JPH0328190A - Lb film substrate - Google Patents

Lb film substrate

Info

Publication number
JPH0328190A
JPH0328190A JP1160748A JP16074889A JPH0328190A JP H0328190 A JPH0328190 A JP H0328190A JP 1160748 A JP1160748 A JP 1160748A JP 16074889 A JP16074889 A JP 16074889A JP H0328190 A JPH0328190 A JP H0328190A
Authority
JP
Japan
Prior art keywords
film
substrate
single crystal
thin film
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1160748A
Other languages
Japanese (ja)
Inventor
Seiichi Kondo
誠一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1160748A priority Critical patent/JPH0328190A/en
Publication of JPH0328190A publication Critical patent/JPH0328190A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To readily form a homogeneous ultrathin film of a single crystal without requiring regulation of substrate temperature or selection of a substrate excellent in conformity by growing a thin film of the single crystal on an Langmuir-Blodgett(LB) film substrate. CONSTITUTION:A monomolecular film, such as stearic acid, is formed on the surface of water and compressed to a desired surface density with a barrier. In the process, the distance between mutual molecules constituting the LB film is set so as to be equal to the lattice constant of a substance from which a crystal is to be grown or a multiple of an integer thereof. Monomolecular films are then cumulated on a glass substrate, etc., to prepare the LB film. The number of cumulation is such that the homogeneity of the surface is improved. The resultant film is used as a substrate to grow a single crystal thin film, such as metal, semiconductor or oxide high temperature superconductor, by a vacuum deposition, sputtering, CVD method, etc. Thereby, the substrate sticking to the LB film substrate is not converted into an island-like structure. As a result, an ultrathin film excellent in crystallinity can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜結晶成長に係り、特に金属,半導体,酸
化物高温超伝導体などを基板上に均一に成長させるのに
好適で、LBgの分子面密度を変化させることにより整
合性を変化させることが可能なLB膜基板に関する. 〔従来の技術〕 薄膜に関する記述は,物理工学実験5“薄膜の基本技術
”金原粟著、東京大学出版会、(1965年5月20日
,第8版)の65ページから70べ−ジ、及び11エベ
ージから115ページにおいて論じられている.真空蒸
着法やスパッタリング法で作られた薄膜は、同文献の6
7.68ページの電子顕微鏡写真に見られるように、島
状構造の島がだんだんに成長じてくっついたものである
.そのため、どうしても多くの結晶粒の集まりとなり,
多くの結晶粒界が入り込む.したがって、これらの方法
により形或された薄膜は多結晶薄膜であることが多い. 〔発明が解決しようとする課題〕 上記従来技術において、最も簡単にできるのは多結晶薄
膜であった.しかし、薄膜研究の基礎的な立場から、単
結晶薄膜に対する関心が非常に深く、半導体デバイス作
製にもその必要性が生じている.特別に単結晶薄膜を成
長させるためには、成長させる物質と格子定数の近い整
合性の良い基板を選んだり、熱処理をするなどしていた
.結晶へき開面を利用して、格子定数を合わせるのは、
特定のものに数が限られており,基板自身も高価である
という問題があった. また、真空蒸着法やスパッタリング法で作られた薄膜は
、膜厚が数10λのときは島状構造になっていることが
電子¥@*lA写真等の観察でわかっている。すなわち
,均一な超薄膜を作製することは困難であった(そのた
めには適当な基板,適当な温度,適当な蒸発速度を選ば
なければならない)。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to thin film crystal growth, and is particularly suitable for uniformly growing metals, semiconductors, oxide high temperature superconductors, etc. on a substrate. This invention relates to an LB film substrate whose consistency can be changed by changing the molecular surface density of the LB film. [Prior art] For a description of thin films, see pages 65 to 70 of Physical Engineering Experiment 5 "Basic Technology of Thin Films" by Awa Kanehara, University of Tokyo Press, (May 20, 1965, 8th edition). and 11 pages 115 and 115. Thin films made by vacuum evaporation or sputtering are described in 6 of the same document.
7. As seen in the electron micrograph on page 68, this is an island-like structure that gradually grows and sticks together. Therefore, it inevitably becomes a collection of many crystal grains,
Many grain boundaries enter. Therefore, thin films formed by these methods are often polycrystalline thin films. [Problem to be solved by the invention] In the above-mentioned prior art, the easiest method was to form a polycrystalline thin film. However, from the basic standpoint of thin film research, there is a deep interest in single crystal thin films, and this is also necessary for semiconductor device fabrication. In order to specifically grow single-crystal thin films, it was necessary to select a substrate with good lattice constant matching with the material to be grown, and to perform heat treatment. Matching the lattice constant using crystal cleavage planes is
The problem was that the number of specific products was limited, and the boards themselves were expensive. Further, it has been found through observation of electron \@*lA photographs that thin films made by vacuum evaporation or sputtering have an island-like structure when the film thickness is several tens of λ. In other words, it has been difficult to produce a uniform ultra-thin film (for this purpose, an appropriate substrate, appropriate temperature, and appropriate evaporation rate must be selected).

島状構造を有する薄膜の電気特性は,バルク状態の値と
はかなり異なったものになる.電気抵抗率はバルク値と
比較しても高く、極低温における残留抵抗比RRRも小
さい.超伝導材料では、超薄膜になると超伝導転移温度
’I’ cが下がり,臨界電流密度Jcの値も減少する
という問題があった.本発明の目的は、基板温度を調節
したり、整合性の良い基板を選ばずして、その上に単結
晶薄膜を成長させることにある. 本発明の他の目的は、膜厚が数1OAから数100人の
超薄膜を作製するときに、島状構造になることを防ぐこ
とにある. 〔課題を解決するための手段〕 上記目的を達成するためには、分子面密度を変化させる
ことができ、金属塩を表面に有することの可能なLB膜
を基板として使用する.もしくは、有機金属錯体のLB
膜を基板として使用する.LB膜を構或する分子は、無
限と言えるほど多く存在しており、その分子量を微妙に
変化させることにより、分子間距離を自由に調節するこ
とも可能である. rB膜の材料としては、ステアリン酸などの脂肪酸,ア
ルコール,エステル類,ジアセチレン誘導体(ボリマー
にもなる)、フタロシアニン誘導体,メロシアニンやヘ
ミシアニンなどの色素,有機金属錯体などが挙げられる
。金属塩に使用する金属としては、゛Li,Cu,Cd
,Ba;’Ca,Pb,−}’e,Afiなどがあるが
,価数が大きい金属塩では、一般にかたいLB膜ができ
ることが知られている. 単結晶成長させようとする酸化物高温超伝導材料として
は,銅一酸素二次元格子を基本に含むもので、Cu,O
の他に、’I’ Q ,− B i , L a , 
Y ,S r,yb,Lu,’I’m,Dy,Sc,C
e.Pr,Nd,Srri,Eu,Gd,  ′l”b
,Ho,Er,Sr,Ha,Ca,Mgより選ばれた少
なくとも一つまたはそれ以上の元素を含むもので構威さ
れる. 〔作用〕 まず、水面上に単分子膜を作製して、バリアで希望の面
密度まで圧縮する,このとき、LHW4を構或する分子
同士の距離が、結晶戊長させようとする物質の格子定数
と同等、もしくはその整数倍になるようにしておく。す
なわち、単分子膜の表面圧を調節することにより而密度
を変える.ただし,多価金属塩を有するときは、さらに
その価数倍になる.また,成膜分子の分子量を変えるこ
とにより,微妙に分子間距離を調節することも口!能で
ある. 次に、ガラス基板等の上に単分子膜を累積してLB膜を
作製する.累積数は表面の均一性が良くなるまでで,そ
れが満足されるならば1層でも良い.金属塩の部分を利
用する場合は、親水基が表面になるように累積しておく
。l層の場合には、ガラス基板を疎水処理しておけばよ
い,累積の方法には、一般的な垂直浸漬法と水平付着法
があるが、後者の方が累積の際に而密度が変化しにくく
、親木而が基板の表面になるので適当である.具体的な
累積の方法は,前記「化学総説第40号,1983年,
(日本化学会編,学会出版センター発行)Jの83ペー
ジと84ページに掲載されている. これを基板として,真空蒸着法,スパッタリング法やC
VL)法等により、金嵐,半導体,P&化物高温超伝導
体などの単結M薄膜を成長させる.LB膜表面の金属塩
は、単原子層分の均一な金属の超薄膜が既に作製されて
いるものとみなせる.したがって、LH膜基板に付着し
た物質は島状構造にならず、結晶性の良い超薄膜ができ
る.また、酸化物高温超伝導体は銅一酸素格子を基板に
含むものであり、分子としてカルボキシル基を含むもの
を用いて,その銅塩一(C=O)O−Cu+を作製すれ
ば整合性が良くなる。
The electrical properties of a thin film with an island structure are quite different from those in the bulk state. The electrical resistivity is high compared to the bulk value, and the residual resistance ratio RRR at extremely low temperatures is also small. A problem with superconducting materials is that when they become ultra-thin films, the superconducting transition temperature 'I' c decreases, and the value of the critical current density Jc also decreases. The purpose of the present invention is to grow a single-crystal thin film on a substrate without adjusting the substrate temperature or selecting a well-matched substrate. Another object of the present invention is to prevent formation of an island-like structure when producing an ultra-thin film with a film thickness of several 1 OA to several 100 OA. [Means for Solving the Problems] In order to achieve the above object, an LB film, which can change the molecular surface density and can have a metal salt on the surface, is used as a substrate. Or LB of organometallic complex
The membrane is used as a substrate. There are an almost infinite number of molecules that make up the LB membrane, and by subtly changing their molecular weights, it is possible to freely adjust the intermolecular distance. Examples of materials for the rB film include fatty acids such as stearic acid, alcohols, esters, diacetylene derivatives (which also form polymers), phthalocyanine derivatives, pigments such as merocyanine and hemicyanine, and organometallic complexes. Metals used for metal salts include ゛Li, Cu, Cd.
, Ba;'Ca, Pb, -}'e, Afi, etc., but it is known that metal salts with a high valence generally form a hard LB film. The oxide high-temperature superconducting material to be grown as a single crystal basically contains a two-dimensional copper-oxygen lattice, including Cu, O
In addition to 'I' Q , - B i , L a ,
Y, S r, yb, Lu, 'I'm, Dy, Sc, C
e. Pr, Nd, Srri, Eu, Gd, ′l”b
, Ho, Er, Sr, Ha, Ca, and Mg. [Operation] First, a monomolecular film is created on the water surface and compressed with a barrier to the desired areal density.At this time, the distance between the molecules that make up LHW4 is determined by the lattice of the substance whose crystal is to be lengthened. Make it equal to a constant or an integral multiple of it. In other words, the density can be changed by adjusting the surface pressure of the monolayer. However, when it contains a polyvalent metal salt, the valence increases even more. Also, by changing the molecular weight of the molecules forming the film, you can subtly adjust the intermolecular distance! It is Noh. Next, a monomolecular film is accumulated on a glass substrate or the like to produce an LB film. The cumulative number is until the uniformity of the surface becomes good, and if this is satisfied, one layer may be sufficient. When using metal salt parts, accumulate them so that the hydrophilic groups are on the surface. In the case of 1 layer, it is sufficient to hydrophobically treat the glass substrate.There are two general methods of accumulation: the vertical dipping method and the horizontal adhesion method, but the latter method is more sensitive to changes in density during accumulation. This is suitable because it is difficult to attach and the parent wood becomes the surface of the board. The specific accumulation method is described in the above-mentioned “Kagaku Review Review No. 40, 1983,
(Edited by the Chemical Society of Japan, published by the Society Publishing Center) Published on pages 83 and 84 of J. Using this as a substrate, vacuum evaporation, sputtering, carbon
Grow single M thin films such as Kinarashi, semiconductors, P & compound high temperature superconductors, etc. using the VL) method. The metal salt on the surface of the LB film can be considered to have already been produced as a uniform ultra-thin metal film of a single atomic layer. Therefore, the substance attached to the LH film substrate does not form an island-like structure, and an ultra-thin film with good crystallinity is formed. In addition, oxide high-temperature superconductors contain a copper-oxygen lattice in the substrate, and if the copper salt (C=O)O-Cu+ is prepared using a molecule containing a carboxyl group, consistency can be achieved. gets better.

〔実施例〕〔Example〕

以下、本発明の実施例1を図により説明する.まず,ス
テアリン酸(stearic acid :C tt 
H ss C O O H ,第1図(a)参照)の単
分子膜を水面上に作製する.水相は超純水(〜17MΩ
al)を使用し、その組成はPbCQx:10一番M,
F e C Q x : 1 0 −’ M t H 
CQ : 2 X 1 0 −’ M +K1:5X1
0−5Mである.pHは5で,温度は室温であるs  
(CtyHasCOO−)zPb+”の分子間距離がp
bの格子定数の整数倍になるように単分子膜の表面圧を
調節する.C’rAB(臭化セチルトリメチルアンモニ
ウム: Cetyl TrimetylAmmoniu
m Bro+wide, C Ha (CHz) N+
 (CHs)sBr−)により、ガラス基板を疎水処理
して、分子面密度が水面上で設定した値と変わらないよ
うに、水平付着法でステアリング酸のFb塩のLH[を
作製した. このL}!膜基板にpbfJI膜をスパッタリング法に
より作製した.この方法により作製した超薄膜の模式図
を第1図(b)に示す.Ll3膜がないガラス基板上に
数10人から数100人の超薄膜を作製すると、第2国
に示すようにPbが島状構造に成長じて,電気抵抗率が
バルクの値と比較して非常に上昇する。しかし、LH膜
基板を使用すれば、超薄膜を作製してもそれほど電気抵
抗率が変わらない。第3図は上記の比較を行なった抵抗
率の測定図である。
Embodiment 1 of the present invention will be explained below with reference to the drawings. First, stearic acid (C tt
A monomolecular film of H ss C O OH (see Figure 1(a)) is prepared on the water surface. The aqueous phase is ultrapure water (~17MΩ
al), the composition of which is PbCQx: 10 Ichiban M,
F e C Q x : 1 0 −' M t H
CQ: 2 X 1 0 -' M +K1:5X1
It is 0-5M. The pH is 5 and the temperature is room temperature.
(CtyHasCOO−)zPb+” intermolecular distance is p
Adjust the surface pressure of the monolayer so that it becomes an integral multiple of the lattice constant of b. C'rAB (Cetyl Trimethylammonium Bromide)
m Bro+wide, C Ha (CHz) N+
A glass substrate was hydrophobically treated with (CHs)sBr-), and LH[ of the Fb salt of steering acid was prepared by the horizontal deposition method so that the molecular surface density remained the same as the value set on the water surface. This L}! A pbfJI film was fabricated on a film substrate by sputtering. A schematic diagram of the ultra-thin film fabricated using this method is shown in Figure 1(b). When an ultra-thin film of tens to hundreds of layers is fabricated on a glass substrate without Ll3 film, Pb grows into an island-like structure as shown in the second country, and the electrical resistivity decreases compared to the bulk value. rise very much. However, if an LH film substrate is used, the electrical resistivity does not change much even if an ultra-thin film is produced. FIG. 3 is a measurement diagram of resistivity in which the above comparison was made.

Afi塩のステアリン酸L}S膜基板にAQをスパッタ
リング法により作製しても、同様に電気抵抗率の低い超
薄膜を得ることができた, 次に,実施例2について説明する。フエロセンのエステ
ル誘導体のLHIIQを第4図に挙げる.二本鎖誘導体
では、シクロベンタジエン環が膜面に垂直に配向してい
ることが知られている.このLB膜を実施例1と同様に
作製した.このLB膜基板にFe#膜を真空蒸着法によ
り作製した.その結果、bcc構造の超薄膜が得られた
.次に、実施例3について説明する.ボリジアセチレン
(polydiacetylane,第5図参照)LB
膜基板に酸化物高温超伝導体の単結晶薄膜を成長させた
。まず,ポリジアセチレンLH膜のモノマー或膜分子で
あるジアセチレン誘導体heptacosa −1 0
 . 1 2 −diynoic acid(;Ha(
CHz)zδ一CミC−CミC  ((;Hz)acO
o−H+の単分子膜を水面上に作製した.水相の組成は
、Cu(;I2: 10−″8Mである。水面上で紫外
線照射によりボリジアセチレン単分子膜にした.他の条
件は実施例lと同様にしてLB膜を作製した.このポリ
ジアセチレンLB膜基板に、酸化物高温超伝導体YHa
zCugO7−δの薄膜をスパッタリング法により作製
した。超伝導転移温度Tcを測定した結果,整合性の良
いSr1”i0s基板で作製した薄膜とほとんど同じ値
であった.X線回折の測定結果からも,配向性の良いも
のが得られていることがわかった。
Even when AQ was formed on the Afi salt stearic acid L}S film substrate by the sputtering method, an ultra-thin film with low electrical resistivity could be similarly obtained. Next, Example 2 will be described. Figure 4 shows LHIIQ of ester derivatives of ferrocene. It is known that in double-stranded derivatives, the cyclobentadiene rings are oriented perpendicular to the membrane surface. This LB film was produced in the same manner as in Example 1. An Fe# film was fabricated on this LB film substrate by vacuum evaporation. As a result, an ultra-thin film with a bcc structure was obtained. Next, Example 3 will be explained. Polydiacetylane (see Figure 5) LB
A single crystal thin film of an oxide high temperature superconductor was grown on a membrane substrate. First, the diacetylene derivative heptacosa-10, which is the monomer or film molecule of the polydiacetylene LH film, is
.. 1 2 -diynoid acid(;Ha(
CHz)zδ-CmiC-CmiC ((;Hz)acO
A monomolecular film of o-H+ was prepared on the water surface. The composition of the aqueous phase was Cu(;I2: 10-''8M. A boridiacetylene monomolecular film was formed on the water surface by irradiation with ultraviolet rays.Other conditions were the same as in Example 1 to produce an LB film. Oxide high temperature superconductor YHa on polydiacetylene LB film substrate
A thin film of zCugO7-δ was produced by a sputtering method. As a result of measuring the superconducting transition temperature Tc, the value was almost the same as that of a thin film fabricated on a Sr1"i0s substrate with good consistency. The measurement results of X-ray diffraction also indicate that a film with good orientation was obtained. I understand.

以上、本発明を特定の実施例について説明したが、本発
明の思想を逸脱しない範囲であれば、この実施例に限ら
れることなく、例えば、単結晶薄膜を成長させる物質や
LH膜の材料は上記のものに限らない. 〔発明の効果〕 本発明によれば,数10人から数100人の金属超薄膜
において,バルク値に近い低い電気抵抗率を得ることが
できる.また、分子面密度を調節することにより、単結
晶成長も可能である.酸化物高温超伝導体の単結晶薄暎
の作製にも有効である.
Although the present invention has been described above with reference to specific embodiments, the present invention is not limited to these embodiments as long as it does not depart from the spirit of the present invention. Not limited to the above. [Effects of the Invention] According to the present invention, it is possible to obtain a low electrical resistivity close to the bulk value in an ultra-thin metal film made up of several tens to hundreds of people. Single crystal growth is also possible by adjusting the molecular surface density. It is also effective in producing thin single crystals of oxide high temperature superconductors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)はステアリング酸の構造式と分子モデルを
示す図,第工図(b)は本発明の一実施例の模式的側面
図、第2図は通常見られる薄膜の島状構造の模式的側面
図、第3図は本発明によるpbの薄膜の電気抵抗率の薄
厚依存性を示した測定図,第4図はフエロセンのエステ
ル誘導体の構造式を示す図,第5図はボリジアセチレン
の構造式を示す図である. 第 2 図 第 3 図 )11 4 (A冫 VJl1!1 (久)
Fig. 1 (a) is a diagram showing the structural formula and molecular model of steering acid, Fig. 1 (b) is a schematic side view of an embodiment of the present invention, and Fig. 2 is a normally seen island-like structure of a thin film. FIG. 3 is a measurement diagram showing the thickness dependence of the electrical resistivity of the PB thin film according to the present invention, FIG. 4 is a diagram showing the structural formula of the ester derivative of ferrocene, and FIG. This is a diagram showing the structural formula of acetylene. Fig. 2 Fig. 3) 11 4 (A冫VJl1!1 (ku)

Claims (1)

【特許請求の範囲】 1、単結晶薄膜を成長させることを特徴とするLB膜基
板。 2、LB膜は有機金属錯体であるか、または表面に金属
塩を有しており、その面に単結晶薄膜を成長させること
を特徴とする請求項1記載のLB膜基板。 3、LB膜は有機金属錯体であるか、または表面に金属
塩を有しており、その面に酸化物高温超伝導体の単結晶
薄膜を成長させることを特徴とする請求項2記載のLB
膜基板。 4、LB膜は有機金属錯体であるか、または表面に金属
塩を有しており、その金属もしくはそれを含む化合物の
単結晶薄膜を成長させることを特徴とする請求項1もし
くは2記載のLB膜基板。 5、LB膜は有機金属錯体であるか、または表面に金属
塩を有しており、その金属もしくはそれを含む酸化物高
温超伝導体の単結晶薄膜を成長させることを特徴とする
請求項4記載のLB膜基板。 6、LB膜は表面に銅塩を有しており、その面に酸化物
高温超伝導体の単結晶薄膜を成長させることを特徴とす
る請求項4記載のLB膜基板。 7、LB膜上に成長させることを特徴とする単結晶膜の
形成方法。
[Claims] 1. An LB film substrate on which a single crystal thin film is grown. 2. The LB film substrate according to claim 1, wherein the LB film is an organometallic complex or has a metal salt on the surface, and a single crystal thin film is grown on the surface. 3. The LB according to claim 2, wherein the LB film is an organometallic complex or has a metal salt on the surface, and a single crystal thin film of an oxide high temperature superconductor is grown on the surface.
membrane substrate. 4. The LB film according to claim 1 or 2, wherein the LB film is an organometallic complex or has a metal salt on the surface, and a single crystal thin film of the metal or a compound containing the metal is grown. membrane substrate. 5. Claim 4, wherein the LB film is an organometallic complex or has a metal salt on the surface, and a single crystal thin film of the metal or an oxide high temperature superconductor containing the metal is grown. The LB film substrate described. 6. The LB film substrate according to claim 4, wherein the LB film has a copper salt on its surface, and a single crystal thin film of an oxide high temperature superconductor is grown on that surface. 7. A method for forming a single crystal film, characterized by growing it on an LB film.
JP1160748A 1989-06-26 1989-06-26 Lb film substrate Pending JPH0328190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1160748A JPH0328190A (en) 1989-06-26 1989-06-26 Lb film substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1160748A JPH0328190A (en) 1989-06-26 1989-06-26 Lb film substrate

Publications (1)

Publication Number Publication Date
JPH0328190A true JPH0328190A (en) 1991-02-06

Family

ID=15721607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1160748A Pending JPH0328190A (en) 1989-06-26 1989-06-26 Lb film substrate

Country Status (1)

Country Link
JP (1) JPH0328190A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0598361A1 (en) * 1992-11-18 1994-05-25 Rouvain M. Bension Initiation and bonding of diamond and other thin films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0598361A1 (en) * 1992-11-18 1994-05-25 Rouvain M. Bension Initiation and bonding of diamond and other thin films
US5455072A (en) * 1992-11-18 1995-10-03 Bension; Rouvain M. Initiation and bonding of diamond and other thin films

Similar Documents

Publication Publication Date Title
JP3207058B2 (en) Superconductor thin film and method of manufacturing the same
Ma et al. Large-scale growth of wire-like Sb2Se3 microcrystallines via PEG-400 polymer chain-assisted route
Miura et al. Vortex pinning at low temperature under high magnetic field in SmBa2Cu3Oy superconducting films with high number density and small size of BaHfO3 nano-rods
Choy et al. Intercalation route to nano-hybrids: inorganic/organic-high Tc cuprate hybrid materials
Itoh et al. Low temperature growth of high-Jc Sm1+ xBa2− xCu3Oy films
Xue et al. Growth of simplified buffer template on flexible metallic substrates for YBa2Cu3O7-δ coated conductors
Xu et al. Synthesis of La2− xSrxCuO4 films via atomic layer-by-layer molecular beam epitaxy
JPH0328190A (en) Lb film substrate
Liang et al. Effect of vacuum annealing on the structure and superconductivity of Bi2Sr2CaCu2O8+ δ single crystals
Fu et al. Substrate effects on the ordering nanostructure for La2/3Ca1/3MnO3 ultrathin films
JP2008130255A (en) Superconducting wire and manufacturing method therefor
Lu et al. Effects of composition on the microstructure of YBa2Cu3O7− x thin films prepared by plasma-enhanced metalorganic chemical vapor deposition
Sahana et al. Transport properties and colossal magnetoresistance in epitaxial La 0.67 Cd 0.33 MnO 3 thin film
Yoshida et al. Controlled nanoparticulate flux pinning structures in RE1+ xBa2− xCu3Oy films
Gunes et al. Microstructure and magnetoresistance of a La0. 67Ca0. 33MnO3 film produced using the dip-coating method
CN110668503A (en) Double-layer perovskite manganese oxide single-phase thin film material with vertically arranged nano structure and preparation method thereof
Kanai et al. Dependence of critical current density on microstructures in superconducting Bi (Pb)-Sr-Ca-Cu-O wires
Horide et al. Self-organized nanocomposite structure controlled by elemental site occupancy to improve vortex pinning in YBa2Cu3O7 superconducting films
Berkley In-situ preparation of ytterbium-barium-copper-oxygen superconducting thin films using pure ozone vapor oxidation.
Yanagi et al. Crystal growth of octacyanometalphthalocyanine-metal complexes in thin films
Wu et al. Bell-mouthed single-crystalline tubular ZnO prepared by a soft solution method
Holesinger et al. Ultrafine multilayers of complex metal oxide films
Lee et al. Fabrication details of Ba 1-x K x Fe 2 As 2 films by pulsed laser deposition technique
Kistenmacher et al. Substrate and Temperature Dependent Morphology of rf-Sputtered Indium Nitride Films
Venimadhav et al. Anisotropic electrical transport property in La 4 BaCu 5 O 13+ δ and La 4 BaCu 4 NiO 13+ δ epitaxial thin films