JPH03286314A - Traveling error detector for unmanned carrier in unmanned carrier driving device - Google Patents

Traveling error detector for unmanned carrier in unmanned carrier driving device

Info

Publication number
JPH03286314A
JPH03286314A JP2087965A JP8796590A JPH03286314A JP H03286314 A JPH03286314 A JP H03286314A JP 2087965 A JP2087965 A JP 2087965A JP 8796590 A JP8796590 A JP 8796590A JP H03286314 A JPH03286314 A JP H03286314A
Authority
JP
Japan
Prior art keywords
carrier
unmanned vehicle
detection
unmanned
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2087965A
Other languages
Japanese (ja)
Inventor
Yoshiaki Omori
大森 良明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2087965A priority Critical patent/JPH03286314A/en
Publication of JPH03286314A publication Critical patent/JPH03286314A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the driving accuracy of an unmanned carrier by providing two detection subjects at the places near the driving course of the carrier with a prescribed space secured between both subjects, at the same time providing plural detection subject detectors to the carrier in its width direction. CONSTITUTION:The detection subjects 10a are buried at the bending points P1 - P4 on a driving course A of an unmanned carrier 1. At the same time, the detection subjects 10b are buried at the position preceding the points P1 - P4 by a prescribed distance respectively. Then the detection subject detectors 8a - 8d are attached at the front edge part on the lower surface of the carrier 1 in the width direction of the carrier 1 and at a fixed interval secured respectively. A controller 7 can know a deviation angle theta1 formed between the course A and an actual driving locus B and a distance L1 between the carrier 1 and the course A from a specific detection subject detector that detected both subjects 10a and 10b. Then the controller 7 corrects the stored steering angle at the point P1 based on the distance L1 and the angle theta1, then controls a steering device 4 based on the corrected steering angle. Thus the driving accuracy of the carrier 1 is improved.

Description

【発明の詳細な説明】 [庁業上の利用分野] 本発明は、無人走行装置において、無人走行車の実走行
軌跡と予め設定された走行経路との誤差を検出する走行
誤差検出装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a traveling error detection device for detecting an error between an actual traveling trajectory of an unmanned vehicle and a preset traveling route in an unmanned traveling device. It is.

[従来の技術] 無人走行装置の一例として、誘導線を設けず、走行経路
上の走行距離と操舵角との関係を予め無人走行車に5e
tHさせておくことにより、その記憶に基づいて無人走
行車が自走する構成のものがある。このような無人走行
装置は、誘導線が不出であるため、誘導線の設置に及す
る時間や経費が不出である等の多くの利点かあるものの
、実際には走行精度が不充分であり、用途が阻られてし
まう。
[Prior Art] As an example of an unmanned vehicle, there is no guide line provided, and the relationship between the travel distance on the travel route and the steering angle is determined in advance by the unmanned vehicle.
There is a configuration in which an unmanned vehicle runs on its own based on the memory by setting the time to tH. Although this type of unmanned driving device has many advantages, such as not having to spend the time and expense of installing a guide line because it does not have a guide line, in reality, the running accuracy is insufficient. However, this prevents its use.

そこで従来の自動走行装置は、走行経路の直線部分の適
所に直線状のガイドライン部を設けておき、無人走行車
がガイドライン部を検出(、て走行経路からのずれを修
Xする構成てあった。そ1〜でガイドライン部は、多数
の金属棒等の被検出体を走行経路に沿って術に並べたし
のてあ−った(例えば特開昭51’l−1442]、4
号父報、特開昭63−314613月公報参照)。
Therefore, conventional automatic driving devices have a configuration in which a straight guideline part is provided at an appropriate location on a straight part of the driving route, and the unmanned vehicle detects the guideline part (and corrects deviations from the driving route). In Part 1, the guideline section had a large number of objects to be detected, such as metal rods, lined up along the travel route (for example, Japanese Patent Application Laid-Open No. 51-1442), 4.
(Refer to Japanese Patent Application Laid-open No. 1983-3146.)

[発明が解決しようとする課題] 上記従来の構成では、ガイド、ライン部に多数の被検出
体を設置する必要があり、設置作業に多くの時間と経費
とを必要としていた。特に無人走行車の走行精度を向上
させるためには、走行経路のほぼ全長にわたってガイド
ライン部を設ける必要があり、現実的てなかった。
[Problems to be Solved by the Invention] In the above-mentioned conventional configuration, it was necessary to install a large number of objects to be detected in the guide and line sections, and the installation work required a lot of time and expense. In particular, in order to improve the driving accuracy of unmanned vehicles, it is necessary to provide guide lines along almost the entire length of the driving route, which is not practical.

[3題を解決するための手段] 上記3題を解決するため、本発明の無人走行装置におけ
る無人走行車の走行誤差検出装置は、無人走行車の走行
経路近傍に、2個の被検出体を所定間隔をあけて設置し
、無人走行車に、無人走行車の幅方向に沿って配置され
て被検出体を検出する複数の被検出体検出器を設置した
ものである。
[Means for Solving the Three Problems] In order to solve the three problems mentioned above, the driving error detection device of the unmanned driving vehicle in the unmanned driving device of the present invention detects two detected objects near the driving route of the unmanned driving vehicle. are installed at predetermined intervals, and the unmanned vehicle is equipped with a plurality of object detectors arranged along the width direction of the unmanned vehicle to detect objects to be detected.

[作用コ 2個の被検出体をいずれの被検出体検出器が検出したか
により、偏差角すなわち予め設定された走行経路と実際
の走行軌跡とのなす角、および無人走行車の走行経路か
らの距離を知ることがてきる。
[Action] Depending on which object detector detects the two detected objects, the deviation angle, that is, the angle between the preset travel route and the actual travel trajectory, and the travel route of the unmanned vehicle. You can know the distance between

[実施例コ 以下、本発明の一実施例を第1図〜第4図に基づいて詳
細に説明する。
[Example 1] Hereinafter, an example of the present invention will be described in detail based on FIGS. 1 to 4.

第2図は本発明の一実施例における走行誤差検出装置を
採用した無人走行本の下面図で、無人走行車1の下面に
は、複数(本実施例では4個)の車輪2a、2b、3a
、3bと、例えば前側ノ車輪2a、2bの操舵角を可食
させる操舵装置4と、例えば後側の車輪3a、3bを回
転駆動する駆動装置5と、無人走行車1の走行に伴って
芝を刈取る芝刈装置6とか取付けられており、無人走行
車lの内部には、操舵装置4や駆動装置5や芝刈装置6
を制御する制御装置7か設置されている。制御装Wt7
はマイクロコンピュータにより構成されており、操舵装
置4や駆動装置5や芝刈装置6は周知の構成のものであ
る。さらに無人走行車]の下面前縁部には、無人走行車
1の幅方向に沿って複数(本実施例では4個)の被検出
体検出器8a〜8dが一定間隔おきに取付けられている
。被検出体検出器8a〜8dは例えば金属センサにより
構成され、後述の被検出体を検出する。被検出体検出器
88〜8dの検出信号は制御装置7に供給される。
FIG. 2 is a bottom view of an unmanned vehicle that employs a traveling error detection device according to an embodiment of the present invention. 3a
, 3b, a steering device 4 that adjusts the steering angle of, for example, the front wheels 2a, 2b, a drive device 5 that rotationally drives, for example, the rear wheels 3a, 3b, and A lawn mower 6 is installed to cut the grass, and inside the unmanned vehicle l there are a steering device 4, a drive device 5, and a lawn mower 6.
A control device 7 is installed to control the. Control unit Wt7
is constituted by a microcomputer, and the steering device 4, drive device 5, and lawn mowing device 6 are of well-known construction. Furthermore, a plurality (four in this embodiment) of detection object detectors 8a to 8d are installed at regular intervals along the width direction of the unmanned vehicle 1 on the front edge of the lower surface of the unmanned vehicle. . The detected object detectors 8a to 8d are constituted by, for example, metal sensors, and detect objects to be detected, which will be described later. Detection signals from the detection object detectors 88 to 8d are supplied to the control device 7.

第3図は被検出体検出器88〜8dの検出範囲の説明図
で、仮t!!線で示すように、被検出体検出器8a〜8
dの検出範囲は隣接するもの同士が互いに若干量なって
いる。なお、被検出体検出器8a〜8dの間隔は各々等
距離であり、しかも被検出体検出W8b、8cは無人走
行車1の部方向の中央を通る中心線Cに対して互いに対
称の位置にあり、被検出体検出器8 a 、 8 dも
無人走行車1の幅方向の中央を通る中心線CI:対して
亙いに対称の位置にある。
FIG. 3 is an explanatory diagram of the detection range of the detection object detectors 88 to 8d, and shows the tentative t! ! As shown by the lines, the detection object detectors 8a to 8
Adjacent detection ranges of d are slightly different from each other. Note that the distances between the detected object detectors 8a to 8d are the same, and the detected object detectors W8b and 8c are located at symmetrical positions with respect to the center line C passing through the center of the unmanned vehicle 1. The detected object detectors 8 a and 8 d are also located at very symmetrical positions with respect to the center line CI passing through the center of the unmanned vehicle 1 in the width direction.

第4図は無人走行車1の走行経路Aの説明図で、始発点
Sと、複数(本実施例では4個)の屈曲点P】〜P4と
、終着点Eとが所定の位置に設定されており、それらの
間は各々直線である。なお、始発点Sと終着点Eとを同
し位置に設定してもよい。
FIG. 4 is an explanatory diagram of the traveling route A of the unmanned vehicle 1, in which a starting point S, a plurality of (four in this embodiment) bending points P]~P4, and a destination point E are set at predetermined positions. and there are straight lines between them. Note that the starting point S and the ending point E may be set at the same position.

第1図は本発明の一実施例における走行誤差検出装置の
検出原理説明図で、走行経路A上の各屈曲点P1〜P4
  (第1図においてはPまたけか現れている)には各
々被検出体IQaが埋設されている。また走行経路A上
には、各屈曲点P1〜P4から所定短離たけ手前の位置
に被検出体10bが各々埋設されている。被検出体10
a  10bは例えば釘のような短い金属棒により構成
され、全体が陛れる程度に戊く地中に挿入されている。
FIG. 1 is an explanatory diagram of the detection principle of the traveling error detection device in one embodiment of the present invention, and shows each bending point P1 to P4 on the traveling route A.
A detected object IQa is buried in each of the areas (in FIG. 1, P is visible). Further, on the traveling route A, the detected objects 10b are buried at positions a predetermined distance from each of the bending points P1 to P4. Detected object 10
A10b is made up of a short metal rod, such as a nail, and is inserted deep into the ground to the extent that the whole can be seen.

次に動作を説明する。いま、無人走行車1か最初のJi
ff曲点P1に接近しており、走行軌跡Bか走行経路A
からずれているものとする。この状聾て無人走行車〕か
さらに走jjすると、第1図に破線で示すようにまず被
検出体検出器8aか被検出体10bを検出し、その後に
実線で示すように被検出体検出器8dか被検出体1.0
 aを検出する。このとき制御装置7は、2回目の検出
が被検出体検出器8dによりなされたという事大から、
無人走行車1の幅方向の中心が屈曲点P1から左側に距
MLIだけずれていると判断する。さらに制御装置7は
、被検出体検出器8a、8a間の距離L2と被検出体1
0a、10b間の距ML3とから、偏差角θ1すなわち
走行経路Aと走行軌跡Bとのなす角を演算する。ここで
、被検出体検出器8a。
Next, the operation will be explained. Currently, unmanned vehicle 1 or the first Ji
ff It is approaching the turning point P1, and the travel path is either B or A.
It is assumed that the When the unmanned vehicle goes further in this state, it first detects either the detected object detector 8a or the detected object 10b as shown by the broken line in FIG. 1, and then detects the detected object as shown by the solid line. Device 8d or object to be detected 1.0
Detect a. At this time, the control device 7, since the second detection was made by the detected object detector 8d,
It is determined that the center of the unmanned vehicle 1 in the width direction is shifted to the left from the bending point P1 by a distance MLI. Furthermore, the control device 7 determines the distance L2 between the detected object detectors 8a, 8a and the detected object 1.
From the distance ML3 between 0a and 10b, the deviation angle θ1, that is, the angle formed by the travel route A and the travel trajectory B is calculated. Here, the detected object detector 8a.

8a間の距離L2と、被検出体10a、10b間の距M
L3とは京に一定で、制御装置7はそれらの値を記憶し
ており、また無人走行車]の走行軌跡Bと被検出体検出
器8a〜8dの配列方向とは常に直交しているので、距
ML2.L3から偏差角θ1を容易に演算できる。そし
て制御装置7は、距離L1と偏差角θ1とから、予め記
憶している屈曲点P1における操舵角を修正し、修正し
た操舵角に基づいて操舵装置4を制御する。これにより
無人走行車1は正確に屈曲点P2に向けて走行する。以
下同様の動作か各Jti1曲点P2〜P4で繰返され、
無人走行車1は終着点Eまで走行し、その間に芝刈装置
6により芝刈作業か行われる。なお、被検出体検出器8
a、8bが同時に被検出体1(lbを検出したような場
合、制御装置7は被検出体検出器8a、8bの中央に被
検出体Jobが位置したものと判断する。
Distance L2 between 8a and distance M between detected objects 10a and 10b
L3 is a constant value of 1,000 yen, the control device 7 stores these values, and the traveling trajectory B of the unmanned vehicle is always orthogonal to the direction in which the detection object detectors 8a to 8d are arranged. , distance ML2. The deviation angle θ1 can be easily calculated from L3. Then, the control device 7 corrects the steering angle at the bending point P1 stored in advance from the distance L1 and the deviation angle θ1, and controls the steering device 4 based on the corrected steering angle. Thereby, the unmanned vehicle 1 accurately travels toward the bending point P2. Thereafter, the same operation is repeated at each Jti1 curve point P2 to P4,
The unmanned vehicle 1 travels to the terminal point E, and during this time the lawn mowing device 6 performs lawn mowing work. In addition, the detected object detector 8
When the detected object 1 (lb) is simultaneously detected by the detected object 1 (lb), the control device 7 determines that the detected object Job is located at the center of the detected object detectors 8a and 8b.

このように、無人走行車1の走行経路A近傍に、2個の
被検出体10a、10bを所定間隔をあけて設置し、無
人走行本1に、無人走行th1の幅方向に沿って配置さ
れて被検出体10a、10bを検出する複数の被検出体
検出器83〜8dを設置したので、予め設定された走行
経路Aと実際の走行軌跡Bとのなす角すなわち偏差角θ
lと、被検出体検出器8dが被検出体10aを検出した
時点における無人走行車1の走行経路Aからの距ML1
とを容易に知ることができる。したかってこれらの検出
結果に基づいて操舵角を正確に修正でき、無人走行車1
の走行精度の向上を図ることができる。また本実施例の
ように、2個の被検出体10a、10bを、無人走行車
1の走行経路A上に配置すれば、偏差角θlと走行経路
Aからの距MLlとの演算が容易であり、演算に要する
時間を短縮できることから、制御の応答性を向上させる
ことができる。
In this way, the two detected objects 10a and 10b are installed at a predetermined interval near the travel route A of the unmanned vehicle 1, and are placed on the unmanned vehicle 1 along the width direction of the unmanned vehicle th1. Since a plurality of detected object detectors 83 to 8d are installed to detect the detected objects 10a and 10b, the angle between the preset traveling route A and the actual traveling trajectory B, that is, the deviation angle θ
l, and the distance ML1 from the traveling route A of the unmanned vehicle 1 at the time when the detected object detector 8d detects the detected object 10a.
can be easily known. Therefore, the steering angle can be corrected accurately based on these detection results, and the driverless vehicle 1
It is possible to improve the running accuracy of the vehicle. Furthermore, if the two detected objects 10a and 10b are placed on the travel route A of the unmanned vehicle 1 as in this embodiment, it is easy to calculate the deviation angle θl and the distance MLl from the travel route A. Since the time required for calculation can be shortened, the responsiveness of control can be improved.

[別の実施例コ 第5図は別の実施例を小しており、このように、2個の
被検出体10a、10bを、hlJ曲点Ptにおいて走
行経路Aと直交する直線り上に設置してもよい。被検出
体10a、10bは走行経路Aと直線りとの交点すなわ
ちI+t1曲点PIから互いに等距離の位置に配置され
ている。
[Another Embodiment] FIG. 5 is a smaller version of another embodiment, in which the two detected objects 10a and 10b are placed on a straight line perpendicular to the traveling route A at the hlJ curve point Pt. It may be installed. The detected objects 10a and 10b are arranged at positions equidistant from each other from the intersection of the traveling route A and the straight line, that is, the I+t1 curve point PI.

この実施例において、まず被検出体検出器8aが被検出
体10aを検出し、その後に被検出体検出器8Cが被検
出体8bを検出したちのとすると、制御装置7は、2回
目の検出が被検出体検出器8Cによりなされたという事
大から、@検出体10bを検出した時点で無人走行車1
の幅方向の中心が被検出体10 bから左側に距ML5
の位置にあると判断する。さらに制御装置7は、被検出
体検出器3a  Sc間の距離L6と被検出体10a1
0b間の鉗ML7とから偏差角θ2すなわち走行経路A
と走行軌跡Bとのなす角を演算する。ここで、被検出体
検出器8a、8a間の距離L6と被検出体10a、10
b間の距離L7とは常に一定で、制御装置7はそれらの
値を記憶しており、また無人走行車1の走行軌跡Bと被
検出体検出器8a〜8dの配列す向とは常に直交してい
るので、距#L6.L7から偏差角θ2を容易に演算て
きる。そして制御装置7は、距離L5と偏差角θ2とか
ら、予め記憶している屈曲点PIにおける操舵角を修正
し、修正した操舵角に基づいて操舵装置4を制御する。
In this embodiment, if the detected object detector 8a first detects the detected object 10a, and then the detected object detector 8C detects the detected object 8b, the control device 7 Since the detection was made by the detected object detector 8C, the unmanned vehicle 1
The center in the width direction is a distance ML5 to the left from the detected object 10b.
It is determined that the position is . Further, the control device 7 determines the distance L6 between the detected object detectors 3a Sc and the detected object 10a1.
The deviation angle θ2 from the forceps ML7 between 0b, that is, the traveling route A
The angle between this and the travel trajectory B is calculated. Here, the distance L6 between the detected object detectors 8a, 8a and the detected objects 10a, 10
The distance L7 between b is always constant, the control device 7 stores these values, and the traveling trajectory B of the unmanned vehicle 1 and the arrangement direction of the detection object detectors 8a to 8d are always orthogonal. Therefore, distance #L6. The deviation angle θ2 can be easily calculated from L7. Then, the control device 7 corrects the steering angle at the bending point PI stored in advance from the distance L5 and the deviation angle θ2, and controls the steering device 4 based on the corrected steering angle.

このように、2個の被検出体10 a  1. (−)
bを、無人走行車1の走行経路Aと直交する直線り上で
かつ走行経路Aから互いに等距離の位置に配置すること
によってち、仙差角θ2と走行経路AからのMt[L5
との演算を容具に行え、演算に役する時間を馳縮てきる
ことから、制御の応答性を向上させることができる。ま
た被検出体1.0a、IC1bをこの実施例のような配
置で始発点Eに設置することにより、被検出体8a〜8
dの検出情況により無人走行車]が正確に最初の屈曲点
PIのh″向に向いているか否かを知ることができる。
In this way, two detected objects 10a1. (-)
b are placed on a straight line orthogonal to the traveling route A of the unmanned vehicle 1 and at positions equidistant from the traveling route A.
Since the calculations can be performed on the container and the time used for the calculations is shortened, the responsiveness of the control can be improved. In addition, by installing the detected object 1.0a and the IC 1b at the starting point E in the arrangement as in this embodiment, the detected objects 8a to 8
Based on the detection situation of d, it can be known whether the unmanned vehicle] is accurately facing in the direction h'' of the first bending point PI.

なお上記各実施例においては、走行経路Aの屈曲点Pi
−P4の近傍に被検出体10a、10bを設置したが、
本発明はこのような構成に限定されるものではなく、走
行経路Aの直線部分の近傍に被検出体10a、10bを
設けて無人走行車1の走行誤差を検出し、走行軌跡Bを
修正するようにしてもよい。
In each of the above embodiments, the bending point Pi of the traveling route A
- Although the detected objects 10a and 10b were installed near P4,
The present invention is not limited to such a configuration, but detecting objects 10a and 10b are provided near the straight portion of the traveling route A to detect a traveling error of the unmanned vehicle 1 and correct the traveling trajectory B. You can do it like this.

また上記各実施例においては、被検出体検出器8a〜8
dを等ピッチに配置したが、本発明はこのような構成に
限定されるものではなく、例えば無人走行車1の幅方向
の中心から離れるにしたがってピッチが大きくなるよう
に配置してもよい。
Further, in each of the above embodiments, the detection object detectors 8a to 8
Although the pitches d are arranged at equal pitches, the present invention is not limited to such a configuration; for example, the pitches may be arranged so that the pitch increases as the distance from the center in the width direction of the unmanned vehicle 1 increases.

[発明の効果コ 以上説明したように本発明によれば、無人走行車の走行
経路近傍に、2個の被検出体を所定間隔をあけて設置し
、無人走行車に、無人走行車の幅方向に沿って等間隔お
きに配置されて被検出体を検出する複数の被検出体検出
器を設置したので、予め設定された走行経路と実際の走
行軌跡とのなす角すなわち偏差角と走行経路からの距離
とを容易に知ることができる。したかってこれらの検出
結果に基づいて操舵角を正確に修正でき、無人走i7車
の走行精度の向上を図ることかできる。
[Effects of the Invention] As explained above, according to the present invention, two detection objects are installed at a predetermined interval near the travel route of an unmanned vehicle, and the width of the unmanned vehicle is Since we installed multiple object detectors arranged at equal intervals along the direction to detect objects, the angle between the preset travel route and the actual travel trajectory, that is, the deviation angle, and the travel route You can easily find out the distance from Therefore, the steering angle can be accurately corrected based on these detection results, and the driving accuracy of the unmanned i7 vehicle can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における走行誤差検出装置の
検出原理説明図、第2図は同走行誤差検出装置を採用し
た無人走行車の下面図、第3図は同走行誤差検出装置に
おける被検出体検出器の検出範囲の説明図、第4図は同
走行誤差検出装置を採用した無人走行車の走行経路の説
明図、第5図は別の実施例における走行誤差検出装置の
検出原理説明図である。 1・・・無人走行車、8a〜8d・・・被検出体検出器
、10a、10b・・・被検出体
Fig. 1 is an explanatory diagram of the detection principle of a running error detection device according to an embodiment of the present invention, Fig. 2 is a bottom view of an unmanned vehicle adopting the same running error detection device, and Fig. 3 is a diagram illustrating the detection principle of the running error detection device according to an embodiment of the present invention. An explanatory diagram of the detection range of the detected object detector, FIG. 4 is an explanatory diagram of the traveling route of an unmanned vehicle using the same traveling error detection device, and FIG. 5 is a detection principle of the traveling error detection device in another embodiment. It is an explanatory diagram. 1... Unmanned vehicle, 8a to 8d... Detected object detector, 10a, 10b... Detected object

Claims (1)

【特許請求の範囲】 1、無人走行車の走行経路近傍に、2個の被検出体を所
定間隔をあけて設置し、前記無人走行車に、無人走行車
の幅方向に沿って配置されて前記被検出体を検出する複
数の被検出体検出器を設置したことを特徴とする無人走
行装置における無人走行車の走行誤差検出装置。 2、2個の被検出体を、無人走行車の走行経路上に配置
した特許請求の範囲第1項に記載の無人走行装置におけ
る無人走行車の走行誤差検出装置。 3、2個の被検出体を、無人走行車の走行経路と直交す
る直線上でかつ前記走行経路から互いに等距離の位置に
配置した特許請求の範囲第1項に記載の無人走行装置に
おける無人走行車の走行誤差検出装置。
[Claims] 1. Two detection objects are installed at a predetermined interval near the travel route of the unmanned vehicle, and are arranged along the width direction of the unmanned vehicle. A running error detection device for an unmanned vehicle in an unmanned traveling device, characterized in that a plurality of detected object detectors for detecting the detected object are installed. A running error detection device for an unmanned vehicle in an unmanned traveling system according to claim 1, wherein two or more detected objects are arranged on a traveling route of the unmanned vehicle. 3. The unmanned vehicle according to claim 1, wherein the two detected objects are arranged on a straight line orthogonal to the traveling route of the unmanned vehicle and at positions equidistant from the traveling route. Running error detection device for running vehicles.
JP2087965A 1990-04-02 1990-04-02 Traveling error detector for unmanned carrier in unmanned carrier driving device Pending JPH03286314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2087965A JPH03286314A (en) 1990-04-02 1990-04-02 Traveling error detector for unmanned carrier in unmanned carrier driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2087965A JPH03286314A (en) 1990-04-02 1990-04-02 Traveling error detector for unmanned carrier in unmanned carrier driving device

Publications (1)

Publication Number Publication Date
JPH03286314A true JPH03286314A (en) 1991-12-17

Family

ID=13929571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2087965A Pending JPH03286314A (en) 1990-04-02 1990-04-02 Traveling error detector for unmanned carrier in unmanned carrier driving device

Country Status (1)

Country Link
JP (1) JPH03286314A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209821A (en) * 1984-04-03 1985-10-22 Nec Corp Magnetic sensor array for unattended car
JPS61211708A (en) * 1985-03-15 1986-09-19 Tsubakimoto Chain Co Detection method for position and azimuth of running of carrying truck
JPS62272307A (en) * 1986-05-21 1987-11-26 Komatsu Ltd Guide position correcting device for unattended moving body
JPS6319010A (en) * 1986-07-11 1988-01-26 Tsubakimoto Chain Co Guiding method for autonomous running vehicle
JPS63196907A (en) * 1987-02-04 1988-08-15 プロテ・グループマン・ダンテレ・エコノミツク System and method for manipulating operation of autonomical type vehicle
JPH01253007A (en) * 1988-03-31 1989-10-09 Tsubakimoto Chain Co Method and device for travel control over unmanned carriage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209821A (en) * 1984-04-03 1985-10-22 Nec Corp Magnetic sensor array for unattended car
JPS61211708A (en) * 1985-03-15 1986-09-19 Tsubakimoto Chain Co Detection method for position and azimuth of running of carrying truck
JPS62272307A (en) * 1986-05-21 1987-11-26 Komatsu Ltd Guide position correcting device for unattended moving body
JPS6319010A (en) * 1986-07-11 1988-01-26 Tsubakimoto Chain Co Guiding method for autonomous running vehicle
JPS63196907A (en) * 1987-02-04 1988-08-15 プロテ・グループマン・ダンテレ・エコノミツク System and method for manipulating operation of autonomical type vehicle
JPH01253007A (en) * 1988-03-31 1989-10-09 Tsubakimoto Chain Co Method and device for travel control over unmanned carriage

Similar Documents

Publication Publication Date Title
CN106708060B (en) Automatic and orderly mowing method of mower without external navigation information
US6490504B2 (en) Feeding robot and control method therefor
JPH02287708A (en) Movement control method for unmanned moving body
JPH02181806A (en) Steering position detector for self-travelling vehicle and reference point detector for above device
JP2000172337A (en) Autonomous mobile robot
JPH03286314A (en) Traveling error detector for unmanned carrier in unmanned carrier driving device
JPH0827652B2 (en) Guidance method for unmanned mobile machines by point tracking method
JP3317159B2 (en) Automatic guided vehicle
JP7290091B2 (en) Automatic guided vehicle control system and control method
JP2000132228A (en) Method for guiding movable body
JP2002108453A (en) Unmanned vehicle
JPH04153709A (en) Guidance controller for moving robot
JPH01282615A (en) Position correcting system for self-travelling unmanned vehicle
JP2704024B2 (en) Unmanned traveling equipment
JPS62111306A (en) S-shaped traveling carrier car
JPH09114522A (en) Driving method for automatic guided vehicle by instruction of autonomous control
JP3727429B2 (en) Method for calculating positional relationship with respect to travel route of vehicle
JP6342764B2 (en) Autonomous vehicle
JPS61220006A (en) Autonomous guiding type unmanned carrier
JPH03174609A (en) Turning drive control method for unmanned carrier
KR970010033A (en) Robot position recognition device and control method
JPS61221806A (en) Autonomous guiding unmanned carrier
JP6456083B2 (en) Autonomous vehicle
JPH08339226A (en) Automatic guided vehicle controller
JPH0575808U (en) Automated guided vehicle position detection device