JPH03280708A - Adaptive equalizer - Google Patents

Adaptive equalizer

Info

Publication number
JPH03280708A
JPH03280708A JP2082465A JP8246590A JPH03280708A JP H03280708 A JPH03280708 A JP H03280708A JP 2082465 A JP2082465 A JP 2082465A JP 8246590 A JP8246590 A JP 8246590A JP H03280708 A JPH03280708 A JP H03280708A
Authority
JP
Japan
Prior art keywords
equalizer
coefficient
received signal
equalizer coefficient
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2082465A
Other languages
Japanese (ja)
Inventor
Hiroki Uchiyama
博喜 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2082465A priority Critical patent/JPH03280708A/en
Publication of JPH03280708A publication Critical patent/JPH03280708A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent divergence of an equalizer coefficient by releasing the control of revision of the equalizer coefficient at a prescribed time after the abnormal amplitude of a reception signal is not detected to control the equalizer coefficient revision processing. CONSTITUTION:An equalizer coefficient revision control section is limited from a time of the presence of an abnormal amplitude is detected in a reception signal and an equalizer coefficient revision calculation section 3 makes calculation. The limit of the revision of the equalizer coefficient is released at a prescribed time after the abnormal amplitude is not detected. Then the divergence of the equalizer coefficient is prevented by controlling the equalizer coefficient revision processing.

Description

【発明の詳細な説明】 技彬分M− 本発明は、適応型等化器に関し、より詳細には、各種変
復調方式、ファクシミリ装置の環式方式に用いられるフ
ァクシミリ装置、通信の変復調方式、移動通信などに適
用さ力、るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an adaptive equalizer, and more particularly, to various modulation and demodulation systems, facsimile machines used in ring systems of facsimile machines, communication modulation and demodulation systems, and mobile equalizers. It is a power applied to communications, etc.

従沫J=術− P S K (円]ase 5hift Keyj、n
B:位相変調方式)7%式%: 分位分位相変式方式の変調方式は、受信信号から送信デ
ータを復元するために、受信信号が伝送路で受(づる周
波数特性を補正し、送信側と受信側の搬送波周波数の差
(周波数オフセット・)並びに位相ジッタを補正し、で
、さらに受信信号から同期信号を抽出したうえで、この
同期信号に同期して送信データを再生ずる必要がある。
J = Jutsu - P S K (yen) ase 5hift Keyj, n
B: Phase modulation method) 7% formula%: The modulation method of the quantile phase modulation method corrects the frequency characteristics of the received signal on the transmission path in order to restore the transmitted data from the received signal. It is necessary to correct the difference in carrier frequency (frequency offset) and phase jitter between the receiving side and the receiving side, extract a synchronization signal from the received signal, and then reproduce the transmitted data in synchronization with this synchronization signal. .

伝送路の周波数特性を補正するためには、通常トランス
バー・ザル型の適応型等化器(A d a p t i
 v eEqualizer)が用いられ、その等化器
係数は、伝送路特性の逆特性となるようにシンボルレー
トで逐次更新と4する。この時用いら第1.る等比熱係
数更新の算定式は、入力に瞬断や振幅ヒツトがないとい
う条件のもどで成立するものである。したがって、瞬断
や位相ヒツト・が頻繁に起きる伝送系においては、シン
ボル1.、/−1−で等化器係数を所定の算定式にした
がい更新処理すると等化器係数が発散を生じ、所望の伝
送特性の;ψ特性が得られないという問題があった。
In order to correct the frequency characteristics of the transmission path, a transversal type adaptive equalizer (adapti
v eEqualizer) is used, and its equalizer coefficients are sequentially updated at the symbol rate so that the characteristics are inverse to the transmission path characteristics. The first thing used at this time. The equation for updating the isospecific heat coefficient is valid under the condition that there are no instantaneous interruptions or amplitude hits in the input. Therefore, in a transmission system where instantaneous interruptions and phase hits occur frequently, symbols 1. , /-1-, when the equalizer coefficients are updated according to a predetermined calculation formula, the equalizer coefficients diverge, and there is a problem that the desired transmission characteristics; ψ characteristics cannot be obtained.

第34図は、従来の適応型等化器の構成図を示すもので
、1・・ランスバ・−ザル型のフィルター構成となって
いる。図中、81a−=81gは遅延素子、82aへ−
8211は乗算器、83は積算器である。
FIG. 34 shows a configuration diagram of a conventional adaptive equalizer, which has a 1..Lance Bazaar type filter configuration. In the figure, 81a-=81g is a delay element, to 82a-
8211 is a multiplier, and 83 is an integrator.

一般に、適応型等化器は伝送路の周波数特性5工」−を
キャンセルするだめのものであり、送信信号(情報)に
先立って伝送さ才1.るl−1ノ一ニング信号によって
自動的に伝送路の周波数特性の逆特性を実現する。さら
に、適応型等化器の場合、送信信号の情報を用いて、情
報を受取りながら順次フィルター係数を変更し7で伝送
路の変化に対応している。
In general, an adaptive equalizer is used to cancel the frequency characteristics of a transmission path, and is used to cancel the frequency characteristics of a transmission path. The inverse frequency characteristic of the transmission line is automatically realized by the l-1 noning signal. Furthermore, in the case of an adaptive equalizer, the filter coefficients are sequentially changed while receiving the information using the information of the transmitted signal, and the change in the transmission path is handled in step 7.

適応型等化器の出力とタップ係数(等化器係数)の変更
処理は次のような演算で行なわれる。ただし、変更処理
には各種の演算があり、以下はその一例である。
The process of changing the output of the adaptive equalizer and the tap coefficients (equalizer coefficients) is performed by the following calculation. However, the change process involves various calculations, and the following is one example.

適応型等化器のフィルター出力qは、適応型等化器への
入力時系列ai−各遅延のタップ係数(等化器係数)値
を01とするときその出力C(は、と表される。
The filter output q of the adaptive equalizer is expressed as the input time series ai to the adaptive equalizer - the output C (is expressed as .

また、各タップ係数の更新は5次の計算式でシンボルレ
ート(T)毎に行なわれる。
Further, each tap coefficient is updated for each symbol rate (T) using a fifth-order calculation formula.

C(” Ci  1” ’ e ’ a I”””(2
)ただし、 e = q −p ;           −43)
P;正しい信号値(判定値) r:等化量の収束係数 前記(2)式で示すようにタップ係数の更新は。
C("Ci 1"'e' a I"""(2
) However, e = q − p ; −43)
P: Correct signal value (judgment value) r: Convergence coefficient of equalization amount As shown in equation (2) above, the tap coefficients are updated.

伝送信号より再生される点における再生出力値qと判定
点における判定値Pとの誤差eを小さくするように収束
させることで行なわれる。この場合、通信信号が予め解
っている場合は、その値をPとして(3)式により誤差
を計算する。また解っていない場合には、送られてきた
値qを参照してqに最も近い信号点(Oまたは1しか送
られて来ない送受信系においてはそのどちらか)をPと
して誤差を計算する。
This is done by converging so as to reduce the error e between the reproduction output value q at the point reproduced from the transmission signal and the determination value P at the determination point. In this case, if the communication signal is known in advance, the error is calculated using equation (3) with the value as P. If it is not known, the error is calculated by referring to the sent value q and setting the signal point closest to q (either O or 1 in a transmitting/receiving system where only 1 is sent) as P.

なお、V、27ter(国際電信電話諮問委員会:CC
ITTの勧告番号)モデムのファクシミリ等の場合には
後者が使われる。また、前記(1)〜(3)の式は、複
素数演算であってもかまわない。
In addition, V, 27ter (International Telegraph and Telephone Advisory Committee: CC
ITT recommendation number) The latter is used for modem facsimiles, etc. Furthermore, the equations (1) to (3) above may be complex number operations.

ここで重要なことは、 ■誤差eが大きくては収束性が悪い、 ■順次このフィルターに与えられる伝送信号値aiはラ
ンダムでなくてはならない、 ■等化器の収束係数rは収束の早さを規定するものであ
り、値が小さいと収束速度は緩やかであり、値が大きい
と収束速度は早いが少しの誤差で振動してしまう、 ことである。
The important points here are: ■ If the error e is large, convergence is poor. ■ The transmission signal values ai sequentially given to this filter must be random. ■ The convergence coefficient r of the equalizer is the speed of convergence. If the value is small, the convergence speed will be slow; if the value is large, the convergence speed will be fast, but it will oscillate due to a small error.

フィルターの収束動作を換言すれば、フィルター出力q
に対し教師データPを与えてフィルター出力qが教師デ
ータpに近くなるようにフィルター係数を学習させてい
ることになる。
In other words, the convergence operation of the filter is expressed as the filter output q
This means that training data P is given to the filter coefficients so that the filter output q becomes close to the training data p.

したがって上述の特徴を供えた適応型等化量に瞬断、振
幅変動を含んだ異常振幅入力があると(3)式により誤
差eが増大し、(2)式によってタップ係数が大きくな
り、したがってさらに(1)式によってフィルター出力
qの値が増大して、この値が(3)にフィードバックさ
れて、ますます誤差eが大きくなって等化量が発散する
ことになる。
Therefore, if there is an abnormal amplitude input that includes a momentary interruption or amplitude fluctuation in the adaptive equalization amount with the above-mentioned characteristics, the error e will increase according to equation (3), the tap coefficient will increase according to equation (2), and therefore Furthermore, the value of the filter output q increases according to equation (1), and this value is fed back to (3), so that the error e becomes larger and the equalization amount diverges.

月−一一眞 本発明は、上述のごとき実情に鑑みてなされたもので、
受信信号に瞬断、振幅変動等の異常振幅が観測された場
合に等化器係数の変更処理を制御することで等化器係数
の発散を防止し、所望の伝送特性の逆特性を得るように
した適応型等化器を提供することを目的としてなされた
ものである。
The present invention was made in view of the above-mentioned circumstances.
When an abnormal amplitude such as momentary interruption or amplitude fluctuation is observed in the received signal, the equalizer coefficient changing process is controlled to prevent the equalizer coefficient from divergence and to obtain the opposite characteristic of the desired transmission characteristic. The purpose of this design was to provide an adaptive equalizer with

碧ニーー戊 本発明は、上記目的を達成するために、(1)受信信号
を一定の時間間隔で遅延シフトする遅延手段と、該遅延
手段の各タップ出力に所定のタップゲインを乗算する乗
算手段と、該乗算手段による各乗算結果を総和する積算
手段とから成り、所定の演算にもとづいてタップゲイン
を自動的に調節することで前記受信信号に重畳する伝送
路の周波数特性を取り除く適応型等化器において、瞬断
、振幅変動の異常振幅を伴う受信信号を検出する異常振
幅判定部と、該異常振幅判定部により受信信号の異常振
幅が検出された時点より等化器係数の変更処理を制限し
、異常振幅が検出されなくなった時点から所定時間後に
前記等化量係数の変更の制限を解除して等化器係数変更
処理を再開することで等化器係数変更処理を制御する等
化器係数変更制御部を有すること、或いは、(2)受信
信号を一定の時間間隔で遅延シフトする遅延手段と、該
遅延手段の各タップ出力に所定のタップゲインを乗算す
る乗算手段と、該乗算手段による各乗算結果を総和する
積算手段とから成り、所定の演算にもとづいてタップゲ
インを自動的に調節することで前記受信信号に重畳する
伝送路の周波数特性を取り除く適応型等化器において、
瞬断、振幅変動等の異常振幅を伴う受信信号を検出する
異常振幅判定部と、該異常振幅判定部により受信信号の
異常振幅が検出された時のみ等化器係数の変更処理を制
限し、異常振幅が検出されない時点の等化器係数の変更
には制限を加えないことで等化器係数変更処理を制御す
る等化器係数変更制御部を有すること、或いは、(3)
受信信号を一定の時間間隔で遅延シフトする遅延手段と
、該遅延手段の各タップ出力に所定のタップゲインを乗
算する乗算手段と、該乗算手段による各乗算結果を総和
号−る積算手段とから成り、所定の演算にもとづいてタ
ップゲインを自動的に調節することで前記受信信号に重
畳する伝送路の周波数特性を取り除く適応型等比熱にお
いて、瞬断、振幅変動等の異常振幅を伴う受信信号を、
再生出力値と判定値との誤差より判定する誤差判定部と
、該之ス差判定部により等什器係数の異常が検出された
時点より等什器係数の変更処理も:制限し、等什器係数
に異常が検出さ九なくなった時点から所定時間後に等什
器係数の変更を解除して等比熱係数変更処理を再開する
ことで等比熱係数変更処理を制御する等比熱係数変更制
御部を有すること、或いは、(4)受信信号を一定の時
間間隔で遅延シフトする遅延手段と、該遅延手段の各タ
ップ出力に所定のタップゲインを乗算する乗算手段と、
該乗算手段による名乗算結果を総和する積算手段゛とか
ら成り6所定の演算にもとづいてタップゲインを自動的
に調節することで前記受信信号に重畳する伝送路の周波
数特性を取り除く適応型等化器において、明断、振幅変
動等の異常振幅4伴う受信信号を、再生出力値と判定値
との誤差より判定する誤差判定部と、該誤差判定部によ
り等什器係数の異常が検出された時点に子の時点の等比
熱係数計算のエラー寄与する等什器係数の変更処理を制
限し7、それ以外の時点の等什器係数の変更には制限を
加えないことで等比熱係数変更処理を制御する等比熱係
数変更制御部髪有すること、更には、(5)前記等比熱
係数に異常が検出さり、へ時に関与する等比熱の収束係
数をゼロにすることで等什器係数の変更処理を停止する
こと、更には、(6)前記等化器係数に異常が検出され
た時に、それ以降異常がなくなるまでの間、その等比熱
に入力される入力信号レベルをクリップすること、更に
は、(7)前記等化器係数の異常を等比熱係数変更時に
用いる誤差より求めること、更には、(8)前記等化器
係数の異常を等什器係数の全体形状より求めることを特
徴としたものである。以下、本発明の実施例に基づいて
説明する。
In order to achieve the above object, the present invention provides (1) delay means for delay-shifting a received signal at regular time intervals, and multiplication means for multiplying each tap output of the delay means by a predetermined tap gain. and an accumulation means for summing up the results of each multiplication by the multiplication means, and automatically adjusts the tap gain based on a predetermined calculation to remove the frequency characteristics of the transmission path superimposed on the received signal, etc. The equalizer includes an abnormal amplitude determining section that detects a received signal with an abnormal amplitude due to instantaneous interruption or amplitude fluctuation, and an equalizer coefficient changing process from the time when the abnormal amplitude of the received signal is detected by the abnormal amplitude determining section. Equalization that controls the equalizer coefficient changing process by canceling the restriction on changing the equalization amount coefficient and restarting the equalizer coefficient changing process after a predetermined time from the time when abnormal amplitude is no longer detected. (2) a delay means for delay-shifting a received signal at fixed time intervals; a multiplication means for multiplying each tap output of the delay means by a predetermined tap gain; an integrating means for summing up the results of each multiplication by the means, and an adaptive equalizer that removes frequency characteristics of a transmission path superimposed on the received signal by automatically adjusting a tap gain based on a predetermined calculation,
an abnormal amplitude determination unit that detects a received signal with an abnormal amplitude such as instantaneous interruption or amplitude fluctuation, and restricts equalizer coefficient changing processing only when the abnormal amplitude of the received signal is detected by the abnormal amplitude determination unit; (3) comprising an equalizer coefficient change control unit that controls the equalizer coefficient change process by not placing any restrictions on the change of the equalizer coefficients at the time when no abnormal amplitude is detected; or (3)
A delay means for delay-shifting a received signal at regular time intervals, a multiplication means for multiplying each tap output of the delay means by a predetermined tap gain, and an integration means for summing each multiplication result by the multiplication means. In adaptive isospecific heat, which automatically adjusts the tap gain based on a predetermined calculation to remove the frequency characteristics of the transmission path superimposed on the received signal, the received signal with abnormal amplitude such as instantaneous interruption or amplitude fluctuation. of,
From the time when an abnormality in the equal fixture coefficient is detected by the error determination section that determines based on the error between the playback output value and the judgment value, and the difference determination section, the change processing of the equal fixture coefficient is also limited. having an equal specific heat coefficient change control unit that controls the equal specific heat coefficient changing process by canceling the change of the equal fixture coefficient and restarting the equal specific heat coefficient changing process after a predetermined period of time from the time when no abnormality is detected; , (4) a delay means for delay-shifting the received signal at regular time intervals, and a multiplication means for multiplying each tap output of the delay means by a predetermined tap gain;
6. Adaptive equalization that removes the frequency characteristics of the transmission path superimposed on the received signal by automatically adjusting the tap gain based on a predetermined calculation. The device includes an error determining section that determines a received signal with an abnormal amplitude 4 such as clarity or amplitude fluctuation based on the error between the reproduction output value and the judgment value, and an error determining section that determines the received signal with abnormal amplitude 4 such as clarity and amplitude fluctuation, and at the time when an abnormality in the fixture coefficient is detected by the error determining section. Control the process of changing the constant heat coefficient by restricting the process of changing the constant heat coefficient that contributes to the error in the constant heat coefficient calculation at the child time 7, and not restricting the change of the constant constant heat coefficient at other times, etc. (5) An abnormality is detected in the specific heat coefficient, and the process of changing the specific heat coefficient is stopped by setting the convergence coefficient of the specific heat coefficient involved in heating to zero. , furthermore, (6) when an abnormality is detected in the equalizer coefficient, the level of the input signal input to the equal specific heat is clipped until the abnormality disappears thereafter; furthermore, (7) The present invention is characterized in that the abnormality in the equalizer coefficient is determined from an error used when changing the equal heat coefficient, and further, (8) the abnormality in the equalizer coefficient is determined from the overall shape of the constant heat coefficient. Hereinafter, the present invention will be explained based on examples.

第1−図は、本発明による適応型等化器の一実施例を説
明するための構成図で、図中、]−は異邦振幅判定部、
2は係数変更制御部、3は等比熱係数更新計算部、4は
誤差計算部、5は判定部、68〜6gは遅延素子、7 
a 〜7 h let、乗算器、8は積算器である。こ
の第1図に示lまた本発明の適応型等化器の構成は、第
14図に示した従来の適応型等化器に異常振幅判定部】
と係数変更制御部2が付加された構成となっている(図
中においては太線で囲まれている)。この適応型等化器
において、瞬断、振幅変動といった異常振幅が異常振幅
判定部1で検出されると、係数変更制御部2において等
比熱係数変更に関わる制御が行なわれる。
FIG. 1 is a block diagram for explaining an embodiment of an adaptive equalizer according to the present invention, and in the figure, ]- is a foreign amplitude determination section;
2 is a coefficient change control section, 3 is an isothermal coefficient update calculation section, 4 is an error calculation section, 5 is a determination section, 68 to 6g are delay elements, 7
a to 7 h let, a multiplier, and 8 is an integrator. The configuration of the adaptive equalizer of the present invention shown in FIG. 1 is the same as that of the conventional adaptive equalizer shown in FIG.
It has a configuration in which a coefficient change control section 2 is added (encircled by a thick line in the figure). In this adaptive equalizer, when an abnormal amplitude such as a momentary interruption or an amplitude fluctuation is detected by the abnormal amplitude determination section 1, the coefficient change control section 2 performs control related to changing the isothermal coefficient.

第2図は、第]−図に示した適応型等化器による係数変
更制御部の動作を説明するためのフローチャートである
。以下、各ステップに従って順に説明する。
FIG. 2 is a flowchart for explaining the operation of the coefficient change control section using the adaptive equalizer shown in FIG. Below, each step will be explained in order.

!お」工:受信信号が入力されると、該受信信号の振幅
値(s)に異常があるかどうか判断する。振幅の許容範
囲としては、最大値waxと最小値m」nを設ける。
! Operation: When a received signal is input, it is determined whether there is an abnormality in the amplitude value (s) of the received signal. As the permissible amplitude range, a maximum value wax and a minimum value m'n are provided.

S t eB−字−;振幅値(s)が異常であると、す
なわちmj、n> s 、 max<sと判断さt、る
と、収束係数rをOとして等比熱係数変更計算を行う。
If it is determined that the amplitude value (s) is abnormal, that is, mj, n>s, max<s, then the convergence coefficient r is set to O and the isospecific heat coefficient change calculation is performed.

これは前記(2)式においてr=oとすることで等什器
係数C,の更新を停止することに相当する。
This corresponds to stopping the update of the uniform fixture coefficient C by setting r=o in the equation (2).

stem ;前記5tep lにおいて振幅値(、)が
異常でなくなったら、すなわちm]n≦5≦maxと判
断されると、等比熱係数変更再開判定を行うにこでの処
理は、たとえば異常振幅でなくなってからの受信信号の
個数を計算して、これが所定の閾値を越えたかどうかを
判定する。所定の閾値を越えなければ、収束係数r二〇
のまま、前記5tep 2を介して等比熱係数変更計算
を行う。
stem; When the amplitude value (,) is no longer abnormal in step 1, that is, when it is determined that m]n≦5≦max, the process in Japan for determining whether to resume changing the isospecific heat coefficient is, for example, when the amplitude is abnormal. The number of received signals after the signal disappears is calculated and it is determined whether this exceeds a predetermined threshold. If the predetermined threshold value is not exceeded, the isospecific heat coefficient change calculation is performed through step 2 described above while keeping the convergence coefficient r20.

4;前記5tep 3において、受信信号の個数が所定
の閾値を越えた時には収束係数rをO以外の数に設定し
、等比熱係数変更計算を行う。これは、トランスバーサ
ル型のフィルタ−においては、入力信号が遅延素子に順
次先送られてくる為、異常振幅信号値が遅延素子からな
くなるまでの時間が必要となるからである。
4; In step 3 above, when the number of received signals exceeds a predetermined threshold, the convergence coefficient r is set to a number other than O, and isospecific heat coefficient change calculation is performed. This is because in a transversal type filter, input signals are sequentially sent to the delay elements, so it takes time for the abnormal amplitude signal value to disappear from the delay elements.

第3図は、本発明の他の実施例を示す図で、図中、21
は異常振幅判定部、22は係数変更制御部、23a〜2
3hは等比熱係数更新計算部(図中では斜線を付しであ
る)、24は誤差計算部、25は判定部、26a〜26
gは第1の遅延素子。
FIG. 3 is a diagram showing another embodiment of the present invention, in which 21
22 is an abnormal amplitude determination unit, 22 is a coefficient change control unit, and 23a to 2
3h is an isospecific heat coefficient update calculation unit (hatched in the figure); 24 is an error calculation unit; 25 is a determination unit; 26a to 26;
g is the first delay element.

27 a −27hは乗算器、28は積算器、29a〜
29fは第2の遅延素子である。この例では入力(受信
)信号を遅延するための第1の遅延素子26a〜26g
と、収束係数rを遅延する為の第2の遅延素子29a〜
29fを持ち、異常振幅が発生した時に、すなわちS>
waxあるいは sくminのとき係数変更制御部22
で収束係数rをOとして、また、入力信号が異常振幅で
ないときにはr≠Oとして収束係数rの第2の遅延素子
に送る。等比熱係数更新演算部23a〜23hでは、各
第2の遅延素子毎に与えられた収束係数Fを用いて計算
が行なわれる。
27a-27h is a multiplier, 28 is an integrator, 29a~
29f is a second delay element. In this example, first delay elements 26a to 26g for delaying input (received) signals
and a second delay element 29a for delaying the convergence coefficient r.
29f, and when an abnormal amplitude occurs, that is, S>
When wax or smin, coefficient change control unit 22
The convergence coefficient r is set to O, and when the input signal does not have an abnormal amplitude, r≠O is set and the input signal is sent to the second delay element with the convergence coefficient r. The isospecific heat coefficient update calculation units 23a to 23h perform calculations using the convergence coefficient F given to each second delay element.

第4図は、第3図に示した実施例の係数変更制御部の動
作を説明するためのフローチャートである。以下、各ス
テップに従って順に説明する。
FIG. 4 is a flowchart for explaining the operation of the coefficient change control section of the embodiment shown in FIG. Below, each step will be explained in order.

扛旺上;受信信号が入力されると、該受信信号の振幅値
(S)に異常があるかどうか判断する。振幅の許容範囲
としては、最大値maxと最小値winを設ける。
When a received signal is input, it is determined whether there is an abnormality in the amplitude value (S) of the received signal. As the permissible amplitude range, a maximum value max and a minimum value win are provided.

扛肚蛮;振幅値(S)に異常があると、すなわち、m1
n) s 、 wax< sと判断されると、収束係数
r=oとして等他船係数変更計算を行う。
If there is an abnormality in the amplitude value (S), that is, m1
n) When it is determined that s, wax<s, the convergence coefficient r=o and other ship coefficient change calculations are performed.

扛肚立;振幅値(S)が異常でなくなったら、すなわち
、min≦S≦maXと判断されると収束係数r≠O(
rをO以外の数)に設定し、等他船係数変更計算を行う
When the amplitude value (S) is no longer abnormal, that is, when it is determined that min≦S≦maX, the convergence coefficient r≠O(
Set r to a number other than O, and perform other ship coefficient change calculations.

第5図は、本発明の更に他の実施例を示す図で、図中、
31は異常振幅判定部及び振幅クリップ部、32は等比
熱係数更新計算部、33は誤差計算部、34は判定部、
35a〜35gは遅延素子、36a〜36hは乗算器、
37は積算器である。
FIG. 5 is a diagram showing still another embodiment of the present invention, in which:
31 is an abnormal amplitude determination unit and an amplitude clipping unit, 32 is an isospecific heat coefficient update calculation unit, 33 is an error calculation unit, 34 is a determination unit,
35a to 35g are delay elements, 36a to 36h are multipliers,
37 is an integrator.

この例では、異常振幅が発生した時に、入力信号をまず
異常振幅であるか否かを振幅クリップ部31で判断し、
振幅に制限を加えて等化器に入力する。
In this example, when an abnormal amplitude occurs, the amplitude clipping section 31 first determines whether or not the input signal has an abnormal amplitude,
Add a limit to the amplitude and input it to the equalizer.

第6図は、第5図に示した実施例の振幅クリップ部の動
作を説明するためのフローチャートである。以下、各ス
テップに従って順に説明する。
FIG. 6 is a flowchart for explaining the operation of the amplitude clipping section of the embodiment shown in FIG. Below, each step will be explained in order.

iすけり、;受信信号が入力されると、該受信信号の振
幅値(S)に異常があるかどうか判断する。振幅の許容
範囲としては、最大値maxと最小値ll1inを設け
る。受信信号の振幅値(s)が異常でなければ等他船係
数変更計算を行う。
When a received signal is input, it is determined whether there is an abnormality in the amplitude value (S) of the received signal. As the permissible amplitude range, a maximum value max and a minimum value ll1in are provided. If the amplitude value (s) of the received signal is not abnormal, other ship coefficient change calculations are performed.

匹辻主;振幅値(S)に異常があると、すなわちtni
n> s 、 max< sと判断されると、まずwi
n>sかどうか判断する。
Totsuji master: If there is an abnormality in the amplitude value (S), that is, tni
When it is determined that n>s and max<s, first wi
Determine whether n>s.

廷肚立;min>sである場合には、s=minとして
等他船係数変更計算を行う。
If min>s, then calculate the other ship coefficient change by setting s=min.

とりrA−; win> sでなければ、今度はwax
<sであるかどうか判断する。
Tori rA-; If win > s, then wax
Determine whether <s.

廷肛5 ; max(sであれば、s=maxとして等
他船係数変更計算を行う。この場合、max = m1
n=0とすれば、第3図と等価の処理を行うことが可能
である。
5; max (If s, calculate the other ship coefficient change by setting s = max. In this case, max = m1
If n=0, it is possible to perform processing equivalent to that shown in FIG.

第7図は1本発明による適応型等化器の他の実施例を示
す図で1図中、41は係数変更制御部、42は等比熱係
数蓄積部(buffer)、43は等比熱係数変更計算
部、44は誤差判定部、45は誤差計算部、46は判定
部、47a〜47gは遅延素子、48a〜48hは乗算
器、49は積算器である。この第7図に示した本発明の
適応型等化器の構成は、第14図に示した従来の適応型
等化器に誤差判定部441等化器係数蓄積部(buff
er)42、係数変更制御部41が付加された構成とな
っている。この適応型等化器に瞬断、振幅変動等の異常
振幅を伴う受信信号が入力されると、前記(3)式に従
って誤差eが増大する。
FIG. 7 is a diagram showing another embodiment of the adaptive equalizer according to the present invention. In the figure, 41 is a coefficient change control section, 42 is an isospecific heat coefficient storage section (buffer), and 43 is an isospecific heat coefficient change section. 44 is an error determining section, 45 is an error calculating section, 46 is a determining section, 47a to 47g are delay elements, 48a to 48h are multipliers, and 49 is an integrator. The configuration of the adaptive equalizer of the present invention shown in FIG. 7 is based on the conventional adaptive equalizer shown in FIG.
er) 42 and a coefficient change control section 41 are added. When a received signal with abnormal amplitude such as instantaneous interruption or amplitude fluctuation is input to this adaptive equalizer, the error e increases according to equation (3) above.

従って、この誤差eを誤差判定部にて判定し。Therefore, this error e is determined by an error determining section.

この値が閾値以上である場合には、係数変更制御部にお
いて等比熱係数変更に関わる制御を行な第F3図は、第
7図に丞し7た実施例の係数変更制御部の動作を説明す
るだめのフロー・チャー1−である。以下、各ステップ
に従って順に説明する。
If this value is greater than or equal to the threshold, the coefficient change control unit performs control related to changing the isospecific heat coefficient. FIG. F3 explains the operation of the coefficient change control unit of the embodiment shown in FIG. This is the final flowchart 1-. Below, each step will be explained in order.

i轡1 ;等化種係数に異常があるかと・)かを誤差(
e)に基づいて判断する。誤差(e)の許容範囲とし、
では、最大値1laxを設ける。
i 轡1 ;Is there an abnormality in the equalization seed coefficient?
Make a judgment based on e). The allowable range of error (e) is
Now, a maximum value of 1 lax is set.

色(叩又;誤差(e)が異常である場合、すなわちe>
Inaxと判断された時は、等化種係数を誤差Cが増大
する以前に等他船係数蓄積部に蓄積されている等化種係
数に置き換えて用い、かつ収束係数rをOとして等化種
係数の更新剖算紮行なう。これは前記(2)式において
r=oとすることで等化種係数の更新を停止【2、同一
の等化種係数を異常振幅区間用いることで等化器の発散
殻防止している。
If the error (e) is abnormal, that is, e>
When it is determined that Inax, the equalization seed coefficient is replaced with the equalization seed coefficient stored in the other ship coefficient storage section before the error C increases, and the convergence coefficient r is set to O, and the equalization seed coefficient is used. Perform a calculation to update the coefficients. This is because updating of the equalization seed coefficient is stopped by setting r=o in the above equation (2) [2. By using the same equalization seed coefficient in the abnormal amplitude section, a divergent shell of the equalizer is prevented.

白4;次に順次人力信号を等化器に入力し・、毎回誤差
を誤差判定部にて判定して、等化種係数が異常でなくな
ったら等他船係数再開判定を行なう。該等化器係数変更
再開゛1コ1定での処理は、たとえば等化種係数が異常
でなくなってからの入力信号の個数を計算し5て、これ
が所定の閾値を越えたかと−うかで判断する。
White 4: Next, the human input signals are sequentially input to the equalizer, and the error is determined each time by the error determining section, and when the equalization seed coefficient is no longer abnormal, a determination is made to restart other ship coefficients, etc. The process of restarting the equalizer coefficient change is, for example, by calculating the number of input signals after the equalization seed coefficient is no longer abnormal, and determining whether this exceeds a predetermined threshold. to decide.

朴町−4−;入力信号の個数が所定の閾値を越えた時に
は、収束係数rを0以ダの数番:′設定する。
Park Town-4-: When the number of input signals exceeds a predetermined threshold, the convergence coefficient r is set to a number greater than or equal to 0:'.

そうでなかったらr=oのまま等他船係数変更を行なう
。これは、[・ランスバー・サル型のフィルターにおい
ては1人力信号が遅延素子に順次先送られてくる為、異
常振幅信号値が遅延素子からなくなるまでの時間が必要
となるからである。等他船係数蓄積部への蓄積は、異常
が発生ずるまでの間、所定のタイミング毎に行なう。但
、このタイミング毎 ルレートの所定倍にておこなう1、 第9図は、本発明の他の実施例を示ず図で、図中、5〕
−は係数変更制御部、52a・〜・5211は等他船係
数蓄積部及び等化種係数更新JI算部。
If not, change other ship coefficients such as leaving r=o. This is because in the Lancebar-Sal type filter, since the single-handed signal is sequentially sent to the delay elements, it takes time for the abnormal amplitude signal value to disappear from the delay elements. Accumulation in the other ship coefficient accumulation section is performed at predetermined timing until an abnormality occurs. However, this is performed at a predetermined times the rate for each timing. 1. Figure 9 does not show other embodiments of the present invention, and in the figure, 5]
- is a coefficient change control unit, and 52a to 5211 are other ship coefficient storage units and equalization type coefficient update JI calculation units.

53a〜53fは第2の遅延素子、54は誤差判定部、
55は誤差計算部、56は判定部、57aヘ−57gは
第〕の遅延素子、58 a−58hは乗p器、59は積
算器である。この例τは人力<A号を遅延するための第
」の遅延素子D 7 a〜57gと、収束係数を遅延す
る為の第2の遅延素子53、□1〜53fを持ち、その
他の構成は第7図とほぼ同しであるが、等化種係数に異
常が発生した時のみ、すなわちe>l1laxのときそ
のエラーの計算に特に関Ijする収束係数rについて係
数変更制御部5」で収束係数rをOとしで、また、そう
でないときに(4r・≠0どして収束係数rの第2の遅
延M =fに送る。ここで、誤差Cの31算に関与する
収束係数rとしては、例えばセンタータップC。
53a to 53f are second delay elements; 54 is an error determination unit;
55 is an error calculation section, 56 is a determination section, 57a to 57g are delay elements, 58a to 58h are multipliers, and 59 is an integrator. In this example, τ has a delay element D 7 a to 57g for delaying the human power <A, and a second delay element 53, □1 to 53f for delaying the convergence coefficient, and the other configurations are This is almost the same as FIG. 7, but only when an abnormality occurs in the equalization seed coefficient, that is, when e>l1lax, the coefficient change control unit 5 converges the convergence coefficient r that is particularly related to the error calculation. Let the coefficient r be O, and if not, (4r≠0) and send it to the second delay M = f of the convergence coefficient r.Here, as the convergence coefficient r involved in the 31 calculation of the error C, For example, center tap C.

より以降のタップC−iに関わる計算に関与するもので
ある。等他船係数更新演算部52a−521iでは、名
第2の遅延素子53a〜53f@に与えられた収束係数
rを用いて計算が行なわ肛る。
It is involved in calculations related to subsequent taps C-i. In the other ship coefficient update calculation units 52a to 521i, calculations are performed using the convergence coefficients r given to the second delay elements 53a to 53f.

第10図は、第9図に示した実施例の係数変更制御部の
lJj作を説明するためのフローチャー1−である。以
下、名ステップに従って順に説明する。
FIG. 10 is a flowchart 1- for explaining the operation of the coefficient change control section of the embodiment shown in FIG. 9. The steps will be explained below in order.

qieJり−2等化器係数に異常があるかどうかを誤差
(e)に基づいて判断する。誤差(+3)の許容範囲と
しては、最大値maxを設はン:)。
It is determined whether there is an abnormality in the qieJ ri-2 equalizer coefficient based on the error (e). The maximum value max is set as the allowable range of error (+3).

村eJ−λ;誤差<e>が異邦である場合、すなわち(
、!> maxと判断された時は、収束係数r−0とし
て等他船係数変更計算を行う。
Village eJ−λ; If the error <e> is a foreign country, that is, (
,! > When it is determined that the convergence coefficient is r-0, other ship coefficient change calculations are performed.

斗肝附;誤差(e)が異常でなくなった時、すなわちe
≦mayと判断された時は、収束係数r≠O(rをO以
外の数)に設定し、等他船係数変更計算を行う。
When the error (e) is no longer abnormal, that is, e
When it is determined that ≦may, the convergence coefficient r≠O is set (r is a number other than O), and other ship coefficient change calculations are performed.

この処理により各フィルター係数の発散を防11゜する
ことができる。また、等他船係数蓄積部の処理は、第7
図と同じである。
This processing can prevent divergence of each filter coefficient by 11 degrees. In addition, the processing of the other ship coefficient accumulation section is as follows:
Same as the figure.

第]コー図は、本発明の更に他の実施例を示ず図で、図
中、6コは振幅フリップ部、62は等他船係数更新訓算
部、63は誤差判定部、64は誤差計算部、65は判定
部、66 a−66gは遅延素子、67a−67hは乗
算器、68は積算器である。この例では、等化種係数に
異惇が発生した時に、入力信号を振幅クリップ部6]−
で制限し、振幅に制限を加えて等化器に入力する。
[No.] Coe diagram is a diagram showing still another embodiment of the present invention, in which 6 is an amplitude flip section, 62 is an equal ship coefficient update calculation section, 63 is an error judgment section, and 64 is an error A calculating section, 65 is a determining section, 66a to 66g are delay elements, 67a to 67h are multipliers, and 68 is an integrator. In this example, when an abnormality occurs in the equalization seed coefficients, the amplitude clipping unit 6]-
, and input the amplitude to the equalizer.

第12図は、第1−]1図に示しまた実施例の振幅りリ
ップ部の動作を説明するためのフローチャートである。
FIG. 12 is a flowchart for explaining the operation of the amplitude rip section of the embodiment shown in FIG. 1-1.

以下、各ステップに従って順に説明する。Below, each step will be explained in order.

匹肛よ:等化器係数の異常、すなわち誤差(e)が異常
であると判断された時には、受信信号の振幅値に異常が
発生しているものと考えて、受信信号の振幅値(S)を
所定の閾値と比較する。振幅値(S)の許容範囲として
は、最大値max、最小値winを設ける。振幅値(S
)が異常でなければ、すなわちwin≦S≦waxであ
れば、等化器係数変更計算を行う。
Comparable: When it is determined that the equalizer coefficient is abnormal, that is, the error (e) is abnormal, it is assumed that an abnormality has occurred in the amplitude value of the received signal, and the amplitude value (S ) with a predetermined threshold. As the permissible range of the amplitude value (S), a maximum value max and a minimum value win are provided. Amplitude value (S
) is not abnormal, that is, if win≦S≦wax, equalizer coefficient change calculation is performed.

jリエy工;振幅値(S)に異常があると、すなわち、
ll1in> s 、 IIIax< sと判断される
と、まずwin>sかどうか判断する。
If there is an abnormality in the amplitude value (S), that is,
When it is determined that ll1in>s and IIIax<s, it is first determined whether win>s.

j隘d ; win > sである場合には、s=mi
nとして等化器係数変更計算を行う。
If win > s, s=mi
Equalizer coefficient change calculation is performed as n.

扛弘土;m1n)sでなければ、今度はwaxesであ
るかどうか判断する。
If it is not 扛弘地;m1n)s, then it is determined whether it is waxes.

旦肛且;max<sであれば、s=maxとして等化器
係数変更計算を行う。
If max<s, equalizer coefficient change calculation is performed with s=max.

これによって、等化器係数の発散は防ぐことができる。This can prevent divergence of the equalizer coefficients.

なお、第12図において、max = min = 0
とすれば、第9図と等価の処理を行うことが可能である
In addition, in FIG. 12, max = min = 0
If so, it is possible to perform processing equivalent to that shown in FIG.

第13図は、本発明の更に他の実施例を示す図である。FIG. 13 is a diagram showing still another embodiment of the present invention.

図中、71は係数変更制御部、72は等他船係数蓄積部
(buffer)、73は等他船係数形状判定部、75
は誤差計算部、76は判定部、79は積算器である。こ
の第13図に示された構成は、第7図に示した構成のよ
うに等化器係数の異常判定を誤差(e)から行なうもの
ではなく、等化量係数全体の形状を元に行なうものであ
る。
In the figure, 71 is a coefficient change control unit, 72 is an equal ship coefficient storage unit (buffer), 73 is an equal other ship coefficient shape determination unit, and 75 is a coefficient change control unit.
76 is an error calculating section, 76 is a determining section, and 79 is an integrator. The configuration shown in FIG. 13 does not judge the abnormality of the equalizer coefficient based on the error (e) as in the configuration shown in FIG. It is something.

この処理の一例として、変更前の係数と変更後の係数を
比較して大幅に変化したタップが存在した時に等化器係
数に異常が発生したとして扱うことができる。
As an example of this process, when a coefficient before change and a coefficient after change are compared and there is a tap that has changed significantly, it can be treated as an abnormality occurring in the equalizer coefficient.

効−−−釆3 以上の説明から明らかなように、本発明によると、以下
のような効果がある。
Effects---Button 3 As is clear from the above description, the present invention has the following effects.

(1)受信信号を一定の時間間隔で遅延シフトする遅延
手段と、該遅延手段の各タップ出力に所定のタップケイ
ンを乗算する乗算手段と、該乗算手段による各乗算結果
を総和する積算手段とから成り、所定の演算にもとづい
てタップゲインを自動的に調節することで前記受信信号
に重畳する伝送器の周波数特性を取り除く適応型等化器
において、受信信号に瞬断、振幅変動等の異常振幅が検
出された時点より等化器係数の変更処理を制限し、異常
振幅が検出されなくなった時点から所定時間後に前記等
化器係数の変更の制限を解除して等他船係数変更処理を
再開することで等他船係数変更処理を制御することによ
り等化器係数の発散を防止することができる。
(1) Delay means for delay-shifting a received signal at regular time intervals, multiplication means for multiplying each tap output of the delay means by a predetermined tap cane, and integration means for summing the results of each multiplication by the multiplication means. In an adaptive equalizer that removes the frequency characteristics of the transmitter superimposed on the received signal by automatically adjusting the tap gain based on a predetermined calculation, the received signal has abnormalities such as instantaneous interruptions and amplitude fluctuations. The process of changing the equalizer coefficient is restricted from the time when the amplitude is detected, and after a predetermined time from the time when the abnormal amplitude is no longer detected, the restriction on changing the equalizer coefficient is canceled and the process of changing the coefficient of other ships is performed. By restarting, etc., it is possible to prevent divergence of the equalizer coefficients by controlling the other ship coefficient change processing.

(2)受信信号を一定の時間間隔で遅延シフトする遅延
手段と、該遅延手段の各タップ出力に所定のタップゲイ
ンを乗算する乗算手段と、該乗算手段による各乗算結果
を総和する積算手段とから成り、所定の演算にもとづい
てタップゲインを自動的に調節することで前記受信信号
に重畳する伝送器の周波数特性を取り除く適応型等化器
において。
(2) a delay means for delay-shifting a received signal at regular time intervals; a multiplication means for multiplying each tap output of the delay means by a predetermined tap gain; and an integration means for summing the results of each multiplication by the multiplication means; In an adaptive equalizer that removes frequency characteristics of a transmitter superimposed on the received signal by automatically adjusting tap gain based on a predetermined calculation.

受信信号に瞬断、振幅変動等の異常振幅が観測された時
のみの等化器係数の変更処理を制限し、異常振幅が検出
されない時点での等化器係数の変更には制限を加えない
ことで等他船係数変更処理を制御することにより等化器
係数の発散を防止するとともに、インパルス性のノイズ
成分に対して効果的な適応型等化器を実現できる。
Restricts the process of changing the equalizer coefficients only when abnormal amplitudes such as instantaneous interruptions or amplitude fluctuations are observed in the received signal, and does not impose restrictions on changing the equalizer coefficients when no abnormal amplitudes are detected. In this way, it is possible to prevent divergence of the equalizer coefficients by controlling the process of changing the coefficients of other ships, and to realize an adaptive equalizer that is effective against impulsive noise components.

(3)受信信号を一定の時間間隔で遅延シフトする遅延
手段と、該遅延手段の各タップ出力に所定のタップゲイ
ンを乗算する乗算手段と、該乗算手段による各乗算結果
を総和する積算手段とから成り、所定の演算にもとづい
てタップゲインを自動的に調節することで前記受信信号
に重畳する伝送器の周波数特性を取り除く適応型等化器
において、瞬断、振幅変動等の異常振幅を含んだ受信信
号が等化器係数により検出された時点より等化器係数の
変更処理を制限し、異常振幅が検出されなくなった時点
から所定時間後に等化器係数の変更の制限を解除して等
他船係数変更処理を再開することで等他船係数変更処理
を制御することにより等化器係数の発散を防止すること
ができる。
(3) delay means for delay-shifting the received signal at regular time intervals; multiplication means for multiplying each tap output of the delay means by a predetermined tap gain; and integration means for summing the results of each multiplication by the multiplication means. An adaptive equalizer that removes the frequency characteristics of the transmitter superimposed on the received signal by automatically adjusting the tap gain based on a predetermined calculation, which includes abnormal amplitudes such as instantaneous interruptions and amplitude fluctuations. However, the process of changing the equalizer coefficient is restricted from the time when the received signal is detected by the equalizer coefficient, and the restriction on changing the equalizer coefficient is canceled after a predetermined period of time from the time when abnormal amplitude is no longer detected. By restarting the other ship coefficient changing process, etc., it is possible to prevent the equalizer coefficient from divergence by controlling the other ship coefficient changing process.

(4)等化器係数の異常を誤差から求めるよりも各タッ
プの等化器係数の変動に注目シて求めた方が迅速に対応
することかできる。
(4) Rather than finding abnormalities in the equalizer coefficients from errors, it is possible to respond more quickly by paying attention to fluctuations in the equalizer coefficients of each tap.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による適応等化器の一実施例を説明す
るだめの構成図、第2図は、第11図の適応等化器によ
る係数変更制御部の動作を説明するためのフロ・−チャ
ー1・、第3図は、本発明の他の実施例を示す図、第4
図は、第3図に示した実施例の係数変更制御部の動作を
説明するためのフローチャート、第5図は、本発明の更
に他の実施例を示す図、第6図は、第5図シ、T示した
実施例の振幅クリップ部の動作を説明するためのフロー
チャート、第7図は、本発明による適応等化器の他の実
施例を示す図、第8図は、第7図に示した実施例の係数
変更制御部の動作を説明するためのフローチャー1−1
第9図は、本発明の他の実施例を示す図、第10図は、
第9図に示した実施例の係数変更制御部の動作>5明す
るためのフローチャー1−5第J、 ]−図は、本発明
の更に他の実施例を示す回、第12図は、第1−1図に
示【、また実施例の振幅クリップ部の動作を説明するた
めのフローチャー[−1第13図は、本発明の更に他の
実施例を示す図、第14図は、従来の適応型等化器の構
成図である。 ]、・・異常振幅判定部、2・・係数変更制御部、:3
等化器係数更新計算部、4・・誤差計算部、5・・・判
定部、68〜6g・・・遅延素子、7 a □ 7 h
・・・乗算器、8・・・積算器。 −F! ベ 第 図 第 図
FIG. 1 is a block diagram for explaining an embodiment of the adaptive equalizer according to the present invention, and FIG. 2 is a flowchart for explaining the operation of the coefficient change control section of the adaptive equalizer of FIG.・-Char 1・, FIG. 3 is a diagram showing another embodiment of the present invention, and FIG. 4 is a diagram showing another embodiment of the present invention.
5 is a flowchart for explaining the operation of the coefficient change control section of the embodiment shown in FIG. 3, FIG. 5 is a diagram showing still another embodiment of the present invention, and FIG. FIG. 7 is a flowchart for explaining the operation of the amplitude clipping section of the embodiment shown in FIG. Flowchart 1-1 for explaining the operation of the coefficient change control unit of the illustrated embodiment
FIG. 9 is a diagram showing another embodiment of the present invention, and FIG. 10 is a diagram showing another embodiment of the present invention.
Operation of the coefficient change control section of the embodiment shown in FIG. FIG. 1-1 shows a flowchart for explaining the operation of the amplitude clipping section of the embodiment [-1 FIG. 13 is a diagram showing still another embodiment of the present invention, and FIG. , is a configuration diagram of a conventional adaptive equalizer. ],... Abnormal amplitude determination section, 2... Coefficient change control section, :3
Equalizer coefficient update calculation unit, 4... error calculation unit, 5... determination unit, 68-6g... delay element, 7 a □ 7 h
...multiplier, 8...integrator. -F! Diagram diagram

Claims (1)

【特許請求の範囲】 1、受信信号を一定の時間間隔で遅延シフトする遅延手
段と、該遅延手段の各タップ出力に所定のタップゲイン
を乗算する乗算手段と、該乗算手段による各乗算結果を
総和する積算手段とから成り、所定の演算にもとづいて
タップゲインを自動的に調節することで前記受信信号に
重畳する伝送路の周波数特性を取り除く適応型等化器に
おいて、瞬断、振幅変動等の異常振幅を伴う受信信号を
検出する異常振幅判定部と、該異常振幅判定部により受
信信号の異常振幅が検出された時点より等化器係数の変
更処理を制限し、異常振幅が検出されなくなった時点か
ら所定時間後に前記等化器係数の変更の制限を解除して
等化器係数変更処理を再開することで等化器係数変更処
理を制御する等化器係数変更制御部を有することを特徴
とする適応型等化器。 2、受信信号を一定の時間間隔で遅延シフトする遅延手
段と、該遅延手段の各タップ出力に所定のタップゲイン
を乗算する乗算手段と、該乗算手段による各乗算結果を
総和する積算手段とから成り、所定の演算にもとづいて
タップゲインを自動的に調節することで前記受信信号に
重畳する伝送路の周波数特性を取り除く適応型等化器に
おいて、瞬断、振幅変動等の異常振幅を伴う受信信号を
検出する異常振幅判定部と、該異常振幅判定部により受
信信号の異常振幅が検出された時のみ等化器係数の変更
処理を制限し、異常振幅が検出されない時点の等化器係
数の変更には制限を加えないことで等化器係数変更処理
を制御する等化器係数変更制御部を有することを特徴と
する適応型等化器。 3、受信信号を一定の時間間隔で遅延シフトする遅延手
段と、該遅延手段の各タップ出力に所定のタップゲイン
を乗算する乗算手段と、該乗算手段による各乗算結果を
総和する積算手段とから成り、所定の演算にもとづいて
タップゲインを自動的に調節することで前記受信信号に
重畳する伝送路の周波数特性を取り除く適応型等化器に
おいて、瞬断、後幅変動等の異常振幅を伴う受信信号を
、再生出力値と判定値との誤差より判定する誤差判定部
と、該誤差判定部により等化器係数の異常が検出された
時点より等化器係数の変更処理を制限し、等化器係数に
異常が検出されなくなった時点から所定時間後に等化器
係数の変更を解除して等化器係数変更処理を再開するこ
とで等化器係数変更処理を制御する等化器係数変更制御
部を有することを特徴とする適応型等化器。 4、受信信号を一定の時間間隔で遅延シフトする遅延手
段と、該遅延手段の各タップ出力に所定のタップゲイン
を乗算する乗算手段と、該乗算手段による各乗算結果を
総和する積算手段とから成り、所定の演算にもとづいて
タップゲインを自動的に調節することで前記受信信号に
重畳する伝送路の周波数特性を取り除く適応型等化器に
おいて、瞬断、振幅変動等の異常振幅を伴う受信信号を
、再生出力値と判定値との誤差より判定する誤差判定部
と、該誤差判定部により等化器係数の異常が検出された
時にその時点の等化器係数計算のエラーに寄与する等化
器係数の変更処理を制限し、それ以外の時点の等化器係
数の変更には制限を加えないことで等化器係数変更処理
を制御する等化器係数変更制御部を有することを特徴と
する適応型等化器。
[Claims] 1. Delay means for delay-shifting a received signal at fixed time intervals, multiplication means for multiplying each tap output of the delay means by a predetermined tap gain, and each multiplication result by the multiplication means In an adaptive equalizer that removes the frequency characteristics of the transmission path superimposed on the received signal by automatically adjusting the tap gain based on a predetermined calculation, the adaptive equalizer is comprised of an integrating means for summing the signal, and eliminates the frequency characteristics of the transmission path superimposed on the received signal. an abnormal amplitude determination unit that detects a received signal with an abnormal amplitude; and an abnormal amplitude determination unit that restricts equalizer coefficient changing processing from the time when the abnormal amplitude of the received signal is detected by the abnormal amplitude determination unit, so that the abnormal amplitude is no longer detected. and an equalizer coefficient change control unit that controls the equalizer coefficient change process by canceling the restriction on the change of the equalizer coefficient and restarting the equalizer coefficient change process after a predetermined time from the point in time. Features an adaptive equalizer. 2. Delay means for delay-shifting the received signal at fixed time intervals, multiplication means for multiplying each tap output of the delay means by a predetermined tap gain, and integration means for summing the results of each multiplication by the multiplication means. In an adaptive equalizer that removes the frequency characteristics of the transmission path superimposed on the received signal by automatically adjusting the tap gain based on a predetermined calculation, the adaptive equalizer removes the frequency characteristics of the transmission path superimposed on the received signal. An abnormal amplitude determination unit detects the signal, and the abnormal amplitude determination unit limits the equalizer coefficient changing process only when an abnormal amplitude of the received signal is detected, and changes the equalizer coefficient at the time when no abnormal amplitude is detected. An adaptive equalizer comprising an equalizer coefficient change control section that controls equalizer coefficient change processing without imposing any restrictions on changes. 3. Delay means for delay-shifting the received signal at regular time intervals, multiplication means for multiplying each tap output of the delay means by a predetermined tap gain, and integration means for summing the results of each multiplication by the multiplication means. In an adaptive equalizer that removes the frequency characteristics of the transmission path superimposed on the received signal by automatically adjusting the tap gain based on a predetermined calculation, abnormal amplitudes such as momentary interruptions and rear width fluctuations occur. an error determining section that determines a received signal based on an error between a reproduced output value and a determination value; and an error determining section that limits equalizer coefficient changing processing from the time when an abnormality in the equalizer coefficient is detected by the error determining section; Equalizer coefficient change that controls the equalizer coefficient change process by canceling the change of the equalizer coefficient and restarting the equalizer coefficient change process after a predetermined time from the time when no abnormality is detected in the equalizer coefficient. An adaptive equalizer comprising a control section. 4. Delay means for delay-shifting the received signal at fixed time intervals, multiplication means for multiplying each tap output of the delay means by a predetermined tap gain, and integration means for summing the results of each multiplication by the multiplication means. In an adaptive equalizer that removes the frequency characteristics of the transmission path superimposed on the received signal by automatically adjusting the tap gain based on a predetermined calculation, the adaptive equalizer removes the frequency characteristics of the transmission path superimposed on the received signal. an error determining unit that determines a signal based on the error between a reproduction output value and a determination value; and an error determining unit that contributes to an error in equalizer coefficient calculation at that time when an abnormality in the equalizer coefficient is detected by the error determining unit. It is characterized by having an equalizer coefficient change control unit that controls the equalizer coefficient change process by restricting the change process of the equalizer coefficient and not imposing restrictions on the change of the equalizer coefficient at other times. An adaptive equalizer.
JP2082465A 1990-03-29 1990-03-29 Adaptive equalizer Pending JPH03280708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2082465A JPH03280708A (en) 1990-03-29 1990-03-29 Adaptive equalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2082465A JPH03280708A (en) 1990-03-29 1990-03-29 Adaptive equalizer

Publications (1)

Publication Number Publication Date
JPH03280708A true JPH03280708A (en) 1991-12-11

Family

ID=13775259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2082465A Pending JPH03280708A (en) 1990-03-29 1990-03-29 Adaptive equalizer

Country Status (1)

Country Link
JP (1) JPH03280708A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318518A (en) * 2004-03-31 2005-11-10 Yamaha Corp Double-talk state judging method, echo cancel method, double-talk state judging apparatus, echo cancel apparatus, and program
JP2008022422A (en) * 2006-07-14 2008-01-31 Nec Electronics Corp Adaptive equalization apparatus and receiver
JP2008252642A (en) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd Relay apparatus
JP2015201809A (en) * 2014-04-10 2015-11-12 ザインエレクトロニクス株式会社 receiving apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318518A (en) * 2004-03-31 2005-11-10 Yamaha Corp Double-talk state judging method, echo cancel method, double-talk state judging apparatus, echo cancel apparatus, and program
JP2008022422A (en) * 2006-07-14 2008-01-31 Nec Electronics Corp Adaptive equalization apparatus and receiver
JP2008252642A (en) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd Relay apparatus
JP4693808B2 (en) * 2007-03-30 2011-06-01 パナソニック株式会社 Relay device
JP2015201809A (en) * 2014-04-10 2015-11-12 ザインエレクトロニクス株式会社 receiving apparatus
US10333692B2 (en) 2014-04-10 2019-06-25 Thine Electronics, Inc. Reception apparatus

Similar Documents

Publication Publication Date Title
US4514855A (en) Means and method for reduction of phase jitter
JPH06232774A (en) Demodulation system
JPH03133218A (en) Digital signal reception system and receiver
US4638495A (en) Automatic adaptive equalizer
TW201312981A (en) Timing recovery module and timing recovery method
JPH03280708A (en) Adaptive equalizer
JPH0411406A (en) Equalizer
US7848401B2 (en) Method and system for static data-pattern compensated adaptive equalizer control
US5661753A (en) Decision feedback equalizer having leaky tap gain controllers
JPH0447721A (en) Automatic equalizer
WO2020039519A1 (en) Light receiver, optical signal receiving method and data reproduction device
US10091030B2 (en) Blind channel equaliser
US6956915B2 (en) Method of correcting frequency error
US7848471B2 (en) Method and system for on-line data-pattern compensated adaptive equalizer control
JP2001197139A (en) Agc circuit and data communication equipment
JPH01194614A (en) Automatic equalizer
JP3080642B2 (en) Automatic equalization system
US20050135469A1 (en) Method and system for adaptive prefiltering of a signal for transmission
JP2595282B2 (en) Decision feedback equalizer
JPH0477106A (en) Adaptive receiver
US6442198B1 (en) Method and apparatus for stabilizing a decision feedback equalizer
JP3324496B2 (en) Automatic equalizer
JP2966000B2 (en) Data modem
JPH01295535A (en) Automatic equalizer
JPS62175028A (en) Adaptive automatic equalizer