JPH03296245A - Method of recognizing wafer shape - Google Patents

Method of recognizing wafer shape

Info

Publication number
JPH03296245A
JPH03296245A JP2098899A JP9889990A JPH03296245A JP H03296245 A JPH03296245 A JP H03296245A JP 2098899 A JP2098899 A JP 2098899A JP 9889990 A JP9889990 A JP 9889990A JP H03296245 A JPH03296245 A JP H03296245A
Authority
JP
Japan
Prior art keywords
wafer
light beam
light
outer periphery
periphery part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2098899A
Other languages
Japanese (ja)
Inventor
Minoru Ametani
雨谷 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2098899A priority Critical patent/JPH03296245A/en
Priority to EP90123746A priority patent/EP0435057A1/en
Priority to US07/630,604 priority patent/US5159202A/en
Publication of JPH03296245A publication Critical patent/JPH03296245A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a shape of a wafer to be recognized accurately and positioned even if the wafer is slightly eccentric by projecting a line-shaped light beam to a certain region of an outer-periphery part of the rotating wafer and by monitoring current amount of received light by the outer-periphery part of the wafer. CONSTITUTION:An optical sensor A consists of a light source 20 and a photoelectric element 21 which are fixed below and above a supporting plate 19 and has a thin line-shaped light beam 22 with a constant length in radius direction of a wafer 6. The light beam 22 which is emitted from the light source 20 is emitted to an arbitrary range at the outer-periphery part of the wafer 6 and rays correspond to a length L from a peripheral edge 23 to an outer edge of the light flux 22 hits against a photoelectric element 21. Then, voltage corresponding to the amount of light is transmitted to a detection circuit. Thus, by monitoring a voltage level which changes and comparing it with a rotary data of a stepping motor 13, position and size of the orientation flat and notch can be determined and positioned or detective wafers are found.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は集積回路形成用の基板となる半導体ウェハの
ように、一部に直線状の切欠き、すなわち、オリエンテ
ーションフラット(以下オリフラと称する)あるいはノ
ツチ部(切欠部)のような検出部を有する円板状のウェ
ハの外形認識方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a semiconductor wafer that serves as a substrate for forming an integrated circuit, in which a portion thereof has a linear notch, that is, an orientation flat (hereinafter referred to as an orientation flat). Alternatively, the present invention relates to a method for recognizing the outer shape of a disc-shaped wafer having a detection portion such as a notch.

〔従来の技術] 従来のウェハの位置合せ方法の一例を第5図、第6図に
示す。第5図において、1.2.3は同径の回転ローラ
で、この各回転ローラは図示省略しである取付台に回転
自在に取イ」けられ、同取付台に設しノたモータにより
駆動されるプーリ4と各回転ローラ1.2.3に第5図
のように無端ヘルド5をかけることにより矢印方向に等
速で回転させる。
[Prior Art] An example of a conventional wafer alignment method is shown in FIGS. 5 and 6. In Fig. 5, reference numerals 1, 2, and 3 denote rotating rollers of the same diameter, and each of these rotating rollers is rotatably mounted on a mounting base (not shown), and driven by a motor installed on the mounting base. The driven pulley 4 and each rotating roller 1, 2, 3 are rotated at a constant speed in the direction of the arrow by applying an endless heald 5 as shown in FIG.

また、各回転ローラ1.2.3は同径で、ウェハ6の円
周に沿うように配置しである。7は左右一対の搬送ベル
トで図示省略しである昇降フレームに取付けである。
Further, each rotating roller 1.2.3 has the same diameter and is arranged along the circumference of the wafer 6. Reference numeral 7 denotes a pair of left and right conveyor belts, which are attached to a lifting frame (not shown).

いま、搬送ヘルド7が下陵位置にある条件において、ウ
ェハ6がヘルド7により第5図の左方から搬送されてく
るとウェハ6が第5図のようにへル1−7上に突出して
いる3本の回転ローラ1.2.3に当って停止する。
Now, under the condition that the transfer heald 7 is in the lower position, when the wafer 6 is transferred from the left side of FIG. 5 by the heald 7, the wafer 6 protrudes above the heald 1-7 as shown in FIG. It stops when it hits the three rotating rollers 1.2.3.

このとき、第5図及び第6図Iのように、回転ローラ1
.2.3にウェハ6の弧状の周縁が接している場合は全
てのローラ1.2.3がウェハ6の周縁に接するからウ
ェハ6は2本のローラ2.3の方向に回される。
At this time, as shown in FIGS. 5 and 6, the rotating roller 1
.. 2.3 is in contact with the arcuate periphery of the wafer 6, all the rollers 1.2.3 are in contact with the periphery of the wafer 6, so the wafer 6 is rotated in the direction of the two rollers 2.3.

こうしてウェハ6が回り、そのオリフラ10がローラ1
.2.3の部分へくると第6図■のようにローラ2がオ
リフラ10から離れて相反する回転方向の2木のローラ
1.3が接するのでウェハ6はオリフラ10を前向きと
して停止する。
In this way, the wafer 6 rotates, and the orientation flat 10 is moved to the roller 1.
.. When reaching the section 2.3, the roller 2 separates from the orientation flat 10 and comes into contact with the two rollers 1.3 having opposite rotational directions, as shown in FIG.

また、上記の方法の他に、一定の位置に設けた一個の光
センサによりウェハの円周を検出させ、この光センサに
よりオリフラの任意の半径の二点間の周長を計測し、そ
の中央を算出して位置決めを行う方法もある。
In addition to the above method, it is also possible to detect the circumference of the wafer with a single optical sensor installed at a fixed position, measure the circumference between two points of an arbitrary radius of the orientation flat with this optical sensor, and There is also a method of calculating positioning.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような回転ローラを用いる従来方法の場合、ウェ
ハの外径にバラツキがあると、ウェハの中心位置が狂っ
てしまう。従って何等かの基準に対し、オリフラを合せ
たい場合、上記の方法では調整が困難である。
In the case of the conventional method using a rotating roller as described above, if there is variation in the outer diameter of the wafer, the center position of the wafer will be deviated. Therefore, if it is desired to match the orientation flat to some standard, it is difficult to do so using the above method.

また、光センサを用いる方法では、光センサの光束のr
JJが広いので、ウェハの検出部が微少なノツチ部(切
欠部)となっている場合、検出が不安定である。
In addition, in the method using an optical sensor, r of the luminous flux of the optical sensor is
Since the JJ is wide, if the detection part of the wafer has a minute notch, detection will be unstable.

この場合、光軸の細いセンサを用いてもウェハの中心が
旋回中心に対して偏心していると、ノツチ部か偏心かの
区別がつかなくなるという問題がある。
In this case, even if a sensor with a narrow optical axis is used, if the center of the wafer is eccentric with respect to the center of rotation, there is a problem that it is difficult to distinguish between the notch portion and the eccentricity.

この発明の課題は上記のような従来方法の問題点を解決
して、ウェハが多少偏心していても正確にウェハの外形
を認識して位置決めなどができる方法を提供することで
ある。
An object of the present invention is to solve the problems of the conventional methods as described above, and to provide a method that can accurately recognize the outer shape of a wafer and perform positioning even if the wafer is slightly eccentric.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上記の課題を解決するために、この発明はウェハを旋回
させる旋回手段と、この旋回手段により旋回されるウェ
ハの外周の検出部の位置を検出する光センサからなり、
この光センサをウェハの半径方向の一定の長さの細い線
状の光束をもつものとし、回転するウェハの外周部の一
定領域を上記光束で照射してウェハの外周部による時々
刻々の受光量をモニタリングしながら外周部の形状を線
分の変化で認識し、そのデータによりウェハの外形認識
を行う方法を提供する。
In order to solve the above problems, the present invention includes a turning means for turning a wafer, and an optical sensor for detecting the position of a detection part on the outer periphery of the wafer rotated by the turning means,
This optical sensor has a thin linear light beam with a constant length in the radial direction of the wafer, and a certain area on the outer periphery of the rotating wafer is irradiated with the above light beam to measure the amount of light received momentarily by the outer periphery of the wafer. A method is provided in which the shape of the outer periphery is recognized by changes in line segments while monitoring the wafer, and the outer shape of the wafer is recognized using the data.

〔実施例〕〔Example〕

第1図ないし第3図はこの発明方法を実施する装置の一
例を示すもので、第2図の11は旋回手段である。
1 to 3 show an example of an apparatus for carrying out the method of the present invention, and 11 in FIG. 2 is a turning means.

この旋回手段は軸受12に回動自在に取付けた吸着台1
4と、この台14を旋回させるステンピングモータ13
と、軸受12をモータ13とともに固定した固定フレー
ム18からなっている。
This turning means is a suction table 1 rotatably attached to a bearing 12.
4, and a stamping motor 13 that rotates this table 14.
and a fixed frame 18 to which the bearing 12 is fixed together with the motor 13.

吸着台14は第1図のようにその上面に吸着用溝16が
あり、この溝16が図示省略しである真空吸引装置に通
じる第2図の連通孔17に連通している。
As shown in FIG. 1, the suction table 14 has a suction groove 16 on its upper surface, and this groove 16 communicates with a communication hole 17 in FIG. 2 that leads to a vacuum suction device (not shown).

9は前記軸受12の上端に固定したブラケットで、この
ブラケットS上には第2図のように垂直の支持板1日を
固定し、この支持板19に光セン+IAを取付ける。
Reference numeral 9 denotes a bracket fixed to the upper end of the bearing 12. On this bracket S, a vertical support plate 1 is fixed as shown in FIG. 2, and an optical sensor +IA is attached to this support plate 19.

上記光センサAは支持板19の上下にそれぞれ固定した
投光器20と光電素子21からなっており、第3図のよ
うに、ウェハ6の半径方向で、定の長さを有する細い線
状の光束22を有するものである。
The optical sensor A is composed of a light projector 20 and a photoelectric element 21 fixed on the upper and lower sides of a support plate 19, respectively, and as shown in FIG. 22.

そして、ウェハ6の外周部の一定領域を光束が照射する
位置に設ける。
Then, a certain area on the outer periphery of the wafer 6 is provided at a position to be irradiated with the light beam.

第1図、第2図の25はセンタリング装置で、取付台2
6上にガイドレール27を設け、このガイドレール27
に摺動自在または揺動自在に取Nけた一対の上向きの腕
30にセンタリング板31をネジ止めなどで着脱自在に
取付けたもので、センタリング板31には、第1図のよ
うに対向する円弧状の凹部32が形成されている。
25 in Figures 1 and 2 is a centering device, and the mounting base 2
A guide rail 27 is provided on 6, and this guide rail 27
A centering plate 31 is removably attached to a pair of upwardly facing arms 30 with screws or the like, and the centering plate 31 has opposing circles as shown in FIG. An arcuate recess 32 is formed.

四部32はウェハ6の円周に一致するもので、前記各腕
30は図示省略しであるリンク機構などにより開閉し、
閉したとき両凹部32でウェハ6の外周に一致する円が
吸着台14と間怠に形成されるようにしである。
The four parts 32 correspond to the circumference of the wafer 6, and each arm 30 is opened and closed by a link mechanism (not shown).
When closed, both the recesses 32 form a circle that coincides with the outer circumference of the wafer 6 and are spaced apart from the suction table 14.

いま、図示省略しである任意の搬送手段の吸着板33で
吸着されたウェハ6が第1図の鎖線のようにセンタリン
グ装置25上へ移動する。
Now, the wafer 6, which has been attracted by a suction plate 33 of an arbitrary transport means (not shown), moves onto the centering device 25 as shown by the chain line in FIG.

このとき、センタリング板31は第1図の実線のように
広く開いているから、ウェハ6は、板31に接触せずに
吸着台14」−に移動する。
At this time, since the centering plate 31 is wide open as shown by the solid line in FIG. 1, the wafer 6 moves to the suction table 14'' without contacting the plate 31.

上記のように吸着台14の上方に供給されたウェハ6の
中心が吸着台14の旋回中心とほぼ一致したことを何ら
かの検知手段が検知すると、吸着板33が少し下降し、
ウェハ6を吸着台14上に載せ、吸着を解除する。
When some kind of detection means detects that the center of the wafer 6 supplied above the suction table 14 almost coincides with the rotation center of the suction table 14 as described above, the suction plate 33 is slightly lowered.
The wafer 6 is placed on the suction table 14 and suction is released.

つぎに各センタリング板31が閉し始め、両板31の凹
部32がウェハ6の外周に一致するとウェハ6の中心と
吸着台14の旋回中心が一致する。
Next, each centering plate 31 begins to close, and when the recesses 32 of both plates 31 coincide with the outer periphery of the wafer 6, the center of the wafer 6 and the center of rotation of the suction table 14 coincide.

この状態となると同時に吸着台14の真空吸弓が始まり
、ウェハ6が吸着台14上に固定されると同時に両腕3
0が開き、両センタリング板31がウェハ6から離れる
At the same time as this state is reached, the vacuum suction of the suction table 14 starts, and at the same time the wafer 6 is fixed on the suction table 14, both arms 3
0 is opened and both centering plates 31 are separated from the wafer 6.

つぎに投光器20から光電素子21に向けて光線が送ら
れる。同時にモータ制御用のパルスジェネレータからの
パルス信号によりステッピングモータ13が起動し、吸
着台14を第1図の矢印方向に回し始める。
Next, a light beam is sent from the light projector 20 toward the photoelectric element 21 . At the same time, the stepping motor 13 is activated by a pulse signal from a pulse generator for motor control, and starts rotating the suction table 14 in the direction of the arrow in FIG.

投光器20から発せられる光束22ばウェハ6の外周部
の任意の範囲を照射して第3図の周縁23から光束22
の外端までの長さLに相当する光線が光電素子21に当
り、その光の量に相当する電圧が検出回路に送られる。
The light beam 22 emitted from the projector 20 irradiates an arbitrary range of the outer periphery of the wafer 6, and the light beam 22 is emitted from the periphery 23 in FIG.
A light beam corresponding to the length L to the outer end of the light beam hits the photoelectric element 21, and a voltage corresponding to the amount of light is sent to the detection circuit.

従って光束22を通過する周8!23が第4図のIのよ
うに回転中心と同志の円周の部分の場合は検出回路によ
りモニターされた電圧のレヘルは同図■のように一定の
水平線となる。
Therefore, if the circumference 8!23 through which the light beam 22 passes is a part of the same circumference as the rotation center as shown in I in Fig. 4, the level of the voltage monitored by the detection circuit will be a constant horizontal line as shown in Fig. 4. becomes.

第4図丁のようにオリフラ10の部分が光束22の部分
を通過すると、同図■のようにオリフラ10の中心が光
束22をii1過したときが最大となるなだらかな左右
対称の山形の波形となる。
When the portion of the orientation flat 10 passes through the portion of the light beam 22 as shown in Figure 4, a gentle symmetrical chevron-shaped waveform becomes maximum when the center of the orientation flat 10 passes through the beam 22 as shown in Figure 4. becomes.

第4図Vのようなノンチ部15が光束22を通過したと
きは第4図■のように鋭い突起状の波形となり、第4図
■のような不正常な形状の欠損部24が光束22を通過
すると、第4図■のような不正常な波形となる。
When the non-cut portion 15 as shown in FIG. 4 V passes through the light beam 22, it becomes a sharp protruding waveform as shown in FIG. If it passes through, an abnormal waveform as shown in Figure 4 (■) will result.

従って−に記のように変化する電圧レベルをモニターし
、ステッピングモータ13の回転データと照合せしめる
ことによりオリフラ10やノツチなどの位置や大きさな
どが判定されて、位置決めあるいill不良品の発見が
なされる。
Therefore, by monitoring the voltage level that changes as shown in - and comparing it with the rotation data of the stepping motor 13, the position and size of the orientation flat 10, notch, etc. can be determined, and the positioning or ill-defective product can be detected. will be done.

上記の実施例はステッピングモータを用いたが、ステッ
ピングモータのかわりに直流サーボモータを用い、この
モータの回転角をパルス信号として発信するエンコーダ
を用いても同様の効果が得られる。
Although the above embodiment uses a stepping motor, the same effect can be obtained by using a DC servo motor instead of the stepping motor and using an encoder that transmits the rotation angle of this motor as a pulse signal.

〔発明の効果〕〔Effect of the invention〕

この発明は上記のようにウェハを旋回さゼながら、光セ
ンサによりウェハの周縁に設けたオリフラやノツチのよ
うな検出部を検出するに当り、光センサをウェハの半径
方向の一定長さの細い線状の光束をもつものとし、回転
するウェハの外周部の一定領域を上記光束で照射するも
のであるから、ウェハを回転さゼながら、光電素子から
出力される電圧をモニターすることによりウェハの周縁
に全く接触することなくウェハの外周縁の形状を正確に
認識できる。
In this invention, while rotating the wafer as described above, the optical sensor is used to detect detection parts such as orientation flats and notches provided at the periphery of the wafer. It has a linear luminous flux, and a certain area on the outer periphery of the rotating wafer is irradiated with the luminous flux, so by monitoring the voltage output from the photoelectric element while rotating the wafer, the wafer can be measured. The shape of the outer peripheral edge of the wafer can be accurately recognized without touching the peripheral edge at all.

従って11、ウェハのオリフラやノツチの認識によるウ
ェハの位置決めが行えるが、この際ウェハの回転中心に
対してウェハの外周の円の中心が若干偏心していても誤
差は生しない。
Therefore, 11. The wafer can be positioned by recognizing the orientation flat and notch of the wafer, but at this time, no error occurs even if the center of the circle around the wafer's outer periphery is slightly eccentric with respect to the center of rotation of the wafer.

また、ウェハの外周の形状が認識できるので、外周の欠
損したウェハを発見する目的や、円板状でないウェハの
モニターなどにも応用できるものである。
Furthermore, since the shape of the outer periphery of the wafer can be recognized, it can be applied to the purpose of finding wafers with defects in the outer periphery and monitoring wafers that are not disc-shaped.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を実施する装置の平面図、第2図は同
上の縦断正面図、第3図は要部の拡大平面図、第4図は
I〜■は同上の作用を説明する平面図と波形図、第5図
は従来方法を実施する装置の概略を示す平面図、第6図
丁、■は同上の作用を示す平面図ある。 6・・・・・うエバ、    10・・・・・・オリフ
ラ、11・・・・・・旋回手段、 13・・・・・・ステッピングモータ、14・・・・・
・吸着台、  20・・・・・・投光器、21・・・・
・・光電素子、 22・・・・・・光束、23・・・・
・・周縁。 A・・・・・・光センサ。
Fig. 1 is a plan view of an apparatus for carrying out the present invention, Fig. 2 is a longitudinal sectional front view of the same as above, Fig. 3 is an enlarged plan view of the main parts, and Fig. 4 is a plan view showing the functions of I to ■. FIG. 5 is a plan view schematically showing an apparatus for carrying out the conventional method, and FIG. 6 is a plan view showing the same operation. 6... Elevator, 10... Orientation flat, 11... Turning means, 13... Stepping motor, 14...
・Suction table, 20... Floodlight, 21...
...Photoelectric element, 22... Luminous flux, 23...
...periphery. A... Light sensor.

Claims (1)

【特許請求の範囲】[Claims] (1)一部にオリエンテーションフラットやノッチ部の
ような形状変化による検出部を有する円板状のウェハを
旋回させる旋回手段と、この旋回手段により旋回される
ウェハの外周の検出部の位置を検出する光センサからな
り、この光センサをウェハの半径方向の一定の長さの細
い線状の光束をもつものとし、回転するウェハの外周部
の一定領域を上記光束で照射してウェハの外周部による
時々刻々の受光量をモニタリングしながら外周部の形状
を線分の変化で認識し、そのデータによりウェハの外形
認識を行うことを特徴とするウェハの外形認識方法。
(1) A turning means for turning a disk-shaped wafer that has a detecting part due to a shape change such as an orientation flat or a notch, and detecting the position of the detecting part on the outer periphery of the wafer being turned by this turning means. This optical sensor has a thin linear light beam with a constant length in the radial direction of the wafer, and a certain area on the outer periphery of the rotating wafer is irradiated with the light beam to detect the outer periphery of the wafer. A method for recognizing the outer shape of a wafer, which is characterized in that the shape of the outer periphery is recognized by changes in line segments while monitoring the amount of light received from moment to moment by the wafer, and the outer shape of the wafer is recognized using this data.
JP2098899A 1989-12-20 1990-04-13 Method of recognizing wafer shape Pending JPH03296245A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2098899A JPH03296245A (en) 1990-04-13 1990-04-13 Method of recognizing wafer shape
EP90123746A EP0435057A1 (en) 1989-12-20 1990-12-10 A wafer shape detecting method
US07/630,604 US5159202A (en) 1989-12-20 1990-12-20 Wafer shape detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2098899A JPH03296245A (en) 1990-04-13 1990-04-13 Method of recognizing wafer shape

Publications (1)

Publication Number Publication Date
JPH03296245A true JPH03296245A (en) 1991-12-26

Family

ID=14231978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2098899A Pending JPH03296245A (en) 1989-12-20 1990-04-13 Method of recognizing wafer shape

Country Status (1)

Country Link
JP (1) JPH03296245A (en)

Similar Documents

Publication Publication Date Title
JPH0610775B2 (en) Circular substrate positioning device
JP2004502312A (en) Edge gripping type front aligner
JPH06224285A (en) Positioning device for wafer
JPH03138957A (en) Wafer positioning apparatus
JPH0425014A (en) Marginal aligner
US5159202A (en) Wafer shape detecting method
JPH03296245A (en) Method of recognizing wafer shape
JP2558484B2 (en) Wafer positioning device
JPH0625013Y2 (en) Wafer positioning device
KR200366087Y1 (en) wafer leveling device of align & exposure
JP2000133696A (en) Wafer positioning apparatus
JPH03296244A (en) Method of positioning wafer
JP2600156Y2 (en) Vehicle tire positioning device
JPH085546Y2 (en) Wafer periphery exposure system
JPS61254304A (en) Method of positioning wafer
JPH04154146A (en) Positioning device of circular plate body
JP2002164419A (en) Aligner
JPS5818937A (en) Positioning device for round-shaped substance
JPS63266850A (en) Positioning device for circular substrate
JPS60236809A (en) Mark phase matching device for tyre
JP2000164675A (en) Notch matching machine
KR20020076461A (en) Semiconductor wafer align system
JP2751542B2 (en) Can lid planetary rotation device
JP2001319963A (en) Wafer alignment device
KR960000253Y1 (en) Carrier of crt panel