JPH0334169B2 - - Google Patents

Info

Publication number
JPH0334169B2
JPH0334169B2 JP56068734A JP6873481A JPH0334169B2 JP H0334169 B2 JPH0334169 B2 JP H0334169B2 JP 56068734 A JP56068734 A JP 56068734A JP 6873481 A JP6873481 A JP 6873481A JP H0334169 B2 JPH0334169 B2 JP H0334169B2
Authority
JP
Japan
Prior art keywords
thermally responsive
fixed
plate
contact
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56068734A
Other languages
Japanese (ja)
Other versions
JPS57182930A (en
Inventor
Susumu Ubukata
Yasukazu Mizutani
Shozo Iyoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6873481A priority Critical patent/JPS57182930A/en
Publication of JPS57182930A publication Critical patent/JPS57182930A/en
Publication of JPH0334169B2 publication Critical patent/JPH0334169B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermally Actuated Switches (AREA)

Description

【発明の詳細な説明】 本発明は、バイメタルなど温度の相違によつて
形状を変える熱応動板を皿状に絞り成形して異な
る温度において急跳運動を行なうようにし、その
急跳運動を利用して接点の開閉を行なわせる熱応
動スイツチに係り、特に急跳運動をする前記熱応
動板の固定端近傍に固着した接続部材の他端を熱
応動板支持体に固着し、その接続部材と熱応動板
支持体との間に間隔設定部材を熱的及び電気絶縁
状態で配設する事により、後述の如く可動接点が
固定接点から開離する温度を希望値に正確に設定
する事を容易ならしめるとともに限界動作電流値
に対して何倍かの電流を流した時の動作時間を短
かくするという保護性能を高める効果のある熱応
動スイツチを提唱するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes the rapid jumping motion by drawing a thermally responsive plate such as a bimetal that changes its shape depending on temperature differences into a plate shape so that it can perform sudden jumping motions at different temperatures. In particular, the other end of a connecting member fixed near the fixed end of the thermally responsive plate that makes a sudden jump motion is fixed to a thermally responsive plate support, and the connecting member and By arranging the distance setting member between the thermally responsive plate support and the thermally and electrically insulated state, it is easy to accurately set the temperature at which the movable contact separates from the fixed contact to a desired value as described below. This paper proposes a thermally responsive switch that has the effect of improving protection performance by shortening the operating time when a current several times the limit operating current value is passed.

以下、本発明の実施例について図面を参照して
説明する。第1図に於て、1は左端に開口部1a
を有する容器にして鉄板などを絞り加工して作ら
れたものであり、2は蓋板にして例えば鉄板を円
板状に打抜いて作られている。容器1の開口部1
aを蓋板2の外周近傍にリング溶接などの方法に
より接合固着し、これら両者によつて1個の密閉
容器が構成される。蓋板2には中心からずれた位
置に孔2aが穿たれており、その孔2aにはガラ
スなどの充填材3により電気的に絶縁して導電体
4が気密に固着してある。導電体4の図示左側即
ち密閉容器の外側に出ている部分はこの熱応動ス
イツチによつて保護される機器あるいは電源など
に接続されるが、本実施例ではそのための接続金
具9bが溶接などの方法により固着されている。
導電体4の図示右側即ち密閉容器の内側になる部
分には例えば銀合金などをクラツドした上面が部
分球面状をなした円板状の固定接点5aを先端部
に固着した固定接点支持体5が固着されている。
固定接点支持体5は固有抵抗や溶着性などが目的
に合致するように選択された適当な金属板をL字
形に曲げて作られている。蓋板2の密閉容器内側
に面する一部にL字形の金属板で作られた熱応動
板支持体8が溶接などの方法で固着されている。
この熱応動板支持体8の右側には適当な金属板を
クランク形に曲げた接続部材7の右端が固着さ
れ、その接続部材7の左側には可動接点6aを先
端近傍に固着したバイメタル或いはトリメタルか
ら成る熱応動板6が固着されている。この時前記
接続部材7は中央近傍をその両端部と比較して変
形し易い形状とし、後述する動作温度の較正時に
その固着部及び熱応動板支持体の変形を避ける作
用効果を有する構造とされている。熱応動板6の
中央部は浅い皿状に絞り成形されていて所定の温
度例えば120℃で急跳反転して点線にて示す状態
になり固定接点5aから可動接点6aをスナツプ
動作で開離させ、また例えば80℃で急跳復帰して
図示実線にて示す状態に接点間を閉成するもので
ある。熱応動板支持体8の先端近傍に螺合されて
いるねじのような間隔設定部材8aは、熱応動板
6の取付けられた根元近傍の接続部材7の一部を
その下端で例えば碍子で作られた絶縁部材8bを
介して押圧する事により接続部材7の中央のやや
巾の狭い部分7aを変形させて可動接点6aと固
定接点5aとの間に例えば常温で作用する接点圧
力を適当な値にして前述のスナツプ動作を確実に
させてその動作温度の較正を行ない較正後はその
位置に固定される。ねじのような間隔設定部材8
aが電気絶縁物で作られていれば絶縁部材8bは
不要である。蓋板2の外側には密閉容器と同電位
側の外部回路への接続金具9aが溶接などにより
固着されている。このような構成の熱応動スイツ
チを接続金具9a及び9bを介して保護すべきモ
ーターなどと直列に接続して電源に接続し、かつ
モーター巻線に対して熱交換関係状態に装着すれ
ばそのモーターの巻線の温度の影響及びモーター
の電流が熱応動板支持体8−接続部材7−熱応動
板6−可動接点6a−固定接点5a−固定接点支
持体5−導電体4を流れるのでこれら各部の抵抗
による発熱の影響を受け熱応動板6は温度上昇
し、異常時には熱応動板6が急跳反転して点線に
て示す状態となりモーターへの電流供給を遮断し
てモーターの巻線温度の異常上昇を保護する事が
出来る。尚、第1図には熱応動板支持体8が蓋板
2に固着され、固定接点支持体5が導電体4に固
着されているが、これとは逆に熱応動板支持体8
を導電体4に固着し、固定接点支持体5を蓋板2
に固着しても同様の作用を得る事は勿論である。
Embodiments of the present invention will be described below with reference to the drawings. In Figure 1, 1 has an opening 1a at the left end.
2 is a container made by drawing an iron plate or the like, and 2 is a lid plate made by punching out an iron plate into a disc shape. Opening 1 of container 1
A is bonded and fixed to the vicinity of the outer periphery of the lid plate 2 by a method such as ring welding, and a single sealed container is constituted by both of them. A hole 2a is bored in the cover plate 2 at a position offset from the center, and a conductor 4 is hermetically fixed to the hole 2a while being electrically insulated by a filler material 3 such as glass. The left side of the conductor 4 in the figure, that is, the part that protrudes outside the sealed container, is connected to the equipment or power source protected by this thermally responsive switch, and in this embodiment, the connecting fitting 9b for this purpose is made by welding or the like. It is fixed by a method.
On the right side of the conductor 4 in the figure, that is, on the inside of the sealed container, there is a fixed contact support 5 having a disk-shaped fixed contact 5a clad with, for example, a silver alloy and having a partially spherical upper surface fixed to its tip. It is fixed.
The fixed contact support 5 is made by bending an appropriate metal plate into an L-shape selected so that its specific resistance, weldability, etc. meet the purpose. A thermally responsive plate support 8 made of an L-shaped metal plate is fixed to a portion of the lid plate 2 facing the inside of the sealed container by a method such as welding.
The right end of a connecting member 7 made of a suitable metal plate bent into a crank shape is fixed to the right side of the thermally responsive plate support 8, and the left end of the connecting member 7 is a bimetal or trimetal member with a movable contact 6a fixed near the tip. A thermally responsive plate 6 consisting of is fixedly attached. At this time, the connecting member 7 has a shape that is easier to deform near the center than both ends thereof, and has a structure that has the effect of avoiding deformation of the fixed part and the thermally responsive plate support during calibration of the operating temperature, which will be described later. ing. The center part of the thermally responsive plate 6 is drawn into a shallow dish shape, and at a predetermined temperature, for example, 120°C, it suddenly flips over to the state shown by the dotted line, and the movable contact 6a is opened from the fixed contact 5a by a snap action. Also, for example, at 80° C., the contact jumps back and the contacts are closed to the state shown by the solid line in the figure. A spacing member 8a, such as a screw, screwed into the vicinity of the tip of the thermally responsive plate support 8, connects a portion of the connecting member 7 near the base to which the thermally responsive plate 6 is attached at its lower end, and is made of, for example, an insulator. By pressing through the insulating member 8b, the central, slightly narrow portion 7a of the connecting member 7 is deformed, and the contact pressure that acts between the movable contact 6a and the fixed contact 5a at room temperature, for example, is adjusted to an appropriate value. The above-mentioned snap operation is ensured and the operating temperature is calibrated, and after the calibration, it is fixed at that position. Spacing member 8 like a screw
If a is made of an electrical insulator, the insulating member 8b is unnecessary. A connecting fitting 9a for connecting to an external circuit on the same potential side as the closed container is fixed to the outside of the lid plate 2 by welding or the like. If a thermally responsive switch with such a configuration is connected in series with a motor to be protected via the connecting fittings 9a and 9b, connected to a power source, and installed in a heat exchange relationship with the motor windings, the motor The influence of the temperature of the windings and the motor current flow through the thermally responsive plate support 8 - the connecting member 7 - the thermally responsive plate 6 - the movable contact 6a - the fixed contact 5a - the fixed contact support 5 - the conductor 4. Under the influence of heat generated by the resistance, the temperature of the thermally responsive plate 6 rises, and in the event of an abnormality, the thermally responsive plate 6 suddenly jumps and reverses, entering the state shown by the dotted line, cutting off the current supply to the motor and reducing the motor winding temperature. Abnormal rise can be protected. In FIG. 1, the thermally responsive plate support 8 is fixed to the cover plate 2, and the fixed contact support 5 is fixed to the conductor 4, but in contrast to this, the thermally responsive plate support 8 is fixed to the cover plate 2.
is fixed to the conductor 4, and the fixed contact support 5 is fixed to the cover plate 2.
Of course, the same effect can be obtained even if it is fixed to the surface.

以上述べた如き構造の熱応動スイツチにおい
て、モーターなどを保護する上で必要な特性とし
て限界動作電流値(以下UTCと表す)及びその
UTCの何倍かの値の電流をスイツチに通じた時
に熱応動板が所定の急跳反転温度に達して接点を
開く迄の動作時間(以下STと表す)がある。周
知の如くUTCはモーターの定格負荷運転電流に
合わせなければならない。UTCがこの定格電流
以下であればそのモーターは充分に運転されず過
敏に保護する熱応動スイツチのために運転率を低
下させられるという不具合を生ずる。逆にUTC
が定格電流の150%以上も高くてはモーターが過
負荷運転された時に巻線等が過熱して絶縁が劣化
してしまう危険を生ずる。従つて例えば定格負荷
運転電流の105%乃至125%位の範囲にUTCは選
定される。次にモーターのトルクが負荷のトルク
に負けて回転子が廻らずいわゆる回転子拘束状態
においてはモーターの巻線には定格電流の何倍か
の電流が流れるが、この時には速やかに電流の供
給を遮断して巻線の過熱を防止しなければならな
い。このような場合に熱応動スイツチのST特性
が問題とされる。
In a thermally responsive switch with the structure described above, the critical operating current value (hereinafter referred to as UTC) and its characteristics are necessary to protect the motor etc.
When a current several times the value of UTC is passed through the switch, there is an operating time (hereinafter referred to as ST) until the thermally responsive plate reaches a predetermined jump reversal temperature and opens the contact. As is well known, UTC must match the rated load operating current of the motor. If the UTC is below this rated current, the motor will not operate sufficiently and the operating rate will be reduced due to the overly protective thermal switch. Conversely, UTC
If the current is higher than 150% of the rated current, there is a risk that the windings will overheat and the insulation will deteriorate when the motor is operated under overload. Therefore, the UTC is selected, for example, in a range of about 105% to 125% of the rated load operating current. Next, when the motor's torque is overcome by the load's torque and the rotor does not turn, a so-called rotor locked state occurs, and a current several times the rated current flows through the motor windings. In this case, the current must be supplied immediately. must be shut off to prevent overheating of the windings. In such cases, the ST characteristics of the thermally responsive switch become a problem.

保護すべきモーターの定格電流に対して好まし
い範囲に熱応動スイツチのUTCを合わせるため
には、熱応動スイツチの各部要素の低抗値を選定
しなければならないが、各部要素の機械的強度も
考慮して使用する材料の固有抵抗値と寸法を設計
する。UTCのみをモーターの定格電流に合わせ
るのならば比較的設計は楽であるが、最近はモー
ターの巻線が過電流(回転子拘束時)に対して熱
的に余裕のない設計となつているため熱応動スイ
ツチのSTは短かくする事が要求される。即ち
UTCを変えないでSTを短かくする事が望まれる
のである。この要望を満たすべく熱応動スイツチ
の各部要素の抵抗値を全抵抗値(第1図に示した
ものの接続金具9a乃至9b間の抵抗)に対して
どのような比率にすると良いかと云う問題につい
て種々調べたころ、全抵抗値に対して比率を高く
すべき部分は熱応動板6であり、次いで熱応動板
6の自己発生熱を伝導によつて逃がさないように
するために接続部材7の固有抵抗を比較的高く選
定する必要のある事が判つた。接続部材7の大き
さは熱応動板6や熱応動板支持体8の大きさに比
較して小さいのでこの部分の低抗値としては直接
比較すれば大きい方ではないが電流の通路の長さ
当りの抵抗値としては高く選定しなければならな
いという意味である。長さ当りの抵抗値を高くと
れば、この部分で発生する熱がこの部分の両端に
接続されている熱応動板6から熱応動板支持体8
への熱の移動を遮断するように極めて有効に作用
する。従つて同一のUTCに設計された熱応動ス
イツチに於て、接続部材7の部分が長さ当りの抵
抗値の大なるものと小なるものとではSTが可成
り相違するのである。
In order to adjust the UTC of the thermally responsive switch to a preferable range for the rated current of the motor to be protected, it is necessary to select a low resistance value for each component of the thermally responsive switch, but the mechanical strength of each component must also be considered. and design the resistivity and dimensions of the materials to be used. The design is relatively easy if only the UTC is matched to the motor's rated current, but recently motor windings have been designed with no thermal margin against overcurrent (when the rotor is locked). Therefore, the ST of the thermally responsive switch is required to be short. That is,
It is desirable to shorten ST without changing UTC. In order to meet this demand, various questions have been raised regarding the ratio of the resistance value of each component of the thermally responsive switch to the total resistance value (resistance between the connecting fittings 9a and 9b shown in Figure 1). Upon investigation, we found that the part that should have a high ratio to the total resistance value is the thermally responsive plate 6, and the second part is the unique part of the connecting member 7 in order to prevent the self-generated heat of the thermally responsive plate 6 from escaping through conduction. It was found that it was necessary to select a relatively high resistance. Since the size of the connecting member 7 is smaller than the size of the thermally responsive plate 6 and the thermally responsive plate support 8, the low resistance value of this part is not large when directly compared, but the length of the current path is This means that a high resistance value must be selected. If the resistance value per length is set high, the heat generated in this part will be transferred from the thermally responsive plate 6 connected to both ends of this part to the thermally responsive plate support 8.
It acts extremely effectively to block the transfer of heat to. Therefore, in thermally responsive switches designed for the same UTC, the ST differs considerably depending on whether the connecting member 7 has a large resistance value per length or a small resistance value per length.

以上述べた事柄を具体的数値を挙げて説明する
次の如くである。UTCを測定する方法は雰囲気
温度60℃一定の電気的に絶縁性の流体中に熱応動
スイツチを置き温度を周囲の温度に充分なじませ
てから接続金具9a及び9b間に通電を開始し予
想UTCより数アンペア低い電流値から10分間で
1アンペアの割合で増加させていつて接点が開離
した時の電流値を読む。STを測定する方法は雰
囲気温度25℃一定の恒温槽中でスイツチを周囲温
度に充分なじませてから接続金具9a及び9b間
に60アンペア一定電流を通じて通電開始から接点
が開離して電流が遮断される迄の時間を測る。実
験に供した熱応動スイツチは第1図に示した通り
のものと、これと比較するために間隔設定部材8
aを黄銅製のねじにしてその下端を絶縁部材8b
を介さないで直接に接続部材7の熱応動板に固着
した部分へ当接したものについて行なつた。第1
図実施例のものは絶縁部材8bとしてアルミナ磁
器製の小片を用いているが全抵抗は2.5mΩでそ
のうち熱応動板6が1.2mΩ、接続部材7が0.3m
Ωであり熱応動板支持体8が0.3mΩ、両接点間
が接触抵抗を含めて0.2mΩ、固定接点支持体5
が0.3mΩ、導電体が0.2mΩであつた。これと比
較するための絶縁部材8bを省略したものは全抵
抗は2.5mΩでそのうち熱応動板6が1.2mΩ、接
続部材7が黄銅製のねじでバイパスされたために
0.01mΩ熱応動板支持体8の材質を固有抵抗値の
高いものに代えて0.59mΩ、両接点間が接触抵抗
を含めて0.2mΩ、固定接点支持体5が0.3mΩ、
導電体が0.2mΩであつた。そして実施例のもの
はUTCが34.5アンペアでSTが12秒、比較品は
UTCが34.3アンペアでSTが16秒であつた。STが
30%長くなる事は回転子拘束時の保護において非
常に危険な温度上昇を招来する事を意味するもの
であり保護性能は極めて劣ると云える。
The above-mentioned matters will be explained using specific numerical values as follows. The method of measuring UTC is to place a thermally responsive switch in an electrically insulating fluid whose ambient temperature is constant at 60°C, and after allowing the temperature to sufficiently adjust to the surrounding temperature, start applying current between the connecting fittings 9a and 9b to predict the UTC. Increase the current at a rate of 1 ampere over 10 minutes from a lower current of several amperes, and read the current value when the contacts open. The method for measuring ST is to allow the switch to fully adjust to the ambient temperature in a thermostatic chamber with a constant ambient temperature of 25°C, then pass a constant current of 60 amperes between the connecting fittings 9a and 9b, and then the contacts open and the current is interrupted. Measure the time it takes. The thermally responsive switch used in the experiment was as shown in Figure 1, and for comparison, the spacing setting member 8 was used.
A is a brass screw and its lower end is an insulating member 8b.
The test was carried out on a part of the connecting member 7 that was in direct contact with the part fixed to the thermally responsive plate without intervening. 1st
In the illustrated embodiment, a small piece of alumina porcelain is used as the insulating member 8b, and the total resistance is 2.5 mΩ, of which the thermally responsive plate 6 is 1.2 mΩ and the connecting member 7 is 0.3 mΩ.
Ω, thermally responsive plate support 8 is 0.3 mΩ, between both contacts is 0.2 mΩ including contact resistance, fixed contact support 5
was 0.3 mΩ, and the conductor was 0.2 mΩ. For comparison, in the case where the insulating member 8b is omitted, the total resistance is 2.5 mΩ, of which the thermally responsive plate 6 is 1.2 mΩ, and the connecting member 7 is bypassed with a brass screw.
0.01 mΩ The material of the thermally responsive plate support 8 was replaced with a material with a high specific resistance value, and the resistance was 0.59 mΩ, the resistance between both contacts was 0.2 mΩ including contact resistance, and the fixed contact support 5 was 0.3 mΩ.
The conductor was 0.2 mΩ. The example model has a UTC of 34.5 amperes and an ST of 12 seconds, while the comparative model has a UTC of 34.5 amperes and an ST of 12 seconds.
UTC was 34.3 amperes and ST was 16 seconds. ST is
Being 30% longer means that a very dangerous temperature rise will occur in protection when the rotor is locked, and the protection performance can be said to be extremely poor.

以上述べた如く本発明は、急跳反転及び復帰す
る熱応動板6が長さ当りの抵抗値の高い接続部材
7を介して熱応動板支持体8に支承され、その熱
応動板支持体8の先端近傍と接続部材7との間隔
を熱的電気的に絶縁した状態で間隔設定部材8a
により設定したもので、可動接点6aが固定接点
5aから開離する温度の較正を適確かつ容易なら
しめるとともにUTCを下げないでSTを短かく出
来る秀れた保護性能を有する熱応動スイツチを得
る事が出来る。尚、間隔設定部材としては第1図
に示したねじのような形状以外に第2図に示すよ
うなものであつてもよい。即ち第2図には第1図
の熱応動板支持体8の先端近傍をとりまく部分に
相当する部分が拡大して示されており、磁器など
絶縁物製のくさび10が熱応動板支持体8と接続
部材7の間に挿入され、このくさび10を固定す
るための金属製アーム11が示されている。アー
ム11はその左端が熱応動板支持体8の一部に溶
接などの方法で固着され、右端はくさび10を押
して行くと同時に適当な位置でくさび10と固着
されるものである。
As described above, in the present invention, the thermally responsive plate 6 that quickly flips and returns is supported on the thermally responsive plate support 8 via the connecting member 7 having a high resistance value per length, and the thermally responsive plate support 8 The distance setting member 8a is thermally and electrically insulated between the vicinity of the tip of the connecting member 7 and the connecting member 7.
By setting the temperature according to I can do things. In addition to the screw-like shape shown in FIG. 1, the spacing setting member may have a shape as shown in FIG. 2. That is, FIG. 2 shows an enlarged view of a portion surrounding the tip of the thermally responsive plate support 8 shown in FIG. A metal arm 11 is shown inserted between the connecting member 7 and for fixing this wedge 10. The left end of the arm 11 is fixed to a part of the thermally responsive plate support 8 by a method such as welding, and the right end is fixed to the wedge 10 at an appropriate position as it pushes the wedge 10.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る密閉形熱応動ス
イツチの縦断面図である。第2図は他の実施例に
係る第1図の部分拡大相当図である。 1…容器、1a…開口部、2a…孔、2…蓋
板、4…導電体、3…充填材、5a…固定接点、
5…固定接点支持体、6a…可動接点、6…熱応
動板、8…熱応動板支持体、7…接続部材、8
a,10…間隔設定部材。
FIG. 1 is a longitudinal sectional view of a sealed thermally responsive switch according to an embodiment of the present invention. FIG. 2 is a partially enlarged view corresponding to FIG. 1 according to another embodiment. DESCRIPTION OF SYMBOLS 1... Container, 1a... Opening, 2a... Hole, 2... Lid plate, 4... Conductor, 3... Filler, 5a... Fixed contact,
5... Fixed contact support, 6a... Movable contact, 6... Thermal response plate, 8... Thermal response plate support, 7... Connection member, 8
a, 10... Spacing setting member.

Claims (1)

【特許請求の範囲】[Claims] 1 一端に開口部を有する容器とその開口部に接
合固着して密閉容器を構成する蓋板、その蓋板に
穿たれた孔に電気絶縁性の充填材によつて固着さ
れた導電体、その導電体と前記蓋板の容器内側の
一部分に熱応動板支持体と固定接点支持体とをそ
れぞれ固着し、前記熱応動板支持体の先端近傍に
は異なる温度において急跳反転及び急跳復帰する
熱応動板が接続部材を介して固着され、その熱応
動板の可動端に設けられた可動接点と接触或いは
開離する固定接点が前記固定接点支持体に固着さ
れてなる密閉形熱応動スイツチにおいて、前記接
続部材はその中央部近傍を両端部と比較して変形
し易い形状とし又その先端近傍と熱応動板支持体
の先端近傍との間に間隔設定部材が熱絶縁及び電
気絶縁状態で挿入されていて前記接続部材と熱応
動板支持体の先端近傍との間隔を加減する事によ
り前記固定接点と可動接点との間の接触圧力を増
減して可動接点が固定接点から開離する温度を較
正する事を特徴とする密閉形熱応動スイツチ。
1 A container having an opening at one end, a lid plate that is bonded and fixed to the opening to form a closed container, a conductor that is fixed to a hole in the lid plate with an electrically insulating filler, and A thermally responsive plate support and a fixed contact support are each fixed to a portion of the inside of the container of the conductor and the lid plate, and near the tip of the thermally responsive plate support there is a device that performs a quick jump reversal and a quick jump return at different temperatures. In a closed type thermally responsive switch, a thermally responsive plate is fixed via a connecting member, and a fixed contact that contacts or separates from a movable contact provided at a movable end of the thermally responsive plate is fixed to the fixed contact support. , the connecting member has a shape that is easier to deform near its center than both ends, and a spacing member is inserted in a thermally and electrically insulated state between near its tip and near the tip of the thermally responsive plate support. The temperature at which the movable contact separates from the fixed contact can be adjusted by increasing or decreasing the contact pressure between the fixed contact and the movable contact by adjusting the distance between the connecting member and the vicinity of the tip of the thermally responsive plate support. A sealed thermally responsive switch that is calibrated.
JP6873481A 1981-05-07 1981-05-07 Sealed thermal responsive switch Granted JPS57182930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6873481A JPS57182930A (en) 1981-05-07 1981-05-07 Sealed thermal responsive switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6873481A JPS57182930A (en) 1981-05-07 1981-05-07 Sealed thermal responsive switch

Publications (2)

Publication Number Publication Date
JPS57182930A JPS57182930A (en) 1982-11-11
JPH0334169B2 true JPH0334169B2 (en) 1991-05-21

Family

ID=13382309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6873481A Granted JPS57182930A (en) 1981-05-07 1981-05-07 Sealed thermal responsive switch

Country Status (1)

Country Link
JP (1) JPS57182930A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607132U (en) * 1983-06-27 1985-01-18 生方 眞哉 Sealed thermal response switch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51150676A (en) * 1975-06-20 1976-12-24 Hitachi Ltd Thermoresponsive switch
JPS5241574U (en) * 1975-09-18 1977-03-24

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51150676A (en) * 1975-06-20 1976-12-24 Hitachi Ltd Thermoresponsive switch
JPS5241574U (en) * 1975-09-18 1977-03-24

Also Published As

Publication number Publication date
JPS57182930A (en) 1982-11-11

Similar Documents

Publication Publication Date Title
US4701824A (en) Protected refrigerator compressor motor systems and motor protectors therefor
JP2820703B2 (en) Temperature current sensor
JP3422346B2 (en) air conditioner
US5936510A (en) Sealed case hold open thermostat
CA1098569A (en) Hermetic thermally operated protector for an electric motor
JPS6114739B2 (en)
JPS58184218A (en) Protecting device for heat responsive electric circuit
JPH0430130B2 (en)
US6031447A (en) Switch having a temperature-dependent switching mechanism
US4015229A (en) Thermally responsive switch
RU2277270C2 (en) Thermal cutout
JPS62268030A (en) Protector
JP2000243199A (en) Thermostat for keeping sealing case open
JP2599797B2 (en) Sealed three-phase protection device
US5107241A (en) Thermally responsive switch
US4389630A (en) Snap action thermally responsive switch
US2909719A (en) Motor protective means
US4400677A (en) Fail safe circuit breaker
US6091316A (en) Switch having a temperature-dependent switching mechanism
US4458231A (en) Protector apparatus for dynamoelectric machines
CA1133548A (en) Thermostatic electrical switch
JPH0334169B2 (en)
US3280285A (en) Compact, low cost, versatile, thermostatic motor protector
US3470513A (en) Thermally-responsive switch
US3833873A (en) Thermal protector