JPH0328517B2 - - Google Patents

Info

Publication number
JPH0328517B2
JPH0328517B2 JP14431083A JP14431083A JPH0328517B2 JP H0328517 B2 JPH0328517 B2 JP H0328517B2 JP 14431083 A JP14431083 A JP 14431083A JP 14431083 A JP14431083 A JP 14431083A JP H0328517 B2 JPH0328517 B2 JP H0328517B2
Authority
JP
Japan
Prior art keywords
electroformed
rod
electroforming
electrode
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14431083A
Other languages
Japanese (ja)
Other versions
JPS6036690A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP14431083A priority Critical patent/JPS6036690A/en
Publication of JPS6036690A publication Critical patent/JPS6036690A/en
Publication of JPH0328517B2 publication Critical patent/JPH0328517B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Optical Record Carriers (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 本発明は被電鋳体を回転可能に支持して挿設し
た電鋳槽に、前記回転軸の軸心を含む平面内に所
定の間隔を置いて一部平行等複数の電鋳用の柱状
電極を前記被電鋳体を指向させて配設し、該電極
先端の被電鋳体に対する対向位置を夫々制御する
ように構成された回転体の電鋳装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an electroforming tank in which a body to be electroformed is rotatably supported and inserted, and a part of the body is parallel to the body at a predetermined interval within a plane including the axis of the rotating shaft. The present invention relates to a rotary body electroforming apparatus in which a plurality of columnar electrodes for electroforming are arranged to face the electroformed object, and the positions of the tips of the electrodes facing the electroformed object are respectively controlled.

電鋳では一般に被電鋳体の転写精度が最重要視
されていて、その為の電極の配置並びに制御につ
いては種々の発明並びに考案がなされているが、
電鋳殻の厚さを制御することについては未だに充
分になされていない。然しながら電鋳殻の厚さは
薄い部分があると、その強度や耐用命数が減殺さ
れ、又厚すぎる部分があると資材、電力及び作業
時間等が浪費されることになる。又薄い部分があ
ると、電鋳殻を機械加工する場合に、その薄い部
分で不良品となつてしまうことがある。このよう
に電鋳殻の厚さを制御することは転写精度と同様
に重要なことであり、この電鋳殻の厚さを制御す
る期種装置を、本発明者は先に、例えば特開昭55
−145191号公報で開示した。しかし、ここに開示
した装置は複数個の電極を適宜に分散配置し、こ
の電極の間に接触検知子を分散配置したものであ
つて、この分散配置した接触検知子はその先端と
被電鋳体との間隔を所望の電鋳殻の厚さになるよ
うに予め固定したものである。そして、その固定
して接触検知子の先端に電鋳により生成した電鋳
殻が接触したときに、はじめて接触検知回路が作
動して、その接触検知子の近傍の電極への通電量
を減少させるか通電を遮断するようにしている。
Generally, in electroforming, the highest importance is placed on the transfer accuracy of the electroformed object, and various inventions and ideas have been made regarding the arrangement and control of electrodes for this purpose.
Control of the thickness of the electroformed shell has not yet been adequately controlled. However, if the electroformed shell has thin parts, its strength and service life will be reduced, and if it has too thick parts, materials, electricity, working time, etc. will be wasted. Furthermore, if there is a thin portion, the thin portion may result in a defective product when machining the electroformed shell. Controlling the thickness of the electroformed shell in this way is as important as transfer accuracy, and the present inventor has previously developed a device for controlling the thickness of the electroformed shell, for example, in Japanese Patent Publication No. Showa 55
-Disclosed in Publication No. 145191. However, in the device disclosed herein, a plurality of electrodes are appropriately distributed and contact detectors are distributed between these electrodes, and these distributed contact detectors have their tips and electroformed The distance between the electroformed shell and the electroformed shell is fixed in advance so as to have the desired thickness. Then, when the electroformed shell produced by electroforming comes into contact with the tip of the fixed contact detector, the contact detection circuit is activated and reduces the amount of current flowing to the electrodes near the contact detector. Or the power is cut off.

この従来装置は簡単であり、しかも安価ではあ
るが、接触検知子と電極とはいずれも固定されて
いるから、電鋳殻の生成過程では、全くそれを検
知制御することができないという欠点があり、そ
の結果、接触検知子が生成してきた電鋳殻を検知
して、その近傍の電極の通電を遮断したとして
も、他の通電されている電極の影響によつて少し
づつ電鋳殻の厚さは増加するばかりでなく、固定
した接触検知子の痕跡ができるという欠点があつ
た。
Although this conventional device is simple and inexpensive, it has the disadvantage that it cannot be detected and controlled at all during the electroformed shell generation process because the contact detector and electrode are both fixed. As a result, even if the contact detector detects the generated electroformed shell and de-energizes the electrodes in its vicinity, the thickness of the electroformed shell will gradually increase due to the influence of other energized electrodes. Not only does this increase the noise level, but it also has the disadvantage of leaving traces of the fixed contact detector.

本発明は、電鋳液を注入する電鋳槽に被電鋳体
を回動可能に設置したならば、定位置に停止した
被電鋳体に向かつて少なくともその先頭部が電極
であるか電極を有するロツドをロツド制御部の作
動により通常軸方向に移動させ、その移動するロ
ツドの先頭部が被電鋳体に当接してロツドが停止
したならば、そのときのロツドの位置を計測器で
計測し、その計測器を原点とする。そして、この
原点である計測器に基づいて電極の位置をロツド
の適宜の後退により設定し、該位置より被電鋳体
の回転角度に従つてロツドの位置を制御しようと
するものである。更に回動する被電鋳体と電極と
に所定の通電をした後に、被電鋳体の回動を定位
置に停止させ、そこに生成した電鋳殻に向かつて
ロツドを移動し、このロツドの先頭部が電鋳殻に
当接して停止したときの計測器の計測値と前記原
点とした計測値との差により、電鋳殻の厚さを計
測するものである。この計測を回動する被電鋳体
の1個所又は数個所について行なつたならば、こ
の計測値に基づいて電極の位置、通電量、或いは
被電鋳体の回転速度又は回転角度を制御すること
により、所望の厚さをもつた電鋳殻を得ることを
目的としたものである。
The present invention provides that when an electroformed object is rotatably installed in an electroforming tank into which an electroforming solution is injected, at least the leading end of the electroformed object is an electrode or an electrode. A rod having a rod is normally moved in the axial direction by the operation of the rod control section, and when the leading end of the moving rod comes into contact with the electroformed object and the rod stops, the position of the rod at that time is measured with a measuring instrument. Measure and use the measuring instrument as the origin. Then, the position of the electrode is set by appropriately retracting the rod based on the measuring instrument that is the origin, and the position of the rod is controlled from this position according to the rotation angle of the electroformed object. After further applying a specified amount of current to the rotating electroformed body and the electrode, the rotation of the electroformed body is stopped at a fixed position, and the rod is moved toward the electroformed shell that is formed there. The thickness of the electroformed shell is measured based on the difference between the measured value of the measuring device when the leading end comes into contact with the electroformed shell and stops, and the measured value taken as the origin. If this measurement is performed at one or several locations on the rotating electroformed object, the position of the electrode, the amount of current, or the rotation speed or rotation angle of the electroformed object can be controlled based on this measurement value. The purpose of this is to obtain an electroformed shell having a desired thickness.

次に本発明を例示した図に基づいて説明する。
第1図、第2図は本発明実施例の側断面図と平面
図で、図に示す如く電鋳槽1の中の回動可能に設
置した被電鋳体2に向かつて少なくともその先頭
部が電極であるか電極を有するロツド4を被電鋳
体2の回動軸心に平行な平面内に4A,4B,4
C,4D、に複数個、各隣接ロツド間に所定の間
隔を置いて配置し、この各ロツド4は各ロツド制
御装置5A,5B,5C,5Dによつて軸方向に
駆動されて、被電鋳体2に向かつて近づいたり、
遠ざかるように移動するのであるが、その詳細を
第3図、第4図、並びに第5図によつて説明す
る。
Next, the present invention will be explained based on illustrative figures.
1 and 2 are a side sectional view and a plan view of an embodiment of the present invention, and as shown in the figures, at least the leading portion of the electroformed body 2 is rotatably installed in the electroforming tank 1. are electrodes, or the rods 4 having electrodes are placed in a plane parallel to the rotation axis of the electroformed body 2 (4A, 4B, 4).
A plurality of rods 4 are arranged at predetermined intervals between adjacent rods 4A, 4D, and each rod 4 is driven in the axial direction by each rod control device 5A, 5B, 5C, 5D, and is energized. Approaching the casting body 2,
The details of the movement will be explained with reference to FIGS. 3, 4, and 5.

第3図に於て、4は被電鋳体2に向うように前
記所望の平面内に配置した多数のロツド4の中の
1つであつて、電鋳槽1を貫通するように配置さ
れていて、ロツド4の周囲から電鋳液3が漏れな
いようにシール6でシールして、ロツド4がその
軸方向に移動することができるようになつてい
る。そのロツド4の先端部には、柱状先頭部7を
ロツド4と同軸状に螺合固定し、この螺合した先
頭部7に設けた空胴8には電鋳用の電極9が絶縁
層10を介して軸方向に摺動できるように挿入し
てある。この空胴部8の端に当るロツド4には端
子11を埋めて固着してあり、この端子11と電
極9との間には通電することができる導電性のス
プリング12を張設する。このスプリング12の
弾力によつて電極9は先頭部7の先端部に向かつ
て常時押し出されるようになつている。この先頭
部7には窓13が設けられてあるから電極9の先
端はこの窓13を通して、電鋳液3の中に露出す
るようになつている。この電極9を先頭部7の空
胴8に挿入するためには、図示していないが先頭
部7の側部に電極9を出し入れすることができる
大きさの孔を設けておいて、この孔を通して電極
9を先頭部7の空胴8に挿入するようにすれば、
その着脱を極めて簡単にすることができる。ロツ
ド4には配線孔14を設け、この配線孔14を通
した配線15によつて、端子11と電鋳用電源3
2とを連係している。ロツド4に設けたラツク1
6にはピニオン17が噛み合い、このピニオン1
7はサーボモータ18によつて回動する。このサ
ーボモータ18の回動によつて移動するロツド4
の位置はロツド4と連係するエンコーダ、ポテン
シヨメータ、磁気スケール等による計測器19に
よつて計測する。この計測器19を介してロツド
4と被電鋳体2とは計測用電源20の端子に夫々
接続されていて、ロツド4と被電鋳体2又はそこ
に生成した電鋳殻2′とが接触したところで、そ
こを通して微弱な電流が流れる(第3図)ように
なつている。その微弱電流を信号としてサーボモ
ータ18の回転を停止してロツド4を停止したな
らば、前記信号又は該信号の所望遅延信号により
計測器19はそのときのロツド4の位置を計測す
るようになつている。ここで被電鋳体2とロツド
4との間に電流を流すことを好まない場合や、先
頭部7に絶縁材料を使用した場合又は先頭部7と
被電鋳体2と接触するときの圧力を調整したい場
合には第4図に示す構造のものを使用するとよ
い。その構造はロツド4にスリーブ22を枢支
し、そのスリーブ22に設けたラツク33が、第
3図に於いて説明したのと同様のピニオン17と
噛み合つている。このスリーブ22とロツド4と
の間にスプリング24が設けてあり、このスプリ
ング24の弾力でスリーブ22はカラー25に当
接する。しかしこのカラー25はピン26でロツ
ド4に固定されているから、スリーブ22がスプ
リング24で移動することはこのカラー25のと
ころで止まるようになる。スリーブの中のロツド
4にはマグネツト27が埋めてあり、スリーブ2
2にはそのマグネツト27を検知して作動するセ
ンサ28が設けてある。ロツド4に螺合した先頭
部7とその中に挿入した電極9の関係は第3図に
於て説明したのと同じであるから、その説明は省
略して、この装置で電極9の位置を定めたり、電
鋳殻2′の厚さを計測する場合のことについて説
明する。まずサーボモータ18を回転してピニオ
ン17を回動すると、ピニオン17と噛み合うス
リーブ22はスプリング24を介してロツド4を
被電鋳体2に向かつて移動させる。そして、ロツ
ド4の先頭部7が被電鋳体2又は電鋳殻2′に当
接すると、ロツド4は停止するが、スリーブ22
はスプリング24を圧縮して移動し続ける。そし
てスリーブ22に設けたセンサ28がロツド4に
設けたマグネツト27を検知したところで、サー
ボモータ18の回転を停止し、前記センサ28の
検知信号又は該信号より遅延した信号を得た際に
計測器19は移動しているロツド4の位置を計測
する。このときの被電鋳体2と先頭部7との接触
圧力はスプリング24の弾力で定まるから、その
接触圧力を調整したいときにはスプリング24を
取り変えるか、センサ28の位置をずらすことに
よつてある程度は調整できる。例えば接触圧力を
強くしたい場合にはセンサ28の位置をマグネツ
ト27より離すことによつて、先端部7が被電鋳
体2に当接してから後のスプリング24の圧縮量
を増大することにより、その接触圧力を強くする
ことができる。第1図に於て29は数値制御装
置、30はプログラム装置、31はキーである。
被電鋳体2の三次元の形状に於ては被電鋳体2の
表面の電界強度は次式によつて求めることができ
るもので、この等電位面に従つて電極9を駆動し
て配置するように数値制御する。
In FIG. 3, 4 is one of the many rods 4 arranged in the desired plane facing the electroformed object 2, and is arranged so as to penetrate the electroforming tank 1. The rod 4 is sealed with a seal 6 to prevent the electroforming liquid 3 from leaking around the rod 4, and the rod 4 can be moved in its axial direction. At the tip of the rod 4, a columnar head 7 is screwed and fixed coaxially with the rod 4, and in a cavity 8 provided in the screwed head 7, an electrode 9 for electroforming is connected to an insulating layer 10. It is inserted so that it can slide in the axial direction through the. A terminal 11 is embedded and fixed in the rod 4 at the end of the cavity 8, and a conductive spring 12 that can conduct electricity is stretched between the terminal 11 and the electrode 9. Due to the elasticity of the spring 12, the electrode 9 is constantly pushed out toward the tip of the leading portion 7. Since a window 13 is provided in the leading portion 7, the tip of the electrode 9 passes through this window 13 and is exposed into the electroforming liquid 3. In order to insert this electrode 9 into the cavity 8 of the leading part 7, a hole (not shown) large enough to allow the electrode 9 to be inserted and taken out is provided on the side of the leading part 7, and this hole is If the electrode 9 is inserted into the cavity 8 of the leading part 7 through the
It can be attached and detached extremely easily. A wiring hole 14 is provided in the rod 4, and a wiring 15 passing through the wiring hole 14 connects the terminal 11 and the electroforming power source 3.
2 are linked. Rack 1 installed on rod 4
6 is engaged with pinion 17, and this pinion 1
7 is rotated by a servo motor 18. The rod 4 moves by the rotation of this servo motor 18.
The position is measured by a measuring device 19 such as an encoder, potentiometer, magnetic scale, etc., which is connected to the rod 4. The rod 4 and the electroformed body 2 are connected to the terminals of a measuring power source 20 via this measuring device 19, and the rod 4 and the electroformed body 2 or the electroformed shell 2' formed thereon are connected to each other. When they make contact, a weak current flows through them (Figure 3). When the rotation of the servo motor 18 is stopped using this weak current as a signal and the rod 4 is stopped, the measuring device 19 comes to measure the position of the rod 4 at that time based on the signal or a desired delay signal of the signal. ing. Here, if it is not preferable to flow a current between the electroformed body 2 and the rod 4, or if an insulating material is used for the leading part 7, or if the leading part 7 contacts the electroformed body 2, the pressure If it is desired to adjust the angle, it is recommended to use the structure shown in FIG. Its structure is such that a sleeve 22 is pivotally supported on a rod 4, and a rack 33 provided on the sleeve 22 meshes with a pinion 17 similar to that described in FIG. A spring 24 is provided between the sleeve 22 and the rod 4, and the elasticity of the spring 24 causes the sleeve 22 to come into contact with the collar 25. However, since this collar 25 is fixed to the rod 4 by a pin 26, the movement of the sleeve 22 by the spring 24 is stopped at this collar 25. A magnet 27 is embedded in the rod 4 inside the sleeve, and the sleeve 2
2 is provided with a sensor 28 which detects the magnet 27 and operates. The relationship between the leading end 7 screwed onto the rod 4 and the electrode 9 inserted therein is the same as that explained in FIG. The case of determining the thickness and measuring the thickness of the electroformed shell 2' will be explained. First, when the servo motor 18 is rotated to rotate the pinion 17, the sleeve 22 that engages with the pinion 17 moves the rod 4 toward the electroformed object 2 via the spring 24. When the leading end 7 of the rod 4 comes into contact with the electroformed body 2 or the electroformed shell 2', the rod 4 stops, but the sleeve 22
compresses the spring 24 and continues to move. When the sensor 28 provided on the sleeve 22 detects the magnet 27 provided on the rod 4, the rotation of the servo motor 18 is stopped, and when a detection signal from the sensor 28 or a signal delayed from the signal is obtained, the measuring device 19 measures the position of the moving rod 4. At this time, the contact pressure between the electroformed body 2 and the top part 7 is determined by the elasticity of the spring 24, so if you want to adjust the contact pressure, you can adjust the contact pressure to some extent by replacing the spring 24 or shifting the position of the sensor 28. can be adjusted. For example, if you want to increase the contact pressure, you can move the sensor 28 away from the magnet 27 and increase the amount of compression of the spring 24 after the tip 7 contacts the electroformed object 2. The contact pressure can be increased. In FIG. 1, 29 is a numerical control device, 30 is a program device, and 31 is a key.
In the three-dimensional shape of the electroformed object 2, the electric field strength on the surface of the electroformed object 2 can be determined by the following equation, and the electrode 9 is driven according to this equipotential surface. Numerically control the placement.

E=−∂v/∂n=δ/ε E=電界でE=gradV V;電位(XYZ) δ;表面電荷密度 n;外向き法線 ▽2V=−δ/ε(ポアツソンの式) なお、この場合ロツド4、電極9は被電鋳体2
の表面に対して直角に保ちながら移動するように
駆動制御するものである。
E=-∂v/∂n=δ/ε E=electric field E=gradV V; potential (XYZ) δ; surface charge density n; outward normal ▽ 2 V=-δ/ε (Poisson's equation) In this case, the rod 4 and the electrode 9 are the electroformed body 2.
The drive is controlled so that it moves while keeping it perpendicular to the surface.

電鋳槽1はベース41に固定した第42に固着す
る。ベース41に固定した柱43の上部に一対の
ビーム44を設け、この一対のビーム44の間に
固定した2本のバー45にヘツド46を支持す
る。このヘツド46に設けサーボモータ47はエ
ンコーダ48でその回転角度を制御しながら回動
することができる。そのサーボモータ47で回動
することができるヘツド46に枢支した軸49の
先端にチヤツク50が固定してある。このチヤツ
ク50の爪51に被電鋳体2のスピンドル2Aを
咬えることによつて、被電鋳体2を電鋳槽1に回
動可能に挿設する。ヘツド46に設けたサーボモ
ータ52は軸49をその軸心方向に移動させるも
ので53はその移動量を計測するエンコーダであ
る。このようにして被電鋳体2の回転支持装置は
ヘツド46ないしチヤツクの爪51をもつて構成
している。
The electroforming tank 1 is fixed to the 42nd part fixed to the base 41. A pair of beams 44 are provided on the top of a column 43 fixed to a base 41, and a head 46 is supported on two bars 45 fixed between the pair of beams 44. A servo motor 47 provided in the head 46 can rotate while controlling its rotation angle with an encoder 48. A chuck 50 is fixed to the tip of a shaft 49 which is pivotally supported by a head 46 which can be rotated by a servo motor 47. By engaging the spindle 2A of the electroformed object 2 with the claw 51 of the chuck 50, the electroformed object 2 is rotatably inserted into the electroforming tank 1. A servo motor 52 provided on the head 46 moves the shaft 49 in its axial direction, and 53 is an encoder that measures the amount of movement. In this way, the rotational support device for the electroformed body 2 is constituted by the head 46 or chuck pawl 51.

本発明で電鋳を行なうときには、電鋳槽1内に
所望の形状を有する被電鋳体2をチヤツク49の
爪51に咬えてセツトし、所定の処方の電鋳液3
を電鋳槽1に満たしたならば、キー31に所望の
電鋳殻の厚さ、電鋳液3の処方又は種類、電鋳用
電源32の電圧等を入力すると、その入力に従つ
てプログラム装置30、数値制御装置29を経て
被電鋳体2をサーボモータ47によつて定角度位
置に停止したならばロツド制御装置5A,5B,
5C,5D、に制御信号が送られる。そこで先づ
各電極9の位置が設定される。その作動は、数値
制御装置29の指令によつて各ロツド制御装置5
のサーボモータ18がピニオン17を回動して各
ロツド4を被電鋳体2に向かつて移動する。そし
て各ロツド4の先頭部7が被電鋳体2に当接した
ところで、各サーボモータを停止、そのときの各
ロツド4の位置を計測器19で計測することは既
に述べた通りである。最初に先頭部7を被電鋳体
2に直接当接したときには電鋳が行なわれていな
いので電鋳殻2′が無いから、そのときの計測器
19の計測値を、その各ロツド4における原点位
置として数値制御装置29に記憶する。次にサー
ボモータ18を逆転してロツド4を被電鋳体2か
ら離す方向に移動するのであるが、そのときの移
動量が所定の量でなければならない。例えば第3
図、第4図に於て、被電鋳体2と先頭部7との間
隔がlに達したとき、あるいは先頭部7の先端か
ら電極9の端面までの寸法aを加えたl+aが所
定の量であり、そのときの電極9の端面の位置が
陰極である被電鋳体2所定角度位置の電界におけ
る所定の等電位面に一致する位置であつたりす
る。
When carrying out electroforming in the present invention, the electroformed object 2 having a desired shape is set in the electroforming tank 1 by being caught between the claws 51 of the chuck 49, and the electroforming liquid 3 of a predetermined prescription is placed in the electroforming tank 1.
When the electroforming tank 1 is filled with the desired electroforming shell thickness, the desired thickness of the electroforming shell, the prescription or type of the electroforming liquid 3, the voltage of the electroforming power supply 32, etc. are entered into the key 31, and the program is started according to the input. Once the electroformed object 2 is stopped at a fixed angle position by the servo motor 47 via the device 30 and the numerical control device 29, the rod control devices 5A, 5B,
Control signals are sent to 5C and 5D. First, the position of each electrode 9 is set. The operation is performed by each rod control device 5 according to the command from the numerical control device 29.
A servo motor 18 rotates the pinion 17 to move each rod 4 toward the electroformed object 2. As described above, each servo motor is stopped when the leading end 7 of each rod 4 comes into contact with the electroformed object 2, and the position of each rod 4 at that time is measured by the measuring device 19. When the leading end 7 first comes into direct contact with the electroformed object 2, electroforming has not been performed and there is no electroformed shell 2', so the measured value of the measuring device 19 at that time is This is stored in the numerical control device 29 as the origin position. Next, the servo motor 18 is reversed to move the rod 4 away from the electroformed object 2, but the amount of movement at this time must be a predetermined amount. For example, the third
In Fig. 4, when the distance between the electroformed body 2 and the leading part 7 reaches l, or the distance l+a, which is the distance from the tip of the leading part 7 to the end surface of the electrode 9, reaches a predetermined value. The position of the end face of the electrode 9 at that time is a position that corresponds to a predetermined equipotential surface in the electric field at a predetermined angular position of the electroformed body 2, which is a cathode.

このようにして全てのロツド4を配設し終わつ
たならば電鋳用電源32の電圧を配線15を通し
て被電鋳体2と、端子11、スプリング12を通
して電極9に印加し、サーボモータ47を回動し
て、被電鋳体2を第2図中矢印Eの方向に回動し
ながら電鋳を行なう。そのときロツド4の先端が
被電鋳体2の直線部憤a−bや凹曲部c−dにき
たときには、それらの面と電極9との距離が変る
ので、その変動量に従つてロツド4をロツド制御
装置5によつて移動制御する。そのときの移動制
御は数値制御29の指令によつてなされる。この
ようにして所望の時間電鋳を行なつたならば被電
鋳体2に生成した電鋳殻2′の厚さを測定する。
その測定は前述した各ロツド4の原点位置を計測
したように被電鋳体2をサーボモータ47により
所定位置に停止したならば、サーボモータ18を
作動してロツド4を被電鋳体2に向かつて移動す
ると、ロツド4の先頭部7は被電鋳体2に生成し
た電鋳殻2′に当接する。このときのロツド4の
位置を計測器19で計測し、その計測値と既に数
値制御装置29に記憶しているロツド4の原点位
置としての計測値との差が、生成した電鋳殻2′
の厚さtとして算出することができる。このよう
にして生成した電鋳殻2′の厚さtを各ロツド毎
に測定できたならば各ロツド4毎に被電鋳体2と
電極9との間隔l+aを変える必要のあるものは
変えたり、サーボモータ47の回転角度や回転速
度を変えたり通電量を変えるなどして、所望の電
鋳殻2′の厚さが得られるように数値制御装置2
9によつて制御する。
When all the rods 4 have been arranged in this way, the voltage of the electroforming power source 32 is applied to the electroformed object 2 through the wiring 15, and to the electrode 9 through the terminal 11 and spring 12, and the servo motor 47 is activated. Electroforming is performed while rotating the electroformed body 2 in the direction of arrow E in FIG. At that time, when the tip of the rod 4 comes to the straight part a-b or the concave part c-d of the electroformed object 2, the distance between those surfaces and the electrode 9 changes, so the rod 4 is moved according to the amount of change. 4 is controlled in movement by a rod control device 5. Movement control at this time is performed by commands from the numerical control 29. After electroforming has been carried out for a desired time in this manner, the thickness of the electroformed shell 2' formed on the electroformed object 2 is measured.
In this measurement, once the electroformed object 2 is stopped at a predetermined position by the servo motor 47 as in the measurement of the origin position of each rod 4 described above, the servo motor 18 is actuated to move the rod 4 into the electroformed object 2. When the rod 4 moves in the opposite direction, the leading end 7 of the rod 4 comes into contact with the electroformed shell 2' formed on the electroformed body 2. The position of the rod 4 at this time is measured by the measuring device 19, and the difference between the measured value and the measured value as the origin position of the rod 4 already stored in the numerical control device 29 is determined by the generated electroformed shell 2'.
It can be calculated as the thickness t. If the thickness t of the electroformed shell 2' produced in this way can be measured for each rod, it is possible to change the distance l+a between the electroformed body 2 and the electrode 9 for each rod 4. The numerical control device 2 controls the electroformed shell 2' to obtain the desired thickness by changing the rotation angle and rotation speed of the servo motor 47, changing the amount of current, etc.
9.

本発明によれば、被電鋳体2と、その回動軸と
同一平面内に所定の間隔を置いて配設した複数の
電極9の対向先端との間隔を各電極9毎に計測し
て両者の間隔位置を設定することができ、しかも
その設定した位置を、電鋳殻2′の生成過程で電
鋳殻2′の厚さを随時計測しながら変更したり、
通電量を変えたりして所望の型と厚さをもつた電
鋳殻を生成することができる効果を有するもので
ある。
According to the present invention, the distance between the electroformed object 2 and the opposing tips of a plurality of electrodes 9 arranged at predetermined intervals in the same plane as the rotation axis is measured for each electrode 9. The interval position between the two can be set, and the set position can be changed while measuring the thickness of the electroformed shell 2' at any time during the production process of the electroformed shell 2'.
This has the effect that an electroformed shell having a desired shape and thickness can be produced by changing the amount of current applied.

なお、本発明の実施に於て電鋳槽1に対して軸
49が出入するようにモータ52で制御すること
ができ、又、電鋳殻2′の厚さ測定を、被電鋳体
2の任意の角度位置で測定し、その測定値に基づ
いて、ロツド4をロツド制御装置5で連続的に移
動しながら電鋳を行なうことができる。なお、ロ
ツド先頭部の電極9は露出した構造の耐消耗性の
白金メツキしたチタン電極やメツキ金属から成る
消耗電極であつても良く、本発明はそのような変
更構成をも包含するものである。
In carrying out the present invention, the shaft 49 can be controlled by the motor 52 so as to move in and out of the electroforming tank 1, and the thickness measurement of the electroformed shell 2' can be performed using the electroformed body 2. Electroforming can be performed while the rod 4 is continuously moved by the rod control device 5 based on the measured value. The electrode 9 at the head of the rod may be a wear-resistant platinum-plated titanium electrode with an exposed structure or a consumable electrode made of plated metal, and the present invention also includes such modified configurations. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例装置を側面より視てそ
の一部を断面したところの概念図、第2図は平面
図、第3図、第4図は本発明の要部であるロツド
とそのロツド制御装置の詳細図、第5図は第3
図、第4図のA矢視図である。 1……電鋳槽、2……被電鋳体、3……電鋳
液、4,4A,4B……ロツド、5,5A,5B
……ロツド制御装置、7……先頭部、9……電
極、19……計測器、29……数値制御装置、3
2……電鋳用電源、46……ヘツド、47……サ
ーボモータ、50……チヤツク。
Fig. 1 is a conceptual diagram of a device according to an embodiment of the present invention viewed from the side and partially cut away, Fig. 2 is a plan view, and Figs. A detailed diagram of the rod control device, Figure 5, is shown in Figure 3.
Fig. 4 is a view taken in the direction of arrow A in Fig. 4; 1... Electroforming tank, 2... Electroformed object, 3... Electroforming liquid, 4, 4A, 4B... Rod, 5, 5A, 5B
... Rod control device, 7 ... Leading section, 9 ... Electrode, 19 ... Measuring instrument, 29 ... Numerical control device, 3
2...Electroforming power supply, 46...Head, 47...Servo motor, 50...Chuck.

Claims (1)

【特許請求の範囲】 1 電鋳液が注入される電鋳槽と、被電鋳体を支
持する回転支持装置と、該回転支持装置の回転軸
の軸に心を含む平面内に軸心を有するように、少
なくともその先頭部が電極であるか電極を有する
複数本のロツドと、該ロツドを軸方向に移動させ
る移動装置と、該移動装置によるロツドの移動位
置を計測する計測器とを有するロツド制御装置を
設けて成る回転体の電鋳装置。 2 被電鋳体を支持する回転支持装置が定位置に
停止することを特徴とする特許請求の範囲第1項
記載の回転体の電鋳装置。 3 ロツドを軸方向に移動させる装置が回転支持
装置の回転に関連してロツドを軸方向に移動させ
ることを特徴とする特許請求の範囲第1項記載の
回転体の電鋳装置。 4 ロツドを軸方向に移動させる装置が回転支持
装置によつて支持された被電鋳体の略等電位面に
沿つてロツドを移動させることを特徴とする特許
請求の範囲第1項記載の回転体の電鋳装置。 5 被電鋳体を支持する回転支持装置が所定の位
置から任意の角度だけ被電鋳体を回転して停止す
ることができることを特徴とする特許請求の範囲
第1項記載の回転体の電鋳装置。
[Scope of Claims] 1. An electroforming tank into which an electroforming solution is injected, a rotational support device that supports an electroformed object, and a rotational shaft of the rotational support device whose axis is located within a plane that includes the axis of the rotational shaft. As shown in FIG. A rotating body electroforming device equipped with a rod control device. 2. The electroforming device for a rotating body according to claim 1, wherein the rotational support device that supports the electroformed body is stopped at a fixed position. 3. An electroforming device for a rotating body according to claim 1, wherein the device for moving the rod in the axial direction moves the rod in the axial direction in relation to the rotation of the rotation support device. 4. The rotation according to claim 1, wherein the device for moving the rod in the axial direction moves the rod along a substantially equipotential surface of the electroformed object supported by the rotation support device. Body electroforming device. 5. Electroforming of a rotating body according to claim 1, characterized in that the rotational support device that supports the electroformed body can rotate the electroformed body by an arbitrary angle from a predetermined position and then stop the electroformed body. Casting equipment.
JP14431083A 1983-08-05 1983-08-05 Electroforming device for rotating body Granted JPS6036690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14431083A JPS6036690A (en) 1983-08-05 1983-08-05 Electroforming device for rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14431083A JPS6036690A (en) 1983-08-05 1983-08-05 Electroforming device for rotating body

Publications (2)

Publication Number Publication Date
JPS6036690A JPS6036690A (en) 1985-02-25
JPH0328517B2 true JPH0328517B2 (en) 1991-04-19

Family

ID=15359109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14431083A Granted JPS6036690A (en) 1983-08-05 1983-08-05 Electroforming device for rotating body

Country Status (1)

Country Link
JP (1) JPS6036690A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2892359B2 (en) * 1988-11-24 1999-05-17 日鉱金属株式会社 Method of forming high purity copper pipe used as stabilizing material for superconducting wire
DE102006010808B4 (en) * 2006-03-07 2009-08-13 BEGO Bremer Goldschlägerei Wilh. Herbst GmbH & Co. KG Apparatus, system, method, computer program and data carrier for electrophoretic deposition with a movable electrode

Also Published As

Publication number Publication date
JPS6036690A (en) 1985-02-25

Similar Documents

Publication Publication Date Title
KR950005458A (en) Electrolytic dressing grinding method and apparatus
CA2090978A1 (en) Method and apparatus for co-ordinate measuring using a capacitance probe
EP0270204B1 (en) Method and apparatus for monitoring a liquid level
US4014141A (en) Apparatus and method for controlling magnetic head surface formation
US3247599A (en) Measuring device
JPH0328517B2 (en)
JPH09267218A (en) Finely working method
JPS6315997B2 (en)
JPH078437B2 (en) Arc welding method
GB2074326A (en) Determining tool/workpiece relative position in machine tools
JPH06198406A (en) Instrument for measuring powder layer in continuous casting mold
US5672263A (en) Method and apparatus for electrochemically machining a workpiece
JPS6258850B2 (en)
JPS6325892B2 (en)
JP2005148049A (en) Method and device for detecting foreign matter in tire, tire inspection device, tire molding machine, and tire uniformity machine
JPS58160018A (en) Electric discharge device
JPS6249220A (en) Apparatus and method for measuring liquid level of molten metal of melting furnace
JPH0478411B2 (en)
JP3292834B2 (en) Electrolytic processing method and electrolytic processing apparatus
US11946899B2 (en) Measuring device
GB2222108A (en) Working of electrically conductive materials by electrical erosion
JPH04130202A (en) Screw-accuracy measuring method
KR200280612Y1 (en) Automatic Welding Machine for Cylindrical Objects
JP2717595B2 (en) Rotary electrode repair device for dressing in grinding machine
SU812496A1 (en) Apparatus for dimensional electrochemical working