JPH0342267Y2 - - Google Patents

Info

Publication number
JPH0342267Y2
JPH0342267Y2 JP19762786U JP19762786U JPH0342267Y2 JP H0342267 Y2 JPH0342267 Y2 JP H0342267Y2 JP 19762786 U JP19762786 U JP 19762786U JP 19762786 U JP19762786 U JP 19762786U JP H0342267 Y2 JPH0342267 Y2 JP H0342267Y2
Authority
JP
Japan
Prior art keywords
chamber
piston
cylinder
frequency
gas chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19762786U
Other languages
Japanese (ja)
Other versions
JPS63101346U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19762786U priority Critical patent/JPH0342267Y2/ja
Publication of JPS63101346U publication Critical patent/JPS63101346U/ja
Application granted granted Critical
Publication of JPH0342267Y2 publication Critical patent/JPH0342267Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Fluid-Damping Devices (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、シヨツクアブソーバに関し、固有振
動数(共振点)を含む周波数領域の加振入力又は
自己振動を有する振動系の防振装置に適用して有
用なるものである。
[Detailed description of the invention] [Industrial application field] The present invention relates to a shock absorber, and is applied to a vibration isolation device for a vibration system that has excitation input in a frequency range including the natural frequency (resonance point) or self-vibration. This is useful.

〔従来の技術〕[Conventional technology]

振動系に適用するシヨツクアブソーバとしては
周知の如く、振動系の固有振動数付近のみで減衰
力を発生し、その他の振動周波数領域では減衰力
を発生しないことが望ましい。
As is well known, it is desirable for a shock absorber applied to a vibration system to generate a damping force only near the natural frequency of the vibration system, and not to generate a damping force in other vibration frequency regions.

そこで、このような周波数特性を有する減衰力
発生装置として、油圧シリンダの作動ピストンに
バルブ機構を備えた連通孔を開穿した緩衝器が多
く採用されている。
Therefore, as a damping force generating device having such frequency characteristics, a shock absorber having a communication hole provided with a valve mechanism in an operating piston of a hydraulic cylinder is often employed.

しかし、かかる緩衝器では、作動時に、ピスト
ン移動に伴うシリンダ内へのピストンロツドの侵
入及び繰り出しに相当する分だけシリンダ容積が
減少又は増大するので、シリンダ内に充填した作
動油の補給又は吸収を計る必要があり、そのため
に、シリンダ容室の一部にフリーピストンで仕切
つた空気バネ室を設けるか、或いはシリンダを複
筒式に構成したインナーチユーブとアウターチユ
ーブとの間の空間を前記シリンダ容室と連通した
油タンク兼空気バネ室に構成する等なして、それ
等空気バネ室の圧縮又は膨張により前記容積変化
に対処するようになしていた。
However, when such a shock absorber is operated, the cylinder volume decreases or increases by the amount corresponding to the intrusion and extension of the piston rod into the cylinder as the piston moves, so it is necessary to replenish or absorb the hydraulic oil filled in the cylinder. For this purpose, an air spring chamber partitioned by a free piston is provided in a part of the cylinder chamber, or the space between the inner tube and the outer tube of the double cylinder structure is used as the cylinder chamber. The air spring chamber is constructed as an oil tank/air spring chamber in communication with the air spring chamber, and the volume change is dealt with by compression or expansion of the air spring chamber.

更に、緩衝器の取付け方向性をなくすために前
記空気バネ室をゴム等の弾性材からなる袋中に気
体を封止して構成する手段(例えば、特公昭30−
6553号)も提案されている。
Furthermore, in order to eliminate the mounting directionality of the shock absorber, the air spring chamber is constructed by sealing gas in a bag made of an elastic material such as rubber (for example,
No. 6553) has also been proposed.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

ところで、上述の発生減衰力に周波数特性を有
する緩衝器においては、減衰力発生領域を特定し
ようとすればする程前記連通孔におけるバルブ機
構が複雑化し、しかも、その選定が極めて困難で
あつた。
By the way, in the above-mentioned shock absorber in which the generated damping force has a frequency characteristic, the valve mechanism in the communication hole becomes more complicated as the damping force generation region is attempted to be specified, and selection thereof is extremely difficult.

そこで、本考案は、簡単な装置構成により減衰
力の周波数選定が容易なシヨツクアブソーバを提
供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a shock absorber that has a simple device configuration and allows easy selection of the frequency of the damping force.

〔問題点を解決するための手段〕[Means for solving problems]

この目的は、本考案によれば、ピストンとシリ
ンダとからなる緩衝機構において、シリンダにお
ける伸側室及び圧側室と夫々一連の各容室に圧縮
膨張可能なガス室を夫々設けると共に、ピストン
に前記伸圧側両室間を連通する流路孔を、ピスト
ンロツドに挿通したコントロールロツドで外部操
作可能なロータリーバルブにより規制される絞り
装置の介在下に設けてなるシヨツクアブソーバに
よつて達成することを出来る。
According to the present invention, in a shock absorbing mechanism consisting of a piston and a cylinder, a compression-expandable gas chamber is provided in each of the extension side chamber and compression side chamber of the cylinder, respectively, and the piston is provided with a gas chamber capable of compression and expansion. The flow passage hole communicating between the pressure side chambers can be achieved by a shock absorber provided under the intervention of a throttling device regulated by a rotary valve which can be operated externally by a control rod inserted into the piston rod.

〔作用〕[Effect]

即ち、上述の手段において、先ず、シリンダ内
作動油充填下の圧側ピストン移動時について考察
すると、シリンダにおける圧側室の作動油はピス
トン移動による室容積の減少分だけ移動しなけれ
ばならない。その移動経路の一つは、該圧側室に
設けたガス室を圧縮するものであり、他の一つは
ピストン内の絞り孔を通つて伸側室へ流出するも
のである。この状態下で、圧側室の圧力は上昇す
る。
That is, in the above-mentioned means, first, considering the time when the pressure side piston moves while the cylinder is filled with hydraulic oil, the hydraulic oil in the pressure side chamber of the cylinder must move by the amount of the reduction in the chamber volume due to the movement of the piston. One of its movement paths is for compressing a gas chamber provided in the compression side chamber, and the other path is for flowing out into the expansion side chamber through a throttle hole in the piston. Under this condition, the pressure in the pressure side chamber increases.

これに対して、伸側室では前記ピストン移動に
よる室容積の増加分に相当する作動油の補給がな
され、伸側室に設けたガス室の膨張と前記圧側室
からの流入量でまかなわる。また、この状態下で
の伸側室の圧力は低下する。
On the other hand, the expansion side chamber is replenished with hydraulic oil corresponding to the increase in chamber volume due to the piston movement, and this is covered by the expansion of the gas chamber provided in the expansion side chamber and the amount of inflow from the pressure side chamber. Moreover, the pressure in the expansion side chamber under this condition decreases.

そして、このときのピストン並びにそのロツド
に働く反力は、伸圧両側室の圧力に夫々の受圧面
積を乗じたものの差となる。
The reaction force acting on the piston and its rod at this time is the difference between the pressures of both expansion chambers multiplied by their respective pressure receiving areas.

そこで、ピストンが往復運動(例えば正弦的運
動)する場合に、前記圧側室と伸側室との圧力の
変化は、ガス室と絞り孔とが存在するために、ピ
ストンの動きに対して時間的な遅れが生じる。そ
こで、例えば、絞り孔がなくてガス室のみによる
前述の移動の場合には、ピストンの変位に同期し
てガス室の圧縮又は膨張が行われるので、このと
きの前記両室の圧力はピストン変位に比例して変
化する。而して、この状態での両室の圧力差によ
る力がバネ反力(ピストン変位と同位相の力)で
ある。
Therefore, when the piston makes a reciprocating motion (for example, a sinusoidal motion), the change in pressure between the pressure side chamber and the expansion side chamber is caused by the existence of the gas chamber and the throttle hole, so that the change in pressure in the pressure side chamber and the expansion side chamber is caused by the time difference relative to the movement of the piston. There will be a delay. Therefore, for example, in the case of the above-mentioned movement using only the gas chamber without a throttle hole, the gas chamber is compressed or expanded in synchronization with the displacement of the piston, so the pressure in both chambers at this time is equal to the displacement of the piston. changes in proportion to. In this state, the force due to the pressure difference between the two chambers is a spring reaction force (a force in the same phase as the piston displacement).

また、ガス室がなくても絞り孔のみの場合で
は、ピストン移動速度に対応して作動油を絞り孔
から移動させるために、圧側室の圧力は該速度に
同期して(変位に対しては1/4波長進み)変化す
る。従つて、絞り孔を通過して移動させるための
反力は速度に同期しており、減衰力となる。
In addition, in the case where there is no gas chamber but only a throttle hole, in order to move the hydraulic oil from the throttle hole in accordance with the speed of piston movement, the pressure in the pressure side chamber is synchronized with the speed (with respect to displacement). 1/4 wavelength advance) changes. Therefore, the reaction force for moving through the aperture is synchronized with the speed and becomes a damping force.

而して、ガス室と絞り孔との双方が存在する場
合では、上述の二態様の場合の中間的な形態とな
り、反力は変位からある時間(位相)進んだ形態
となる。そして、この反力は第4図示の如く、変
位に同期する成分(バネ反力)と速度に同期する
成分(減衰力)に分けて扱うことが出来る。
In the case where both the gas chamber and the throttle hole are present, the form is intermediate between the above two modes, and the reaction force takes a form that is advanced by a certain time (phase) from the displacement. As shown in Figure 4, this reaction force can be divided into a component synchronized with displacement (spring reaction force) and a component synchronized with speed (damping force).

ここで、減衰力に注目してみると、ピストン往
復動の周波数が低く且つピストン移動速度が遅い
と、これに対応する作動油の移動の瞬間流量は小
さくて、絞り孔を通る時の抵抗が殆んどなくなる
ので、伸圧側の両室の圧力は略等しくなる。そし
て、このときのピストンロツドの侵入又は繰り出
しの分の容積変化は両室における各ガス室の圧縮
又は膨張によつて補われるために、減衰力は殆ん
ど発生せず、バネ反力も低い値となる。
Now, looking at the damping force, if the frequency of the piston reciprocating motion is low and the piston movement speed is slow, the corresponding instantaneous flow rate of hydraulic oil movement is small, and the resistance when passing through the throttle hole is small. Since most of the pressure is removed, the pressures in both chambers on the expansion side become approximately equal. At this time, the change in volume due to the insertion or extension of the piston rod is compensated for by the compression or expansion of each gas chamber in both chambers, so almost no damping force is generated and the spring reaction force is also low. Become.

次に、ピストン往復動の周波数が高くなり、ピ
ストン移動速度が速くなると、作動油の移動の瞬
間流量が大きくなるので、これを絞り孔を通して
流すことが困難になり、その大部分はガス室の変
形によつて吸収することになる。このために、減
衰力は殆んど発生せず、代つてバネ圧力が伸圧側
両室の各ガス室の変形によつて生じる両室間の差
圧力に基いて大きくなる。
Next, as the frequency of piston reciprocation increases and the piston movement speed increases, the instantaneous flow rate of hydraulic oil movement increases, making it difficult to flow through the restrictor hole, and most of it is in the gas chamber. It will be absorbed through deformation. For this reason, almost no damping force is generated, and instead, the spring pressure increases based on the differential pressure between the two chambers caused by the deformation of each gas chamber on the expansion side chambers.

従つて、このピストン往復動の中間周波数域に
おいて、絞り孔を流れる時の抵抗が最も大きくな
る点が存在することになる。しかして、その点が
減衰力ピーク周波数であり、絞り孔の径(孔長に
は関係なく)を設定することにより、これに応じ
た任意の減衰力の周波数選定が可能となる。
Therefore, in the intermediate frequency range of this reciprocating movement of the piston, there exists a point where the resistance when flowing through the throttle hole is greatest. Therefore, this point is the damping force peak frequency, and by setting the diameter of the aperture hole (regardless of the hole length), it becomes possible to select an arbitrary frequency of the damping force in accordance with this point.

なお、前記ガス室がシリンダの伸圧側両室の全
体を占めるとき、即ち、気圧シリンダの構成にお
いても、シリンダ容室(ガス室)の体積及び圧力
並びに絞り孔の径を変えることにより、減衰力の
ピーク周波数を変えることが出来る。
In addition, when the gas chamber occupies the entire expansion side chambers of the cylinder, that is, in the configuration of a pneumatic cylinder, the damping force can be adjusted by changing the volume and pressure of the cylinder chamber (gas chamber) and the diameter of the throttle hole. You can change the peak frequency of

そして、このピーク周波数は両ガス室の体積、
圧力および絞り孔の径の大きさによつて変化する
が、このピーク周波数の選定に絞り装置が有効に
作用する。即ち、外部からのコントロールロツド
の操作でロータリーバルブの開口度を加減して流
路孔の絞り孔径を大きくすると、高い周波数の振
動領域までバネ反力は低いままであり、減衰力も
発生せず、従つて、ピーク周波数は高い方に移動
し、逆に絞り孔径を小さくすると、低い周波数の
振動領域でバネ反力が高くなり、かつ、減衰力も
発生するので、該減衰力ピークが低い周波数の方
へ移動することになる。
And this peak frequency is the volume of both gas chambers,
Although it changes depending on the pressure and the size of the diameter of the throttle hole, the throttle device is effective in selecting this peak frequency. In other words, when the diameter of the flow passage hole is increased by adjusting the opening degree of the rotary valve by operating the control rod from the outside, the spring reaction force remains low up to the high frequency vibration region, and no damping force is generated. Therefore, the peak frequency moves to a higher side, and conversely, if the aperture diameter is made smaller, the spring reaction force becomes higher in the low frequency vibration region, and damping force is also generated, so the damping force peak becomes lower in the low frequency vibration region. You will have to move in that direction.

次に、本考案の好ましい実施例について添附図
面を参照して説明する。
Next, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

〔実施例〕〔Example〕

本考案の一実施例を示す第1図において、シリ
ンダ1はアウターシエル2を有する複筒式構造か
らなり、ピストン3によつて仕切られた伸側室4
と前記アウターシエル2とシリンダ1の外壁との
間の容室5とが油通路孔6によつて連通せしめて
ある。この容室5にはゴム等の弾性材からなる袋
体7に気体を封止したガス室8を配設してある。
一方、圧側室9の端には油通路孔10を開穿した
隔壁11を配置し、該隔壁11とキヤツプ12と
の間に、該キヤツプ12の内壁に取付けたゴム等
からなるダイヤフラム13で密封したガス室14
を設けてある。
In FIG. 1 showing an embodiment of the present invention, a cylinder 1 has a double-tube structure having an outer shell 2, and an expansion side chamber 4 partitioned by a piston 3.
and a chamber 5 between the outer shell 2 and the outer wall of the cylinder 1 are communicated through an oil passage hole 6. This container chamber 5 is provided with a gas chamber 8 in which gas is sealed in a bag body 7 made of an elastic material such as rubber.
On the other hand, a partition wall 11 with an oil passage hole 10 is arranged at the end of the pressure side chamber 9, and a diaphragm 13 made of rubber or the like attached to the inner wall of the cap 12 is sealed between the partition wall 11 and the cap 12. gas chamber 14
is provided.

そして、前記ピストン3には、そのピストンロ
ツド14に回動自在に挿通したコントロールロツ
ド15によつて制御されるロータリーバルブ16
で通路口の絞り規制を受ける流路孔17を設け
て、前記伸圧側の両室4及び9間を連通する絞り
孔となしてある。その他、18はベアリングケー
スを示す。
The piston 3 has a rotary valve 16 which is controlled by a control rod 15 which is rotatably inserted into the piston rod 14.
A flow passage hole 17 whose passage opening is subject to restriction regulation is provided to serve as a restriction hole that communicates between the two chambers 4 and 9 on the expansion side. Additionally, 18 indicates a bearing case.

このような構成からなる実施例において、これ
を振動系の防振装置として組付けた状態下での低
周波作動時には、振動によるピストン3の往復運
動で、圧側室9及び伸側室4の作動油は、該ピス
トン3の流路孔17を通つて両室間を移動する。
このときの作動油の流れの抵抗により該ピストン
3の圧側又は伸側の両面に働く差圧力が減衰力と
なる。
In the embodiment with such a configuration, during low frequency operation when this is assembled as a vibration isolator for a vibration system, the reciprocating movement of the piston 3 due to vibration causes the hydraulic oil in the compression side chamber 9 and the expansion side chamber 4 to be moves between the two chambers through the passage hole 17 of the piston 3.
At this time, the differential pressure acting on both the compression side and expansion side of the piston 3 due to the flow resistance of the hydraulic oil becomes a damping force.

そして、このときのピストンロツド14のシリ
ンダ内侵入又は繰り出しによつて生じるシリンダ
内容積の変化分は、圧側室9及び伸側室4と一連
の容室に夫々配置した両ガス室14及び8の圧縮
又は膨張によつて吸収される。これによつて生じ
るシリンダ内圧力上昇の反力がバネ力となる。
At this time, the change in the cylinder internal volume caused by the piston rod 14 entering or drawing out the cylinder is the compression or expansion of both gas chambers 14 and 8, which are arranged in the chambers continuous with the compression side chamber 9 and the expansion side chamber 4, respectively. Absorbed by expansion. The reaction force caused by the increase in cylinder pressure becomes a spring force.

従つて、極く低周波作動時にはピストン両面の
圧力がほぼ等しく、第2図の反力特性図に示す如
く、減衰力が殆んど発生しないと共に、バネ力が
内部圧力にピストンロツド14の断面積を乗じた
もとなる。そして、ピストン動作の周波数が上が
るに従つて減衰力及びバネ力ともに同図示の如く
上昇する。
Therefore, during extremely low frequency operation, the pressure on both sides of the piston is almost equal, and as shown in the reaction force characteristic diagram in FIG. Multiplyed by . As the frequency of piston operation increases, both the damping force and the spring force increase as shown in the figure.

即ち、減衰力はガス室8及び14の体積及びそ
の封止圧力と絞り孔の径の大きさによつて変化す
るところの或る中間周波数域で最大となる一方、
バネ力は周波数の増加につれて単調に増加する。
That is, while the damping force is maximum in a certain intermediate frequency range, which varies depending on the volume of the gas chambers 8 and 14, their sealing pressure, and the diameter of the throttle hole,
The spring force increases monotonically with increasing frequency.

更に、高周波作動域に至ると、流路孔17を通
る作動油の抵抗が増大するので、前記両室4及び
9の作動油は主にそれ等の各ガス室8及び14と
の間で出入することになる。そのために、作動油
が流路孔17を通過することによるピストン両面
の差圧力は小さくなり、換言すれば、流路孔17
の閉鎖下にガスダンパーによつて振動吸収が行わ
れることになるので、減衰力は再び小さくなる。
他方、ガス室8又は14を圧縮するための圧力差
は大きくなり、バネ力が更に高くなる。
Furthermore, when the high frequency operating range is reached, the resistance of the hydraulic oil passing through the flow passage hole 17 increases, so the hydraulic oil in the chambers 4 and 9 mainly enters and exits between the gas chambers 8 and 14. I will do it. Therefore, the differential pressure on both sides of the piston due to the passage of the hydraulic oil through the flow path hole 17 becomes small.
Since vibration absorption is carried out by the gas damper while the damping force is closed, the damping force becomes small again.
On the other hand, the pressure difference for compressing the gas chamber 8 or 14 becomes larger and the spring force becomes even higher.

そして、前記動作がロータリーバルブ16にお
ける中間開度の絞り下であるとすれば、コントロ
ールロツド15を操作して該ロツド15とピスト
ンピストンロツド14との相対位置を変えること
により、前記バルブ16の絞り開度を広げると、
前述の作動時よりもより高い周波数振動領域ま
で、流路孔17を通つて流れる作動油に対する抵
抗が低いので、第3図示の如く、減衰力のピーク
周波数は先の周波数h1からより高い周波数h2へと
移行する。又、前記コントロールロツド15の逆
向き回動操作で、ロータリーバルブ16を絞り込
みの向きに制御すると、これによつて絞り開度が
小さくなつた流路孔17において、振動周波数の
低い領域から、これを流れる作動油への抵抗が増
すので、このときの減衰力のピーク周波数は前述
の周波数h1に対してより低い周波数h3に移行す
る。
If the operation is under the restriction of the intermediate opening degree of the rotary valve 16, the control rod 15 can be operated to change the relative position between the rod 15 and the piston rod 14, thereby controlling the valve 16. When you widen the aperture opening of
Since the resistance to the hydraulic oil flowing through the flow passage hole 17 is low up to a higher frequency vibration region than during the above-mentioned operation, the peak frequency of the damping force increases from the previous frequency h 1 to a higher frequency, as shown in the third diagram. Transition to h2 . Furthermore, when the rotary valve 16 is controlled in the constricting direction by rotating the control rod 15 in the opposite direction, the flow rate changes from the region of low vibration frequency in the flow passage hole 17 where the degree of constriction is reduced. Since the resistance to the hydraulic oil flowing through this increases, the peak frequency of the damping force at this time shifts to a lower frequency h3 than the above-mentioned frequency h1 .

〔考案の効果〕[Effect of idea]

このように、本考案シヨツクアブソーバによれ
ば、シリンダの伸圧側の両室に夫々バネ室を配設
し、かつ、ピストンに両室間を連通する絞り孔を
設けたことによつて、前記バネ室をピストンロツ
ド出入によるシリンダ内容積の変化分の吸収を計
ることは素より、絞り孔を通つて移動しようとす
る作動流体に対する流路抵抗が増大する高周波作
動域におけるピストン動作の吸収を行い、絞り孔
との組合せにより減衰力に周波数選択性をもたせ
る機能を有するもので、該絞り孔の径の大きさを
設定することにより、前記周波数を容易に決定す
ることが出来るので、これを振動系の吸振ダンパ
ーに用いる際に、対象の振動系の固有振動数に的
確に対応する減衰力発生周波数領域を選定するこ
とが可能となり、しかも、コントロールロツドの
操作によつて、減衰力の周波数選定を自由に行う
ことが出来るので、振動系に組付けた後の微調整
が可能であり、また、一つの構造パターンで比較
的広い周波数の異なる減衰力選定が可能であるこ
とから、各種の振動系への適用が出来る。これに
よつて、本考案シヨツクアブソーバを回転機械の
防振装置、構造物の防振装置、更には自動車等に
おけるエンジンダンパー、ステアリングダンパー
及びサスペンシヨンのバネ下制振用など、広い範
囲への適用が可能で、その実用上益するところ多
大なるものである。
As described above, according to the shock absorber of the present invention, the spring chambers are provided in both chambers on the expansion side of the cylinder, and the throttle hole is provided in the piston to communicate between the two chambers, so that the spring In addition to absorbing the change in cylinder internal volume due to the movement of the piston rod in and out of the chamber, it also absorbs the piston movement in the high frequency operating range where the flow path resistance to the working fluid that attempts to move through the throttle hole increases. It has the function of giving frequency selectivity to the damping force in combination with the aperture, and the frequency can be easily determined by setting the diameter of the aperture. When used in a vibration absorption damper, it is possible to select the frequency range in which the damping force is generated that accurately corresponds to the natural frequency of the target vibration system.Moreover, it is possible to select the frequency of the damping force by operating the control rod. Since it can be adjusted freely, it is possible to make fine adjustments after it has been assembled into the vibration system.Also, since it is possible to select different damping forces over a relatively wide range of frequencies with one structural pattern, it can be used for various vibration systems. It can be applied to As a result, the shock absorber of the present invention can be applied to a wide range of applications, including vibration isolators for rotating machinery, vibration isolators for structures, and unsprung vibration dampers for engine dampers, steering dampers, and suspensions in automobiles, etc. is possible and has great practical benefits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案シヨツクアブソーバの一実施例
を示す縦断側面図、第2図は第1図示実施例にお
ける作動特性図、第3図は本考案シヨツクアブソ
ーバにおける絞り開度調整効果を示す特性図、第
4図は本考案シヨツクアブソーバの動作原理を説
明するための特性図である。 1……シリンダ、2……アウターシエル、3…
…ピストン、4……伸側室、5……容室、6及び
10……油通路孔、7……袋体、8及び14……
ガス室、9……圧側室、11……隔壁、14……
ピストンロツド、15……コントロールロツド、
16……ロータリーバルブ、17……流路孔。
Fig. 1 is a vertical sectional side view showing an embodiment of the shock absorber of the present invention, Fig. 2 is an operating characteristic diagram of the first embodiment, and Fig. 3 is a characteristic diagram showing the effect of adjusting the throttle opening in the shock absorber of the present invention. , FIG. 4 is a characteristic diagram for explaining the operating principle of the shock absorber of the present invention. 1...Cylinder, 2...Outer shell, 3...
...Piston, 4...Extension side chamber, 5...Container chamber, 6 and 10...Oil passage hole, 7...Bag body, 8 and 14...
Gas chamber, 9... pressure side chamber, 11... bulkhead, 14...
Piston rod, 15...control rod,
16... Rotary valve, 17... Channel hole.

Claims (1)

【実用新案登録請求の範囲】 (1) ピストンとシリンダとからなる緩衝機構にお
いて、シリンダにおける伸側室及び圧側室と
夫々一連の各容室に圧縮膨張可能なガス室を
夫々設けると共に、ピストンに前記伸圧側両室
間を連通する流路孔を、ピストンロツドに挿通
したコントロールロツドで外部操作可能なロー
タリーバルブにより規制される絞り装置の介在
下に設けてなることを特徴とするシヨツクアブ
ソーバ。 (2) 前記緩衝機構が複筒構造からなり、前記ガス
室が前記圧側室と油通路を有する隔壁によつて
仕切られたキヤツプ内壁側にダイヤフラムで囲
つた圧側ガス室と、前記伸側室と連通するシリ
ンダとアウターシエルと間の容室に配置したゴ
ム等の弾性材からなる袋体に気体を密封した伸
側ガス室とからなるところの実用新案登録請求
の範囲第1項記載のシヨツクアブソーバ。
[Claims for Utility Model Registration] (1) In a shock absorbing mechanism consisting of a piston and a cylinder, a compression-expandable gas chamber is provided in each of the expansion side chamber and compression side chamber of the cylinder, respectively, and the piston is provided with a compressible and expandable gas chamber. A shock absorber characterized in that a flow passage hole communicating between both chambers on the expansion side is provided under the intervention of a throttling device regulated by a rotary valve that can be externally operated by a control rod inserted into a piston rod. (2) The buffer mechanism has a double-tube structure, and the gas chamber is separated from the compression side chamber by a partition wall having an oil passage, and the compression side gas chamber surrounded by a diaphragm on the inner wall side of the cap communicates with the expansion side chamber. The shock absorber according to claim 1, which is a utility model, and comprises an expansion side gas chamber in which gas is sealed in a bag made of an elastic material such as rubber, which is disposed in a chamber between a cylinder and an outer shell.
JP19762786U 1986-12-23 1986-12-23 Expired JPH0342267Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19762786U JPH0342267Y2 (en) 1986-12-23 1986-12-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19762786U JPH0342267Y2 (en) 1986-12-23 1986-12-23

Publications (2)

Publication Number Publication Date
JPS63101346U JPS63101346U (en) 1988-07-01
JPH0342267Y2 true JPH0342267Y2 (en) 1991-09-04

Family

ID=31157551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19762786U Expired JPH0342267Y2 (en) 1986-12-23 1986-12-23

Country Status (1)

Country Link
JP (1) JPH0342267Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241483A (en) * 2000-02-29 2001-09-07 Tokico Ltd Hydraulic shock absorber
KR101382346B1 (en) * 2008-05-23 2014-04-08 현대자동차 주식회사 Shock absorber for vehicle

Also Published As

Publication number Publication date
JPS63101346U (en) 1988-07-01

Similar Documents

Publication Publication Date Title
EP3048328B1 (en) Damping device
EP3048329A1 (en) Damping device
US20110024245A1 (en) Shock absorber
JP2008240764A (en) Shock absorber
JPH0396730A (en) Valve for hydraulic fluid and shock absorber including the same
JP3137209B2 (en) Semi-active suspension system
JPH0342267Y2 (en)
KR20050046721A (en) Controllable piston valve and/or flap valve for a vibration damper
US20150184716A1 (en) Shock absorber
JPH10259847A (en) Position-dependent damper
JP2015102100A (en) Buffering device
JPH10339345A (en) Hydraulic shock absorber
WO2020031691A1 (en) Damper for railroad vehicle
JPH08135714A (en) Hydraulic shock absorber
JP3357993B2 (en) Damping force generator for vehicle hydraulic shock absorbers
JPH09217775A (en) Damping device
JP7579382B1 (en) Damping valves and shock absorbers
JPH0517461Y2 (en)
KR100245171B1 (en) Gas spring
JPH0379831A (en) hydraulic shock absorber
JPH0322586Y2 (en)
JPH0235064Y2 (en)
JPS5921317Y2 (en) hydraulic shock absorber
JPS62106138A (en) Frequency and stroke dependent damper
JPH05302639A (en) Hydraulic shock absorber