き浸漬液冷する構造をとること
により効果的な冷却が可能となる。
Further, it is desirable that the air bubbles 15 touch the cooling plate 10 and liquefy rapidly, and for this purpose, the gas guide plate 14 needs to be brought close to the cooling plate 10 to the extent that it almost contacts it. Next, cooling to the cooling plate 10 is carried out in the case of the present embodiment shown in FIG. Although water is used as the refrigerant, the cooling temperature can be further lowered by using a refrigerant such as Freon, which can cool at a lower temperature than this. Effective cooling can be achieved by vertically arranging the substrates, placing a cooling plate between them, and performing immersion liquid cooling.

(g) 発明の効果 本発明はプリント配線基板への高密度実装によ
り従来の空冷構造では規定された最高使用温度以
下に部品温度を保つことが困難なことからなされ
たもので本発明の実施により、規定温度以内に保
持することが可能となる。
(g) Effects of the Invention The present invention was developed because it is difficult to maintain component temperatures below the specified maximum operating temperature with conventional air-cooled structures due to high-density mounting on printed wiring boards. , it becomes possible to maintain the temperature within the specified temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の液冷モジユールの断面構成図、
第2図は本発明に係る液冷モジユールの断面構成
図、第3図は冷却板の部分断面図また第4図はガ
ス誘導板を備えた実施例の部分断面図である。 図において1は発熱素子、2,9はプリント配
線基板、3,7は密封容器、6,11は冷媒、1
0は冷却板、12は蛇管、13は空隙部、14は
ガス誘導板。
Figure 1 is a cross-sectional diagram of a conventional liquid cooling module.
FIG. 2 is a sectional view of a liquid cooling module according to the present invention, FIG. 3 is a partial sectional view of a cooling plate, and FIG. 4 is a partial sectional view of an embodiment provided with a gas guide plate. In the figure, 1 is a heating element, 2 and 9 are printed wiring boards, 3 and 7 are sealed containers, 6 and 11 are refrigerants, and 1
0 is a cooling plate, 12 is a flexible pipe, 13 is a gap, and 14 is a gas guide plate.

Claims (1)

【特許請求の範囲】 1 複数のプリント配線基板が微少間隔を距てゝ
対向して配列し該配線基板上に多数個の発熱部品
を配置してなるプリント配線基板実装モジユール
の強制冷却法として該モジユールを冷媒液を入れ
た密封容器内に配線基板を垂直にして浸漬して格
納すると共に該配線基板の相互間に冷却板を置
き、該冷却板を冷却して強制冷却する構造をとる
ことを特徴とする液冷モジユール。 2 冷媒液を入れた密封容器の中に冷却板を挟ん
で対向するプリント配線基板が該基板上に容器の
底面に平行して突出し冷却板に達するガス該導板
を備えてなることを特徴とする特許請求の範囲第
1項記載の液冷モジユール。
[Claims] 1. A method for forced cooling of a printed wiring board mounting module in which a plurality of printed wiring boards are arranged facing each other with very small intervals and a large number of heat generating components are arranged on the wiring boards. The module is stored by dipping the wiring board vertically in a sealed container containing refrigerant liquid, and a cooling plate is placed between the wiring boards to cool the cooling plate for forced cooling. Features a liquid cooling module. 2. A printed wiring board facing a cooling plate in a sealed container containing a refrigerant liquid is provided with a gas conductive plate that protrudes parallel to the bottom of the container and reaches the cooling plate. A liquid cooling module according to claim 1.
JP14777783A 1983-08-12 1983-08-12 Liquid-cooled module Granted JPS6039855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14777783A JPS6039855A (en) 1983-08-12 1983-08-12 Liquid-cooled module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14777783A JPS6039855A (en) 1983-08-12 1983-08-12 Liquid-cooled module

Publications (2)

Publication Number Publication Date
JPS6039855A JPS6039855A (en) 1985-03-01
JPH0342511B2 true JPH0342511B2 (en) 1991-06-27

Family

ID=15437945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14777783A Granted JPS6039855A (en) 1983-08-12 1983-08-12 Liquid-cooled module

Country Status (1)

Country Link
JP (1) JPS6039855A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006925A (en) * 1989-11-22 1991-04-09 International Business Machines Corporation Three dimensional microelectric packaging
JP2989976B2 (en) * 1992-12-01 1999-12-13 甲府日本電気株式会社 Circuit cooler
JP6720752B2 (en) * 2016-07-25 2020-07-08 富士通株式会社 Immersion cooling device, immersion cooling system, and method of controlling immersion cooling device
CN117840459B (en) * 2024-03-06 2024-06-11 东北大学 Laser directional energy deposition system with cooling system

Also Published As

Publication number Publication date
JPS6039855A (en) 1985-03-01

Similar Documents

Publication Publication Date Title
US10888032B2 (en) Apparatus for liquid immersion cooling, system for liquid immersion cooling, and method of cooling electronic device
US4138692A (en) Gas encapsulated cooling module
US6193905B1 (en) Immersion cooling coolant
EP0068142B1 (en) Gas cooled modules for electrical components
US7254036B2 (en) High density memory module using stacked printed circuit boards
Lupinski et al. Polymeric materials for electronics packaging and interconnection: An overview
US20130139998A1 (en) Cooling system, electronic equipment, and method for cooling heating element
US12050061B2 (en) Shrouded powder patch
US20220406682A1 (en) Electronic module comprising a pulsating heat pipe
WO1990010951A1 (en) Electronic device for managing and dissipating heat and for improving inspection and repair, and method of manufacture thereof
US11516948B2 (en) Immersion cooling systems and methods for electrical power components
WO2015049807A1 (en) Server device
JPH05335454A (en) Cooler for electronic apparatus
TW202305543A (en) Fluid immersion cooling system and method of cooling electronic system
KR20070092432A (en) Printed circuit board having metal core
JPH0342511B2 (en)
JPH08204072A (en) Device for cooling electronic parts
JP2009206398A (en) Cooling module and composite mounting substrate
Gerke et al. Solder joint reliability of high I/O ceramic-ball-grid arrays and ceramic quad-flat-packs in computer environments: the PowerPC 603/sup TM/and PowerPC 604/sup TM/microprocessors
Yonemura et al. Heat analysis on insulated metal substrates [power electronics]
JPH037960Y2 (en)
Ristic-Smith et al. Compact two-phase immersion cooling with dielectric fluid for PCB-based Power Electronics
Johnson et al. Thermo‐mechanical analysis of metal backed circuit boards
Gregory Thermal Implications of Using Chip Carriers with Current Laminates
JP2006514429A (en) Heat dissipation device for electronic equipment