JPH0330640Y2 - - Google Patents

Info

Publication number
JPH0330640Y2
JPH0330640Y2 JP1986101036U JP10103686U JPH0330640Y2 JP H0330640 Y2 JPH0330640 Y2 JP H0330640Y2 JP 1986101036 U JP1986101036 U JP 1986101036U JP 10103686 U JP10103686 U JP 10103686U JP H0330640 Y2 JPH0330640 Y2 JP H0330640Y2
Authority
JP
Japan
Prior art keywords
section
vacuum pressure
detection device
ejector pump
air ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986101036U
Other languages
Japanese (ja)
Other versions
JPS637299U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986101036U priority Critical patent/JPH0330640Y2/ja
Publication of JPS637299U publication Critical patent/JPS637299U/ja
Application granted granted Critical
Publication of JPH0330640Y2 publication Critical patent/JPH0330640Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は真空圧を利用して各種の物体を吸着移
動させる場合に用いるエアエゼクタポンプにおけ
る真空圧検知装置の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an improvement of a vacuum pressure detection device in an air ejector pump used to attract and move various objects using vacuum pressure.

〔従来の技術〕[Conventional technology]

噴射ノズルから合流室へ圧縮空気を噴出し、こ
の噴出された空気を排出口から大気に排出して当
該合流室に負圧を発生させるとともに、合流室に
連通した真空配管によつて吸気を行うエアエゼク
タポンプは知られており、例えば当該真空配管に
備えたゴム製の吸盤によつて各種物体を移動させ
る搬送装置等に広く用いられている。
Compressed air is ejected from the injection nozzle into the merging chamber, and the ejected air is discharged to the atmosphere from the exhaust port to generate negative pressure in the merging chamber, and air is taken in through the vacuum piping connected to the merging chamber. Air ejector pumps are known and are widely used, for example, in conveyance devices that move various objects using rubber suction cups provided on the vacuum piping.

ところで、この種の搬送装置では被移動物体の
表面の粗さ、或は吸盤材質の劣化や損傷等の原因
によつて吸盤と物体の吸着部分に真空漏れを生じ
ることもあり、この結果、正規の真空圧に達せ
ず、物体を未吸着のまま吸盤だけを移動させた
り、また、一度吸着した物体を移動途中で落下し
てしまう等の不具合があつた。そこで、通常はエ
アエゼクタポンプにおけるエアの合流室に真空圧
を検知する圧力センサを設け、当該センサの検知
状態に対応して真空圧の制御等を行わしめる真空
圧検知装置を設けている。
By the way, in this type of conveyance device, vacuum leakage may occur between the suction cup and the suction part of the object due to the roughness of the surface of the object to be moved or the deterioration or damage of the suction cup material. There were problems such as the suction cup not being able to reach the desired vacuum pressure and moving the suction cup without an object being suctioned, and objects that had been suctioned falling once during the movement. Therefore, a pressure sensor for detecting vacuum pressure is usually provided in the air confluence chamber of the air ejector pump, and a vacuum pressure detection device is provided for controlling the vacuum pressure in accordance with the detection state of the sensor.

従来の真空圧検知装置は圧力センサとして歪ゲ
ージと他の抵抗要素により構成した平衡形ブリツ
ジ回路を利用し、これより得る不平衡電流を差動
アンプ等によつて、信号処理に必要な大きさまで
増幅して真空圧に比例したアナログ信号を得てい
る。そして、この信号を比較回路の一方の入力へ
供給するとともに、他方の入力に供給される基準
信号と比較して偏差(変化分)を得、この偏差に
基づいて正規の真空圧に制御する等の必要な制御
信号を得ていた(実開昭59−112593号公報参照)。
Conventional vacuum pressure detection devices use a balanced bridge circuit composed of a strain gauge and other resistance elements as a pressure sensor, and the unbalanced current obtained from this is processed by a differential amplifier etc. to the level required for signal processing. It is amplified to obtain an analog signal proportional to vacuum pressure. Then, this signal is supplied to one input of the comparator circuit, and compared with the reference signal supplied to the other input to obtain a deviation (change amount), and based on this deviation, the vacuum pressure is controlled to a regular value, etc. The necessary control signals were obtained (see Utility Model Application Publication No. 112593/1983).

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかし、従来の真空圧検知装置は真空圧を検知
し、主に低下した状態の真空圧を正規の真空圧に
補正する目的で使用されるため、回路もアナログ
信号処理系で構成している。
However, since conventional vacuum pressure detection devices are used for detecting vacuum pressure and mainly correcting the reduced vacuum pressure to normal vacuum pressure, the circuit is also constructed from an analog signal processing system.

このため、真空圧の計測値の他、正規真空圧で
ある設定値、不良回数、最低及び最大真空圧等の
各種の表示や記録、その他必要に応じた広範囲の
制御等を行うことができない問題があり、しか
も、小型化の要請されるエアエゼクタポンプにと
つて回路部品が多くなり全体の大型化、コストア
ツプ、電力消費を招く問題があつた。
For this reason, in addition to the measured value of vacuum pressure, it is not possible to display and record various things such as the set value that is the normal vacuum pressure, the number of failures, the minimum and maximum vacuum pressure, and other wide-ranging control as necessary. Furthermore, for air ejector pumps that are required to be downsized, there are problems in that the number of circuit components increases, resulting in an increase in overall size, increased costs, and power consumption.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は上述した従来技術に存在する問題点を
解決したエアエゼクタポンプにおける真空圧検知
装置の提供を目的とするもので、以下に示す装置
1によつて達成される。
The present invention aims to provide a vacuum pressure detection device for an air ejector pump that solves the problems existing in the prior art described above, and is achieved by the device 1 shown below.

即ち、本考案はエアの合流室2における真空状
態を検知し、これに基づき真空圧の制御等を行う
エアエゼクタポンプの真空圧検知装置1を構成す
るに際して、特に、合流室2に臨み真空圧に対応
したアナログ信号を出力する圧力センサ部3と、
圧力センサ部3の出力をデイジタル信号に変換す
るアナログデイジタル変換部(以下、A/D変換
部と記す)4と、A/D変換部4の出力値を演算
処理するとともに、設定値等のデータを入力する
入力部9を有し、かつ計測値、設定値、不良回数
等のデータを記憶する記憶部7を具備する演算処
理部5と、演算処理部5の出力を処理して外部へ
出力する出力部6を備えることを特徴とする。こ
の場合、少なくともA/D変換部4及び演算処理
部5は1チツプマイクロコンピユータ23で構成
できる。また、真空圧検知装置1はブロツク状の
機体11を備え、内部に合流室2及び凹状収納部
21を設けるとともに、この凹状収納部21内に
圧力センサ部3及び1チツプマイクロコンピユー
タ23をマウントしたプリント配線基板22を配
して構成することが望ましい。なお、記憶部7に
は第二の出力部8を備えている。
That is, the present invention detects the vacuum state in the air confluence chamber 2 and controls the vacuum pressure based on the detected vacuum pressure detection device 1 for an air ejector pump. a pressure sensor unit 3 that outputs an analog signal corresponding to the
An analog-to-digital converter (hereinafter referred to as A/D converter) 4 converts the output of the pressure sensor unit 3 into a digital signal, and performs arithmetic processing on the output value of the A/D converter 4, as well as data such as setting values. an arithmetic processing section 5 which has an input section 9 for inputting the information, and a storage section 7 for storing data such as measured values, set values, number of failures, etc., and processes the output of the arithmetic processing section 5 and outputs it to the outside. It is characterized by comprising an output section 6 for. In this case, at least the A/D conversion section 4 and the arithmetic processing section 5 can be constituted by a one-chip microcomputer 23. Further, the vacuum pressure detection device 1 includes a block-shaped body 11, and has a merging chamber 2 and a concave housing part 21 inside, and a pressure sensor part 3 and a one-chip microcomputer 23 are mounted inside this concave housing part 21. It is preferable that a printed wiring board 22 is arranged. Note that the storage section 7 includes a second output section 8.

〔作用〕[Effect]

次に、本考案の作用について説明する。 Next, the operation of the present invention will be explained.

本考案に係る真空圧検知装置1によれば、ま
ず、圧力センサ部3によつて合流室2の真空圧に
対応(比例)したアナログ信号X1を得る。この
アナログ信号X1は直線A/D変換部4によりデ
イジタル信号X2に変換され、演算処理部5に付
与される。また、入力部9からは設定値等のデー
タを入力し、記憶部7に記憶させておく。そし
て、演算処理部5では予め設定されたプログラム
に従い、記憶部7から付与される設定値と計測値
(デイジタル信号X2)を比較し、真空圧が正常
であるか異常であるかを判別し、その判別結果は
出力部6へ付与され、制御信号、表示信号等の必
要な信号として外部へ出力される。なお、記憶部
7には設定値はもちろんのこと、計測値或いは演
算処理された不良回数等の各種データを記憶す
る。
According to the vacuum pressure detection device 1 according to the present invention, first, the analog signal X1 corresponding to (proportional to) the vacuum pressure in the merging chamber 2 is obtained by the pressure sensor section 3. This analog signal X1 is converted into a digital signal X2 by the linear A/D converter 4, and is applied to the arithmetic processing section 5. Further, data such as set values are inputted from the input section 9 and stored in the storage section 7. Then, the arithmetic processing unit 5 compares the set value provided from the storage unit 7 with the measured value (digital signal X2) according to a preset program, and determines whether the vacuum pressure is normal or abnormal. The determination result is applied to the output section 6 and outputted to the outside as necessary signals such as control signals and display signals. Note that the storage unit 7 stores not only set values but also various data such as measured values and the number of failures processed.

〔実施例〕〔Example〕

以下には、本考案に係る好適な実施例を挙げ、
図面に基づき詳細に説明する。第1図は本考案に
係る真空圧検知装置の機能ブロツク図、第2図は
同装置を備えたエアエゼクタポンプの縦断面図で
ある。
Below, preferred embodiments of the present invention are listed,
This will be explained in detail based on the drawings. FIG. 1 is a functional block diagram of a vacuum pressure detection device according to the present invention, and FIG. 2 is a longitudinal sectional view of an air ejector pump equipped with the same device.

まず、エアエゼクタポンプMの構成について第
2図を参照して説明する。11はブロツク状の機
体であり、内部に中空に形成したエアの合流室2
を有する。合流室2内には圧縮空気を噴出する噴
射ノズル13を臨ませ、他方、このノズル13の
先端に対向し、かつ軸心が当該ノズル13の軸線
上に位置する排気口14を機体11に形成する。
また、合流室2に臨む他の位置であつて前記圧縮
空気の噴出方向に対し直角方向位置には真空配管
接続用のニツプル16を装着し、このニツプル1
6に例えばフレキシブルなホースである真空配管
15の後端を接続する。一方、配管15の先端に
は吸盤17を備え、移動アーム機構18により所
定の場所に移動せしめられる。よつて、噴射ノズ
ル13から圧縮空気を噴出させれば、圧縮空気は
合流室2を通り、さらに排気口14を通つて大気
に排出される。この際、合流室2に負圧を生じ、
真空配管15先端の吸盤17は吸気する。
First, the configuration of the air ejector pump M will be explained with reference to FIG. 2. 11 is a block-shaped aircraft, and there is an air confluence chamber 2 formed hollow inside.
has. An injection nozzle 13 for ejecting compressed air faces into the merging chamber 2, and an exhaust port 14 is formed in the fuselage 11, facing the tip of the nozzle 13 and having an axis located on the axis of the nozzle 13. do.
In addition, a nipple 16 for connecting vacuum piping is installed at another position facing the merging chamber 2 and at a position perpendicular to the jetting direction of the compressed air.
6 is connected to the rear end of vacuum piping 15, which is a flexible hose, for example. On the other hand, a suction cup 17 is provided at the tip of the pipe 15, and the suction cup 17 is moved to a predetermined location by a moving arm mechanism 18. Therefore, when compressed air is ejected from the injection nozzle 13, the compressed air passes through the merging chamber 2 and is further discharged to the atmosphere through the exhaust port 14. At this time, negative pressure is generated in the confluence chamber 2,
A suction cup 17 at the tip of the vacuum pipe 15 sucks air.

一方、合流室2に臨み、かつ前記ニツプル16
に対向する位置には合流室2内の真空圧に比例し
た大きさの電気信号を出力する圧電変換素子等の
圧力センサ20を配設する。この圧力センサ20
はプリント配線基板22にマウントし、この基板
22は機体11の一部に形成した凹状収納部21
へ設置する。また、この基板22には回路部品で
あるチツプ素子等をマウントする。なお、機体1
1はブロツク状に構成されるため、凹状収納部2
1の大きさも極めて限られたものとなるが、圧力
センサ20を除く信号処理系はチツプ素子として
構成するため、限られた凹状収納部21に対して
も容易に収納できる。
On the other hand, facing the merging room 2 and the nipple 16
A pressure sensor 20 such as a piezoelectric transducer that outputs an electrical signal proportional to the vacuum pressure in the merging chamber 2 is disposed at a position facing the merging chamber 2 . This pressure sensor 20
is mounted on a printed wiring board 22, and this board 22 is mounted on a concave storage portion 21 formed in a part of the fuselage 11.
to be installed. Moreover, chip elements and the like, which are circuit components, are mounted on this board 22. In addition, aircraft 1
1 is configured in a block shape, so the concave storage section 2
Although the size of the sensor 1 is extremely limited, since the signal processing system except the pressure sensor 20 is constructed as a chip element, it can be easily accommodated in the limited concave storage section 21.

次に、同装置1の信号処理系について第1図を
参照して説明する。
Next, the signal processing system of the apparatus 1 will be explained with reference to FIG.

まず、20は上記圧力センサであり、この出力
側は1チツプマイクロコンピユータ(以下、マイ
コンチツプと略記する)23に接続する。このマ
イコンチツプ23はその中枢をなす演算処理部5
をはじめ、A/D変換部4、その他、不図示の必
要な機能部を備える。演算処理部5には記憶部
7、入力部9を含む。また、マイコンチツプ23
の出力は出力部(インタフエース)6に接続す
る。なお、この出力部6はマイコンチツプ23に
内蔵された形式であつてもよい。
First, 20 is the pressure sensor described above, and its output side is connected to a 1-chip microcomputer (hereinafter abbreviated as microcomputer chip) 23. This microcomputer chip 23 is the central arithmetic processing section 5.
, an A/D converter 4, and other necessary functional units (not shown). The arithmetic processing section 5 includes a storage section 7 and an input section 9. Also, microcomputer chip 23
The output of is connected to an output section (interface) 6. Note that this output section 6 may be built in the microcomputer chip 23.

次に、信号処理系の機能について述べる。圧力
センサ20の出力であるアナログ信号X1はマイ
コンチツプ23に入力し、A/D変換部4により
デイジタル信号X2に変換される。一方、外部か
ら任意の設定値を入力できるキーボード、ボリユ
ーム(例えば半固定)等で構成される入力部9か
らは設定値等のデータを入力し、予め記憶部7に
記憶させておく。なお、この設定値とは予め標準
値としてプログラミングされている設定値と、必
要に応じて入力部9から入力する設定値の双方を
含む。そして、演算処理部5はデイジタル信号X
2と設定値とを比較し、例えば、設定値に対しデ
イジタル信号X2の値をひき算し、演算値が正で
あれば圧力低下状態を出力し、負であれは圧力超
過状態を出力する。演算処理部5の出力は出力部
6に付与される。この出力部6は処理部5の出力
に応じて外部装置である各種アクチユエータ、ラ
ンプ等を駆動するもので、デイジタルアナログ変
換部を含み、例えばアクチユエータである真空圧
を可変するリレースイツチを開閉し、真空圧の制
御を行つたり、正規の真空圧でない状態をアラー
ムランプにより点灯表示等する。
Next, the functions of the signal processing system will be described. The analog signal X1, which is the output of the pressure sensor 20, is input to the microcomputer chip 23, and is converted by the A/D converter 4 into a digital signal X2. On the other hand, data such as setting values are inputted from an input unit 9, which includes a keyboard, a volume (for example, semi-fixed), etc., and are stored in the storage unit 7 in advance to input arbitrary setting values from the outside. Note that the set values include both set values programmed in advance as standard values and set values input from the input unit 9 as necessary. Then, the arithmetic processing unit 5 receives the digital signal
For example, the value of the digital signal X2 is subtracted from the set value, and if the calculated value is positive, a reduced pressure state is output, and if it is negative, an overpressure state is output. The output of the arithmetic processing section 5 is given to the output section 6. This output section 6 drives various actuators, lamps, etc., which are external devices, according to the output of the processing section 5, and includes a digital-to-analog conversion section. It controls the vacuum pressure and lights up an alarm lamp to indicate that the vacuum pressure is not normal.

なお、演算処理部5は必要により記憶部7の記
憶データとあわせ、任意の演算処理を行う。例え
ば、計測値を記憶することにより、時間的な遅れ
を設けて制御できるし、或は演算処理部5の本来
の処理機能と併せて所定のデータ処理、例えば平
均値の演算結果、最大値、最小値、不良回数の計
数及びその監視等に対しそのデータを記憶でき
る。さらに、ピーク的(過渡的)な変化(ノイズ
等)にも対応できる。また、記憶部7によつて例
えば超過圧の状態をシリアル信号、或はパラレル
信号で出力できる。
Note that the arithmetic processing section 5 performs arbitrary arithmetic processing along with the data stored in the storage section 7 as necessary. For example, by storing measured values, control can be performed with a time delay, or predetermined data processing can be performed in conjunction with the original processing function of the arithmetic processing unit 5, such as calculation results of average values, maximum values, etc. The data can be stored for the minimum value, counting of the number of failures, monitoring thereof, etc. Furthermore, it can also handle peak (transient) changes (such as noise). Furthermore, the storage unit 7 can output, for example, the overpressure state as a serial signal or a parallel signal.

なお、記憶部7には第二の出力部8を接続す
る。第二の出力部8は記憶部7に記憶される計測
値や設定値、さらに演算処理された各種データを
表示する表示器、或は紙等に記録を行うプリンタ
等で構成できる。
Note that a second output section 8 is connected to the storage section 7. The second output section 8 can be composed of a display device that displays the measured values and setting values stored in the storage section 7, and various types of data that have been arithmetic-processed, or a printer that records the data on paper or the like.

以上、各種実施例について説明したが本考案は
このような実施例に限定されるものではなく、細
部の構成、形状等において、本考案の要旨を逸脱
しない範囲で任意に変更できる。
Although various embodiments have been described above, the present invention is not limited to these embodiments, and the detailed structure, shape, etc. can be arbitrarily changed without departing from the gist of the present invention.

〔考案の効果〕[Effect of idea]

このように、本考案に係るエアエゼクタポンプ
の真空圧検知装置は、真空圧を検出する圧力セン
サ部の出力をデイジタル信号処理系によつて情報
処理するようにしたため次のような著効を得る。
As described above, the vacuum pressure detection device for an air ejector pump according to the present invention has the following advantages because the output of the pressure sensor section that detects vacuum pressure is processed by the digital signal processing system. .

記憶部等を含む演算処理機能によつて、デー
タの処理範囲を飛躍的に拡大でき、制御等の多
様性、装置の機能性を大きく向上できる。
By using arithmetic processing functions including a storage section, etc., the range of data processing can be dramatically expanded, and the diversity of control and the like and the functionality of the device can be greatly improved.

1チツプマイクロコンピユータを利用できる
ため、従来のアナログ信号処理系に比べアンプ
や比較回路等の回路部品が全く不要となり、小
型化、コスト低減、電力消費低減を達成でき、
特に、配設スペースが制限される小型の機体を
備えるエアエゼクタポンプにとつて最適とな
る。
Since a 1-chip microcomputer can be used, circuit components such as amplifiers and comparison circuits are completely unnecessary compared to conventional analog signal processing systems, making it possible to achieve miniaturization, cost reduction, and power consumption reduction.
It is particularly suitable for air ejector pumps equipped with small bodies where installation space is limited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図:本考案に係る真空圧検知装置の機能
ブロツク図、第2図:同装置を備えたエアエゼ
クタポンプの縦断面図。 尚図面中、1:真空圧検知装置、2:合流
室、3:圧力センサ部、4:A/D変換部、
5:演算処理部、6:出力部、7:記憶部、
8:第二の出力部、9:入力部。
FIG. 1: A functional block diagram of a vacuum pressure detection device according to the present invention, and FIG. 2: A vertical sectional view of an air ejector pump equipped with the same device. In the drawing, 1: vacuum pressure detection device, 2: merging chamber, 3: pressure sensor section, 4: A/D conversion section,
5: Arithmetic processing unit, 6: Output unit, 7: Storage unit,
8: second output section, 9: input section.

Claims (1)

【実用新案登録請求の範囲】 〔1〕 エアの合流室2における真空状態を検知
し、これに基づき真空圧の制御等を行うエアエ
ゼクタポンプの真空圧検知装置において、前記
合流室2に臨み真空圧に対応したアナログ信号
を出力する圧力センサ部3と、前記圧力センサ
部3の出力をデイジタル信号に変換するアナロ
グデイジタル変換部4と、前記変換部4の出力
値を演算処理するとともに、設定値等のデータ
を入力する入力部9を有し、かつ計測値、設定
値、不良回数等のデータを記憶する記憶部7を
具備する演算処理部5と、前記演算処理部5の
出力を処理して外部へ出力する出力部6を備え
ることを特徴とするエアエゼクタポンプの真空
圧検知装置。 〔2〕 少なくともアナログデイジタル変換部4
及び演算処理部5は1チツプマイクロコンピユ
ータ23で構成したことを特徴とする実用新案
登録請求の範囲第1項記載のエアエゼクタポン
プの真空圧検知装置。 〔3〕 ブロツク状の機体11を備え、内部に前
記合流室2及び凹状収納部21を設け、この凹
状収納部21内に圧力センサ部3及び1チツプ
マイクロコンピユータ23をマウントしたプリ
ント配線基板22を配したことを特徴とする実
用新案登録請求の範囲第1項又は第2項記載の
エアエゼクタポンプの真空圧検知装置。 〔4〕 前記記憶部7には第二の出力部8を備え
ることを特徴とする実用新案登録請求の範囲第
1項記載のエアエゼクタポンプの真空圧検知装
置。
[Scope of Claim for Utility Model Registration] [1] In a vacuum pressure detection device for an air ejector pump that detects the vacuum state in the air merging chamber 2 and controls the vacuum pressure based on the detected vacuum state, A pressure sensor section 3 that outputs an analog signal corresponding to the pressure; an analog-to-digital conversion section 4 that converts the output of the pressure sensor section 3 into a digital signal; an arithmetic processing section 5 having an input section 9 for inputting data such as, and a storage section 7 for storing data such as measured values, set values, number of failures, etc.; A vacuum pressure detection device for an air ejector pump, characterized in that it is equipped with an output section 6 for outputting to the outside. [2] At least analog-digital converter 4
The vacuum pressure detection device for an air ejector pump according to claim 1, wherein the arithmetic processing section 5 is constructed of a one-chip microcomputer 23. [3] A block-shaped body 11 is provided, and the above-mentioned merging chamber 2 and a concave storage part 21 are provided inside, and a printed wiring board 22 on which a pressure sensor part 3 and a one-chip microcomputer 23 are mounted is mounted inside the concave housing part 21. A vacuum pressure detection device for an air ejector pump according to claim 1 or 2, characterized in that: [4] The vacuum pressure detection device for an air ejector pump according to claim 1, wherein the memory section 7 includes a second output section 8.
JP1986101036U 1986-06-30 1986-06-30 Expired JPH0330640Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986101036U JPH0330640Y2 (en) 1986-06-30 1986-06-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986101036U JPH0330640Y2 (en) 1986-06-30 1986-06-30

Publications (2)

Publication Number Publication Date
JPS637299U JPS637299U (en) 1988-01-18
JPH0330640Y2 true JPH0330640Y2 (en) 1991-06-27

Family

ID=30971409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986101036U Expired JPH0330640Y2 (en) 1986-06-30 1986-06-30

Country Status (1)

Country Link
JP (1) JPH0330640Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031924B4 (en) * 2004-06-23 2006-05-04 J. Schmalz Gmbh Device for generating a negative pressure
US7313966B2 (en) * 2004-12-14 2008-01-01 Brooks Automation, Inc. Method and apparatus for storing vacuum gauge calibration parameters and measurement data on a vacuum gauge structure
JP6174768B1 (en) * 2016-04-18 2017-08-02 經登企業股▲フン▼有限公司 Digital pressure gauge and control system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112593U (en) * 1983-01-20 1984-07-30 オリオン機械株式会社 Vacuum generator with vacuum pressure detection function of suction part

Also Published As

Publication number Publication date
JPS637299U (en) 1988-01-18

Similar Documents

Publication Publication Date Title
CA2134206A1 (en) Peritoneal dialysis system
WO2002080615A3 (en) Ear microphone apparatus and method
JPH0330640Y2 (en)
JP2007512534A (en) Digital output MEMS pressure sensor and method
US5974892A (en) Pressure transducer, in particular for sensing a lateral collision in a motor vehicle
US4380932A (en) Capacitance manometer differential pressure sensor
US6485276B2 (en) Dual function air pump
SE460823B (en) DEVICE IN A LIFT CLEANER
JP3199783B2 (en) Fluid circuit
US20190139802A1 (en) Front opening unified pod loading and air filling system
JP3954713B2 (en) Pressure gauge, moving device, contact confirmation device, and liquid ejecting device
CN213551763U (en) Device for reducing air flow fluctuation in blood pressure detection air circuit
CN111772609B (en) Device for reducing air flow fluctuation in blood pressure detection air circuit
CN213946154U (en) Workpiece fixing device
JP3038265B2 (en) Sensor switch
WO1995029387A1 (en) Powder level indicator
JPH07182049A (en) Pressure controller and pressure detector
JPH10128690A (en) Electronic pressure switch and vacuum part sucking device using it
JPH09144705A (en) Negative pneumatic pressure servo unit
JPH01181830A (en) Vacuum cleaner
JPH02259428A (en) Water gauge
JP2005118896A (en) Vacuum suction device, and method for detecting clogging of its suction nozzle
JPS6240990Y2 (en)
KR200146659Y1 (en) Vent apparatus of chamber of vacuum system for semiconductor fabrication
JPH04106424A (en) Immersion type water level transmitter