JPH0341243Y2 - - Google Patents

Info

Publication number
JPH0341243Y2
JPH0341243Y2 JP1984042197U JP4219784U JPH0341243Y2 JP H0341243 Y2 JPH0341243 Y2 JP H0341243Y2 JP 1984042197 U JP1984042197 U JP 1984042197U JP 4219784 U JP4219784 U JP 4219784U JP H0341243 Y2 JPH0341243 Y2 JP H0341243Y2
Authority
JP
Japan
Prior art keywords
heat exchanger
evaporation pressure
outdoor heat
detection means
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984042197U
Other languages
Japanese (ja)
Other versions
JPS60155863U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4219784U priority Critical patent/JPS60155863U/en
Publication of JPS60155863U publication Critical patent/JPS60155863U/en
Application granted granted Critical
Publication of JPH0341243Y2 publication Critical patent/JPH0341243Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、ホツトガスバイパス方式にて低圧制
御を行なうようにしたヒートポンプ式空気調和機
に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a heat pump type air conditioner that performs low pressure control using a hot gas bypass method.

(従来技術) ヒートポンプ式空気調和機において、暖房運転
時に外気温度が低いと、室外熱交換器(蒸発器と
して作用している)のフイン表面温度が低温とな
り着霜が生じる。この着霜量が増えるてくると、
フイン間が目詰りし、通風抵抗が増大して、風量
低下をきたす結果、熱交換量が激減することとな
り、システムとしての正常な運転が維持できなく
なる。このため、ある限度を越えると、逆サイク
ル方式などにより暖房運転を一時停止し、融霜さ
せて、除霜を行なう必要がある。
(Prior Art) In a heat pump type air conditioner, when the outside air temperature is low during heating operation, the surface temperature of the fins of the outdoor heat exchanger (acting as an evaporator) becomes low, causing frost formation. As the amount of frost increases,
The spaces between the fins become clogged, increasing ventilation resistance and reducing the air volume, resulting in a drastic reduction in the amount of heat exchange, making it impossible to maintain normal operation as a system. Therefore, when a certain limit is exceeded, it is necessary to temporarily stop the heating operation and defrost the air by using a reverse cycle method or the like.

ところが、この除霜運転の回数が多いと、暖房
能力の低下による不快感およびエネルギー効率の
低下が生じる。この除霜運転の回数を減ずるに
は、フインに対する着霜の影響を遅延させるよう
に工夫すればよい。しかしながら、常に着霜があ
る冷凍機械の熱交換器においては、それなりに着
霜遅延、効率的除霜のための工夫がなされている
が、ヒートポンプ式空気調和機においては、着霜
条件となる場合が全運転時間のある部分(即ち、
低外気温度での暖房運転時)に限られるため、除
霜機構は設けられているものの、特に除霜運転間
隔を長くさせるような工夫がなされていない。
However, if this defrosting operation is performed many times, a reduction in heating capacity causes discomfort and a reduction in energy efficiency. In order to reduce the number of times this defrosting operation is performed, it is sufficient to devise measures to delay the influence of frost formation on the fins. However, in the heat exchangers of refrigeration machines where frost always forms, measures have been taken to delay frost formation and efficiently defrost, but in heat pump type air conditioners, when frost forms is part of the total operating time (i.e.
Although a defrosting mechanism is provided, no special measures have been taken to lengthen the interval between defrosting operations.

第4図には、従来のヒートポンプ式空気調和機
の室外コイル用として使用されている熱交換器が
示されている。この熱交換器は、小間隔(即ち、
フインピツチFP)で多数平行に配設した板状フ
イン11′,11′…に多数の伝熱管12′,1
2′…を貫通させて密着保持して構成されている。
なお、伝熱管12′,12′…は2列配置とされ、
フインピツチFP≒2mmとされている。このよう
な構造の熱交換器では、板状フイン11′,1
1′…間における着霜限界(即ち、除霜開始まで
の時間)が約1時間と短かく、除霜運転回数を多
く必要とする(第6図点線参照)。
FIG. 4 shows a heat exchanger used for an outdoor coil of a conventional heat pump type air conditioner. This heat exchanger has small spacing (i.e.
A large number of heat transfer tubes 12', 1 are connected to a large number of plate-shaped fins 11', 11'... arranged in parallel at a fin pitch F P ).
2'... are penetrated and held in close contact with each other.
Note that the heat exchanger tubes 12', 12'... are arranged in two rows,
Fin pitch F P is said to be approximately 2 mm. In a heat exchanger having such a structure, the plate-like fins 11', 1
The frost formation limit (that is, the time until the start of defrosting) between 1' and 1' is as short as about 1 hour, and many defrosting operations are required (see the dotted line in Figure 6).

(考案の目的) 本考案は、上記の点に鑑みてなされたもので、
その目的は、暖房運転時において、外気が着霜条
件になつた場合、室外熱交換器に設けたホツトガ
ス専用伝熱管に圧縮機から吐出されるホツトガス
の一部を流通させ、室外熱交換器における蒸発圧
力を着霜が進まない圧力に維持する如く制御し
て、逆サイクルによる除霜運転回数を大巾に減
じ、以つて暖房の快適性の向上をはかることにあ
る。
(Purpose of the invention) This invention was made in view of the above points.
The purpose of this is to circulate a portion of the hot gas discharged from the compressor through the hot gas dedicated heat transfer tube installed in the outdoor heat exchanger when the outside air becomes frosty during heating operation. The purpose is to control the evaporation pressure so as to maintain it at a pressure that prevents frost formation, greatly reduce the number of defrosting operations by reverse cycle, and thereby improve the comfort of heating.

(考案の構成) 本考案は、圧縮機、四路切換弁、室内熱交換
器、膨張機構および室外熱交換器を備え、暖房運
転時に圧縮機から吐出されるホツトガスの一部を
流量制御弁を介して前記室外熱交換器に通過させ
て蒸発圧力を制御するようにしたヒートポンプ式
空気調和機において、前記室外熱交換器を、小間
隔で多数平行に配設した板状フインに、多数の通
常運転用伝熱管とホツトガス専用伝熱管とを混在
させて貫通配置させることにより構成するととも
に、前記室外熱交換器の吸込空気の絶対湿度を検
知する湿度検知手段と、前記室外熱交換器におけ
る冷媒の蒸発圧力を検知する圧力検知手段と、前
記湿度検知手段からの湿度値信号により室外熱交
換器において霜の成長しない限界蒸発圧力値を求
め、且つ該限界蒸発圧力値と前記圧力検知手段か
らの検出蒸発圧力値とを比較演算し、その結果、
前記圧力検知手段からの検出蒸発圧力値が小と演
算されたとき前記流量制御弁に対してその開度を
拡大する指令信号を発する電子演算回路とを付設
したことを特徴とし、このことにより、室外熱交
換器への着霜を防止し、以つて逆サイクルによる
除霜運転回数を減じているのである。
(Structure of the device) The device is equipped with a compressor, a four-way switching valve, an indoor heat exchanger, an expansion mechanism, and an outdoor heat exchanger. In a heat pump type air conditioner in which the evaporation pressure is controlled by passing the heat to the outdoor heat exchanger through a It is configured by a mixture of operational heat exchanger tubes and hot gas dedicated heat exchanger tubes and arranged through them, and includes a humidity detection means for detecting the absolute humidity of the intake air of the outdoor heat exchanger, and a humidity detection means for detecting the absolute humidity of the air sucked into the outdoor heat exchanger; A pressure detection means for detecting evaporation pressure, and a humidity value signal from the humidity detection means to determine a limit evaporation pressure value at which frost does not grow in the outdoor heat exchanger, and detecting the limit evaporation pressure value and the pressure detection means from the pressure detection means. Compare and calculate the evaporation pressure value, and as a result,
The present invention is characterized by being further provided with an electronic calculation circuit that issues a command signal to the flow rate control valve to increase its opening degree when the detected evaporation pressure value from the pressure detection means is calculated to be small, whereby: This prevents frost from forming on the outdoor heat exchanger, thereby reducing the number of defrosting operations using the reverse cycle.

(実施例) 以下、第1図ないし第3図を参照して、本考案
の実施例にかかるヒートポンプ式空気調和機を説
明する。
(Embodiment) Hereinafter, a heat pump type air conditioner according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3.

このヒートポンプ式空気調和機は、第1図図示
の冷媒循環サイクルを有している。即ち、圧縮機
1、四路切換弁2、室内熱交換器3、冷房用およ
び暖房用の膨張機構4および5、室外熱交換器6
およびアキユムレータ7を循環状に接続して冷媒
循環回路Aを構成し、該冷媒循環回路Aに実線矢
印あるいは点線矢印で示す如く可逆的に冷媒を流
通せしめて暖房あるいは冷房作用を行わしめるよ
うにされている。符号8,9は逆止弁である。
This heat pump type air conditioner has a refrigerant circulation cycle shown in FIG. That is, a compressor 1, a four-way switching valve 2, an indoor heat exchanger 3, expansion mechanisms 4 and 5 for cooling and heating, and an outdoor heat exchanger 6.
The accumulator 7 is connected in a circular manner to form a refrigerant circulation circuit A, and a refrigerant is reversibly circulated through the refrigerant circulation circuit A as shown by solid line arrows or dotted line arrows to perform a heating or cooling action. ing. Reference numerals 8 and 9 are check valves.

前記冷媒循環回路Aには、圧縮機1の吐出側か
ら分岐し、室外熱交換器6内を通過して該室外熱
交換器6の出口側に接続されるホツトガスバイパ
ス回路Bが付設されている。該ホツトガスバイパ
ス回路Bには、ホツトガスバイパス量を制御する
流量制御弁10が介設されており、該流量制御弁
10は暖房運転時にのみ開弁し、しかもその開度
は後述する電子演算回路16によつて制御される
ようになつており、それによつて室外熱交換器6
を通過するホツトガス量を制御し、室外熱交換器
6の蒸発圧力制御を行なう低圧制御弁として作用
する。なお、室外熱交換器6においては、ホツト
ガスの顕熱および凝縮潜熱を蒸発圧力を上げるた
めに利用できるので、少ないホツトガスバイパス
量で効果を上げることができるようになつてい
る。
A hot gas bypass circuit B is attached to the refrigerant circulation circuit A, which branches from the discharge side of the compressor 1, passes through the outdoor heat exchanger 6, and is connected to the outlet side of the outdoor heat exchanger 6. There is. The hot gas bypass circuit B is provided with a flow rate control valve 10 that controls the amount of hot gas bypass, and the flow rate control valve 10 opens only during heating operation, and its opening degree is determined by an electronic calculation described later. The outdoor heat exchanger 6 is adapted to be controlled by the circuit 16 .
It functions as a low pressure control valve that controls the amount of hot gas passing through and controls the evaporation pressure of the outdoor heat exchanger 6. In the outdoor heat exchanger 6, the sensible heat and latent heat of condensation of the hot gas can be used to increase the evaporation pressure, so that the effect can be increased with a small amount of hot gas bypass.

又、この空気調和機には、暖房運転時におい
て、室外熱交換器6の吸込空気Wの絶対湿度Xを
検知する湿度検知手段として作用する湿度センサ
ー14と室外熱交換器6出口の冷媒蒸発圧力Pe
を検知する圧力検知手段として作用する圧力セン
サー15と、前記湿度センサー14からの湿度値
信号Xにより室外熱交換器6において霜の成長し
ない蒸発圧力値(換言すれば、限界蒸発圧力値)
Perを求め、且つ該限界蒸発圧力値Perと前記圧
力センサー15からの検出蒸発圧力値Peとを比
較演算し、その結果、前記圧力センサー15から
の検出蒸発圧力値Peが小と演算されたとき前記
流量制御弁10に対してその開度を拡大する指令
信号を発する電子演算回路16とが付設されてい
る。
This air conditioner also includes a humidity sensor 14 that acts as a humidity detection means for detecting the absolute humidity X of air W drawn into the outdoor heat exchanger 6 during heating operation, and a refrigerant evaporation pressure at the outlet of the outdoor heat exchanger 6. Pe
An evaporation pressure value (in other words, a limit evaporation pressure value) at which frost does not grow in the outdoor heat exchanger 6 is determined by the pressure sensor 15 acting as a pressure detection means for detecting the humidity value and the humidity value signal X from the humidity sensor 14.
Per is calculated, and the limit evaporation pressure value Per and the detected evaporation pressure value Pe from the pressure sensor 15 are compared, and as a result, when the detected evaporation pressure value Pe from the pressure sensor 15 is calculated to be small. An electronic arithmetic circuit 16 is attached that issues a command signal to the flow rate control valve 10 to increase its opening degree.

次に、本実施例における室外熱交換器6を具体
的に詳述すると、この室外熱交換器6は、小間隔
(即ち、フインピツチFP)で多数平行に配設され
た板状フイン11,11…に、通常運転用伝熱管
12,12…とホツトガス専用伝熱管13,13
…とを混在させて貫通配置させた状態にて密着保
持して構成されている。そして、これら伝熱管の
配列は、従来例(第4図図示)のものと異なり空
気流通方向に3列とされ、一枚の板状フイン11
の表面積は従来例のものの3/2とされており、そ
の分だけフインピツチFPを従来例の約2mmから
3mmに拡げられている。つまり、各板状フイン1
1の表面積(3/2)×フインピツチ(2/3)=板状フ
イン11,11…の総表面積が従来例のものと等
しくなるようにされている。なお、フインピツチ
FPは2.5mm<FP<3.5mmの範囲、好ましくは約3mm
である。
Next, to specifically describe the outdoor heat exchanger 6 in this embodiment, the outdoor heat exchanger 6 includes a large number of plate-shaped fins 11 arranged in parallel at small intervals (i.e., fin pitches F P ), 11..., heat exchanger tubes 12, 12... for normal operation and heat exchanger tubes 13, 13 exclusively for hot gas.
... are arranged in a mixed manner and are closely held in a penetrating state. Unlike the conventional example (shown in FIG. 4), these heat transfer tubes are arranged in three rows in the air flow direction, and one plate-like fin 11
The surface area is 3/2 that of the conventional example, and the fin pitch F P has been increased from about 2 mm in the conventional example to 3 mm. In other words, each plate-like fin 1
The total surface area of the plate-shaped fins 11, 11, . . . is made equal to that of the conventional example. In addition, Fin Pitch
F P is in the range 2.5mm<F P <3.5mm, preferably about 3mm
It is.

又、前記通常運転用伝熱管12,12…は前記
冷媒循環回路Aの一部を構成するものであつて、
その本数は従来例のものと同数とされている。
Further, the normal operation heat exchanger tubes 12, 12... constitute a part of the refrigerant circulation circuit A,
The number is said to be the same as that of the conventional example.

前記ホツトガス専用伝熱管13,13…は前記
ホツトガスバイパス回路Bの一部を構成するもの
であつて、その本数割合は、熱交換性能と蒸発圧
力制御とを最も効果的に行ない得るようにするた
めに全体の20〜50%とするのが望ましい(本実施
例では約33%)。更に、ホツトガス専用伝熱管1
3,13…の配列は、段方向の性能の均一性をは
かるため、列方向(即ち、空気流通方向)に対し
ほぼ同程度の割合となるように配置しているが、
第3図図示の如く、風上側の列だけにホツトガス
専用伝熱管13,13…を配置するようにするこ
ともできる。
The hot gas dedicated heat transfer tubes 13, 13, . . . constitute a part of the hot gas bypass circuit B, and their number ratio is determined so as to most effectively achieve heat exchange performance and evaporation pressure control. Therefore, it is desirable to set it to 20 to 50% of the total (about 33% in this example). Furthermore, heat exchanger tube 1 exclusively for hot gas
In order to measure the uniformity of performance in the row direction, the arrays 3, 13... are arranged at approximately the same ratio in the row direction (that is, the air flow direction).
As shown in FIG. 3, the hot gas heat transfer tubes 13, 13, . . . may be arranged only in the windward row.

更に又、フインへの着霜を遅延させる手段とし
て、板状フイン11の表面に疎水性処理をし(例
えば4フッ化エチレン等の水滴接触角90°以上の
ものを表面処理する)、水分とフイン表面との付
着力を小さくさせ、霜の生成、成長を遅らせるよ
うにすることもできる。
Furthermore, as a means of delaying frost formation on the fins, the surface of the plate-like fins 11 is subjected to hydrophobic treatment (for example, surface treatment with a water droplet contact angle of 90° or more, such as tetrafluoroethylene) to prevent moisture from forming. It is also possible to reduce the adhesion force with the fin surface to retard the formation and growth of frost.

第5図には、外気の絶対湿度Xに対して暖房運
転時に室外熱交換器6の板状フイン11への霜の
成長が進まない蒸発圧力、即ち限界蒸発圧力Per
を実験的に求めた特性図が示されている。ここ
で、曲線g1,g2およびg3はフインピツチFP=3.0
mmで疎水性処理無し、フインピツチFP=3.0mmで
疎水性処理有り、およびフインピツチFP=2.0mm
で疎水性処理無しの場合をそれぞれ示している。
これによれば、本実施例のもの(曲線g1,g2のも
の)は従来例のもの(曲線g3のもの)に比べて低
い蒸発圧力で着霜が進まなくなることがわかる。
FIG. 5 shows the evaporation pressure at which frost does not grow on the plate-like fins 11 of the outdoor heat exchanger 6 during heating operation with respect to the absolute humidity X of the outside air, that is, the critical evaporation pressure Per.
A characteristic diagram obtained experimentally is shown. Here, the curves g 1 , g 2 and g 3 have a fin pitch F P =3.0
mm without hydrophobic treatment, fin pitch F P = 3.0 mm with hydrophobic treatment, and fin pitch F P = 2.0 mm
2 shows the case without hydrophobic treatment.
According to this, it can be seen that the evaporation pressure of the present example (curves g 1 and g 2 ) is lower than that of the conventional example (curve g 3 ), and frost formation does not proceed.

図示の空気調和機では、暖房運転時において、
室外熱交換器6の吸込空気の絶対湿度Xと室外熱
交換器6出口の冷媒の蒸発圧力Peとを湿度セン
サー14および圧力センサー15で検知し、該湿
度センサー14からの湿度値信号Xにより限界蒸
発圧力値Perを電子演算回路16で求め、且つ該
限界蒸発圧力値Perと前記圧力センサー15から
の検出蒸発圧力値Peとを比較演算する。その結
果、前記圧力センサー15からの検出蒸発圧力値
Peが前記限界蒸発圧力値Perより小と演算された
ときに電子演算回路16から発せられた指令信号
に基づいて前記流量制御弁10の開度を拡大する
ことによりホツトガスバイパス量を増大させて、
着霜が進まないようにするのである。この場合、
同じ絶対湿度Xに対して、フインピツチFP=3.0
mmのもの(本実施例)はフインピツチFP=2.0mm
のもの(従来例)に比べて限界蒸発圧力Perが低
いため、ホツトガスバイパス量を少なくすること
ができることとなり、暖房能力低下を少なくでき
る。なお、ホツトガスバイパス量がある値に達し
た場合および蒸発圧力Peがある値まで低下した
場合については逆サイクルによる除霜運転が行な
われる。
In the illustrated air conditioner, during heating operation,
The absolute humidity X of the intake air of the outdoor heat exchanger 6 and the evaporation pressure Pe of the refrigerant at the outlet of the outdoor heat exchanger 6 are detected by the humidity sensor 14 and the pressure sensor 15, and the limit is determined by the humidity value signal X from the humidity sensor 14. An evaporation pressure value Per is determined by an electronic calculation circuit 16, and the limit evaporation pressure value Per and the detected evaporation pressure value Pe from the pressure sensor 15 are compared and calculated. As a result, the detected evaporation pressure value from the pressure sensor 15
The amount of hot gas bypass is increased by expanding the opening degree of the flow control valve 10 based on a command signal issued from the electronic calculation circuit 16 when Pe is calculated to be smaller than the limit evaporation pressure value Per. ,
This prevents frost from accumulating. in this case,
For the same absolute humidity X, fin pitch F P = 3.0
mm (this example) has a fin pitch F P = 2.0mm
Since the critical evaporation pressure Per is lower than that of the previous example (conventional example), the amount of hot gas bypass can be reduced, and the reduction in heating capacity can be reduced. Note that when the amount of hot gas bypass reaches a certain value and when the evaporation pressure Pe decreases to a certain value, defrosting operation is performed in a reverse cycle.

第6図には、運転時間−暖房能力特性が示され
ているが、これによれば、本実施例のもの(実線
図示)ではホツトガスバイパスによる若干の能力
低下はあるものの、除霜運転をほとんど行なう必
要がなくなるので、従来例のもの(一点鎖線FP
=3.0mm点線図示FP=2.0mm)に比べて平均暖房能
力は著しく向上する。
Fig. 6 shows the operating time vs. heating capacity characteristic, and it shows that although there is a slight decrease in capacity due to the hot gas bypass in this example (shown with a solid line), defrosting operation is possible. Since there is almost no need to do this, the conventional example (dotted chain line F P
= 3.0mm (dotted line shown in figure F P = 2.0mm), the average heating capacity is significantly improved.

(考案の効果) 叙上の如く、本考案によれば、室外熱交換器6
の板状フイン11,11…に通常運転用伝熱管1
2,12…の外にホツトガス専用伝熱管13,1
3…を貫通させ、暖房運転時において前記ホツト
ガス専用伝熱管13,13…にバイパスさせるホ
ツトガス量を絶対湿度Xと蒸発圧力Peとの関係
において電子演算回路16で制御して、室外熱交
換器6出口の蒸発圧力が霜の成長しない圧力以上
になるようにしたので、暖房運転時において、室
外熱交換器6への着霜を可及的に遅延せしめるこ
とができ、逆サイクルによる除霜運転をほとんど
必要としなくなり、平均暖房能力を著しく向上さ
せることができるという実用的な効果がある。
(Effect of the invention) As described above, according to the invention, the outdoor heat exchanger 6
Heat exchanger tubes 1 for normal operation are attached to the plate-like fins 11, 11...
In addition to 2, 12..., there are heat exchanger tubes 13, 1 exclusively for hot gas.
3... is passed through the outdoor heat exchanger 6, and the amount of hot gas to be bypassed to the hot gas heat exchanger tubes 13, 13... during heating operation is controlled by the electronic calculation circuit 16 in relation to the absolute humidity X and the evaporation pressure Pe. Since the evaporation pressure at the outlet is set to be higher than the pressure at which frost does not grow, frost formation on the outdoor heat exchanger 6 can be delayed as much as possible during heating operation, and defrosting operation using a reverse cycle can be performed. This has the practical effect of making it possible to significantly improve the average heating capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例にかかるヒートポンプ
式空気調和機の冷媒系統図、第2図は第1図のヒ
ートポンプ式空気調和機における室外熱交換器の
斜視図、第3図は同変形例を示す側面図、第4図
は従来例の熱交換器の斜視図、第5図は熱交換器
における吸込空気の絶対湿度Xと着霜を開始する
限界蒸発圧力Perとの関係を示す特性図、第6図
は運転時間Tに対する暖房能力Qの変化パターン
を本実施例と従来例との比較で示した特性図であ
る。 1……圧縮機、2……四路切換弁、3……室内
熱交換器、4,5……膨張機構、6……室外熱交
換器、10……流量制御弁、11……板状フイ
ン、12……通常運転用伝熱管、13……ホツト
ガス専用伝熱管、14……湿度センサー、15…
…圧力センサー、16……電子演算回路。
Fig. 1 is a refrigerant system diagram of a heat pump air conditioner according to an embodiment of the present invention, Fig. 2 is a perspective view of an outdoor heat exchanger in the heat pump air conditioner of Fig. 1, and Fig. 3 is a modification of the same. 4 is a perspective view of a conventional heat exchanger, and FIG. 5 is a characteristic diagram showing the relationship between the absolute humidity X of the intake air in the heat exchanger and the critical evaporation pressure Per that starts frost formation. , FIG. 6 is a characteristic diagram showing the change pattern of the heating capacity Q with respect to the operating time T by comparing the present example and the conventional example. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Four-way switching valve, 3... Indoor heat exchanger, 4, 5... Expansion mechanism, 6... Outdoor heat exchanger, 10... Flow rate control valve, 11... Plate shape Fin, 12... Heat exchanger tube for normal operation, 13... Heat exchanger tube exclusively for hot gas, 14... Humidity sensor, 15...
...Pressure sensor, 16...Electronic calculation circuit.

Claims (1)

【実用新案登録請求の範囲】 1 圧縮機1、四路切換弁2、室内熱交換器3、
膨張機構4,5および室外熱交換器6を備え、
暖房運転時に圧縮機1から吐出されるホツトガ
スの一部を流量制御弁10を介して前記室外熱
交換器6に供給して蒸発圧力を制御するように
したヒートポンプ式空気調和機であつて、前記
室外熱交換器6を、小間隔で多数平行に配設し
た板状フイン11,11…に、通常運転用伝熱
管12,12…とホツトガス専用伝熱管13,
13…とを混在させて貫通配置させることによ
り構成するとともに、前記室外熱交換器6の吸
込空気の絶対湿度を検知する湿度検知手段14
と、前記室外熱交換器6における冷媒の蒸発圧
力を検知する圧力検知手段15と、前記湿度検
知手段14からの湿度値信号により室外熱交換
器6において霜の成長しない限界蒸発圧力値を
求め、且つ該限界蒸発圧力値と前記圧力検知手
段15からの検出蒸発圧力値とを比較演算し、
その結果、前記圧力検知手段15からの検出蒸
発圧力値が小と演算されたとき前記流量制御弁
10に対してその開度を拡大する指令信号を発
する電子演算回路16とを付設したことを特徴
とするヒートポンプ式空気調和機。 2 前記ホツトガス専用伝熱管13,13…を空
気流の入口側の列に限定して配置した前記実用
新案登録請求の範囲第1項記載のヒートポンプ
式空気調和機。 3 前記板状フイン11,11…のフインピッチ
FPを2.5mm<FP<3.5mmとし且つ各板状フイン1
1の表面に疏水性処理を施した前記実用新案登
録請求の範囲第1項あるいは第2項記載のヒー
トポンプ式空気調和機。
[Scope of claims for utility model registration] 1 Compressor 1, four-way switching valve 2, indoor heat exchanger 3,
Comprising expansion mechanisms 4 and 5 and an outdoor heat exchanger 6,
The heat pump type air conditioner is configured to supply a part of the hot gas discharged from the compressor 1 during heating operation to the outdoor heat exchanger 6 via the flow rate control valve 10 to control the evaporation pressure, The outdoor heat exchanger 6 is mounted on plate-shaped fins 11, 11, which are arranged in parallel at small intervals, and heat exchanger tubes 12, 12, .
Humidity detection means 14 for detecting the absolute humidity of the air sucked into the outdoor heat exchanger 6;
and a pressure detection means 15 for detecting the evaporation pressure of the refrigerant in the outdoor heat exchanger 6, and a humidity value signal from the humidity detection means 14 to determine a limit evaporation pressure value at which frost does not grow in the outdoor heat exchanger 6, and comparing and calculating the limit evaporation pressure value and the detected evaporation pressure value from the pressure detection means 15,
As a result, when the detected evaporation pressure value from the pressure detection means 15 is calculated to be small, an electronic calculation circuit 16 is provided which issues a command signal to the flow rate control valve 10 to enlarge its opening degree. Heat pump type air conditioner. 2. The heat pump air conditioner according to claim 1, wherein the hot gas heat transfer tubes 13, 13, . . . are arranged only in a row on the air flow inlet side. 3 Fin pitch of the plate-like fins 11, 11...
F P is 2.5 mm < F P < 3.5 mm, and each plate-like fin 1
1. The heat pump air conditioner according to claim 1 or 2, wherein the surface of the heat pump air conditioner is subjected to hydrophobic treatment.
JP4219784U 1984-03-23 1984-03-23 Heat pump air conditioner Granted JPS60155863U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4219784U JPS60155863U (en) 1984-03-23 1984-03-23 Heat pump air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4219784U JPS60155863U (en) 1984-03-23 1984-03-23 Heat pump air conditioner

Publications (2)

Publication Number Publication Date
JPS60155863U JPS60155863U (en) 1985-10-17
JPH0341243Y2 true JPH0341243Y2 (en) 1991-08-29

Family

ID=30552723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4219784U Granted JPS60155863U (en) 1984-03-23 1984-03-23 Heat pump air conditioner

Country Status (1)

Country Link
JP (1) JPS60155863U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142967A (en) * 1985-12-17 1987-06-26 松下電器産業株式会社 Heat pump device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512375A (en) * 1978-07-14 1980-01-28 Nihon Radiator Co Airrcooling evaporator
JPS58184435A (en) * 1982-04-21 1983-10-27 Hitachi Ltd Air cooled heat pump type air conditioner device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604056Y2 (en) * 1976-03-22 1985-02-04 ダイキン工業株式会社 Refrigeration circuit for refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512375A (en) * 1978-07-14 1980-01-28 Nihon Radiator Co Airrcooling evaporator
JPS58184435A (en) * 1982-04-21 1983-10-27 Hitachi Ltd Air cooled heat pump type air conditioner device

Also Published As

Publication number Publication date
JPS60155863U (en) 1985-10-17

Similar Documents

Publication Publication Date Title
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
CN203704143U (en) Air conditioner
CN108518736A (en) Machine, constant temperature and humidity system and its control method in constant temperature and humidity
JPH09145187A (en) Air conditioner
CN111306833A (en) Double-temperature air conditioning system
JPH0341243Y2 (en)
JP3456871B2 (en) Refrigeration circuit with heat exchanger for refrigeration capacity control
JPH10246506A (en) Indoor unit for air conditioner
CN2397415Y (en) Temp.-regulating dehumidifier
CN208075149U (en) Machine and constant temperature and humidity system in constant temperature and humidity
JPS6340765Y2 (en)
CN217274541U (en) Air conditioning system
CN111486530B (en) Air conditioner and control method thereof
JPS62142990A (en) Heat exchanger
JPH0335592B2 (en)
JPH0317183Y2 (en)
KR100595554B1 (en) Heat-pump type airconditioner
JP7341341B2 (en) air conditioner
CN220648821U (en) Efficient dehumidification module of closed-loop dehumidification heat pump dryer
JP2001330309A (en) Air conditioner
JP3096555B2 (en) Cold air dryer
JP2762246B2 (en) Temperature adjusting device and temperature and humidity adjusting device using the same
JPS587252Y2 (en) Air heat exchanger for heat pump
CN117006808A (en) Efficient dehumidification module of closed-loop dehumidification heat pump dryer and control method
JPH0252194B2 (en)