JPH03269024A - Production of surface-modified fluorine resin - Google Patents

Production of surface-modified fluorine resin

Info

Publication number
JPH03269024A
JPH03269024A JP7069990A JP7069990A JPH03269024A JP H03269024 A JPH03269024 A JP H03269024A JP 7069990 A JP7069990 A JP 7069990A JP 7069990 A JP7069990 A JP 7069990A JP H03269024 A JPH03269024 A JP H03269024A
Authority
JP
Japan
Prior art keywords
fluorine resin
wavelength
ultraviolet rays
fluororesin
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7069990A
Other languages
Japanese (ja)
Inventor
Tomoyuki Murakami
知之 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP7069990A priority Critical patent/JPH03269024A/en
Publication of JPH03269024A publication Critical patent/JPH03269024A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/14PVF, i.e. polyvinyl fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/16PVDF, i.e. polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene

Abstract

PURPOSE:To sufficiently subject the surface of a fluorine resin to hydrophilic treatment by irradiating the fluorine resin with ultraviolet ray having specific wavelength or below. CONSTITUTION:The surface of a fluorine resin is subjected to hydrophilic treatment by irradiating the fluorine resin with ultraviolet ray having <=1800Angstrom wavelength or below. Furthermore, the above-mentioned ultraviolet ray is obtained by deuterium lump, F2 laser, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はその表面が変成改質されて成るフッ素樹脂の製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a fluororesin whose surface is modified by modification.

(従来の技術) フッ素樹脂は耐薬品性、耐熱性、耐候性等に優れ、種々
の分野で使用されているが、その表面エネルギーが低く
、他の材料との接着が困難であったり、インク等の付着
性が劣るという問題があった。
(Prior art) Fluororesins have excellent chemical resistance, heat resistance, weather resistance, etc., and are used in various fields, but their low surface energy makes it difficult to bond with other materials, and they are difficult to bond with other materials. There was a problem of poor adhesion.

一般にプラスチックの接着性を改善するため、表面を親
水化することが知られており、例えば、特開昭63−1
10225号公報に記載されているように、低圧水銀ラ
ンプを好ましい照射源として用い、1849人(オング
ストローム)および2537人の波長の紫外線を照射す
る方法が提案されている。
It is generally known to make the surface of plastic hydrophilic in order to improve its adhesiveness.
As described in Japanese Patent No. 10225, a method has been proposed in which a low-pressure mercury lamp is used as a preferable irradiation source and irradiation with ultraviolet rays having wavelengths of 1849 Angstroms and 2537 Angstroms is performed.

この方法は1849人の波長の紫外線により、空気中か
らオゾンを発生させ、一方、2537人の波長の紫外線
により、オゾンから活性酸素を発生させ、この活性酸素
をプラスチックの疎水性に寄与している水素と結合せし
め、その表面から取り去ることにより、親水化するもの
である。
In this method, ozone is generated from the air using ultraviolet rays with a wavelength of 1,849 people, while active oxygen is generated from ozone using ultraviolet rays with a wavelength of 2,537 people, and this active oxygen contributes to the hydrophobicity of plastics. It becomes hydrophilic by bonding with hydrogen and removing it from the surface.

(発明が解決しようとする課題) そして、該公開公報には、この方法がフッ素樹脂にも通
用できる旨の紹介がある。しかしながら、本発明者の検
討によれば、この方法はフッ素樹脂に適用する限りにお
いては、なお改良の余地があることが判明した。
(Problems to be Solved by the Invention) The publication also introduces that this method can also be applied to fluororesins. However, studies conducted by the present inventors have revealed that there is still room for improvement in this method as long as it is applied to fluororesins.

上記方法がフッ素樹脂に対する限り改良の余地があるの
は、フッ素樹脂はその分子内に水素を有しないか、ある
いは水素を有する場合でもその量が少なく、その結果、
脱水素現象が生じないか、あるいは僅かに生ずるに過ぎ
ないためであろう。
The reason why the above method has room for improvement as far as fluororesins are concerned is that fluororesins either do not have hydrogen in their molecules, or even if they do have hydrogen, the amount of hydrogen is small.
This may be because no dehydrogenation phenomenon occurs or only a slight dehydrogenation phenomenon occurs.

本発明は、かような現状に鑑みてなされたもので、フッ
素樹脂に対して充分な効果を示す新規な処理方法および
表面親水化処理されたフッ素樹脂を生産する新規な方法
を擾供しようとするものである。
The present invention has been made in view of the current situation, and aims to provide a new treatment method that is sufficiently effective for fluororesin and a new method for producing fluororesin whose surface has been made hydrophilic. It is something to do.

(課題を解決するための単段) 本発明に係る表面変成フッ素樹脂の製造法は、フッ素樹
脂に波長1800Å以下の紫外線を照射することを特徴
とするものである。
(Single stage for solving the problem) The method for producing a surface-modified fluororesin according to the present invention is characterized by irradiating the fluororesin with ultraviolet rays having a wavelength of 1800 Å or less.

本発明において用いるフッ素樹脂はC−F結合を有する
ものであればよく、例えばポリテトラフルオロエチレン
(PTFE)、テトラフルオロエチレン−へキサフルオ
ロプロピレン共重合体(FEP) 、テトラフルオロエ
チレン−パーフルオロアルキルビニルエーテル共重合体
(PFA)、ポリクロロトリフルオロエチレン(PCT
FE)、エチレン−テトラフルオロエチレン共重合体(
ETFE) 、ボリフフ化ビニリデン(PVdF)、ポ
リフッ化ビニル(PVF)等をその具体例として挙げる
ことができる。
The fluororesin used in the present invention may have a C-F bond, such as polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl Vinyl ether copolymer (PFA), polychlorotrifluoroethylene (PCT)
FE), ethylene-tetrafluoroethylene copolymer (
Specific examples thereof include polyvinylidene fluoride (ETFE), polyvinylidene fluoride (PVdF), and polyvinyl fluoride (PVF).

これらフッ素樹脂は粉末であっても良いが、通常はフィ
ルム、管状体、棒状体、多孔質体、織布、不織布、繊維
等所定の形状に成形したものを用いる。
Although these fluororesins may be in the form of powder, they are usually formed into a predetermined shape such as a film, a tubular body, a rod-shaped body, a porous body, a woven fabric, a nonwoven fabric, or a fiber.

そして、本発明においてはこのフッ素樹脂の粉末あるい
は成形体に対して1800Å以下の波長の紫外線を照射
する。かような短波長の紫外線の照射によれば、下記実
施例にも示されるごとく、表面が充分に親水化され、接
着性の改善されたフッ素樹脂を容易に製造できる。短波
長の紫外線の照射により何故かような顕著且つ特有の効
果が得られるのかは必ずしも明らかではないが、該照射
によりフッ素樹脂表面においてC−F結合の切断が生じ
、その表面エネルギーが高まるためと推論される。
In the present invention, the fluororesin powder or molded body is irradiated with ultraviolet rays having a wavelength of 1800 Å or less. By irradiating with such short wavelength ultraviolet rays, it is possible to easily produce a fluororesin whose surface is sufficiently hydrophilic and whose adhesive properties are improved, as shown in the examples below. It is not necessarily clear why irradiation with short-wavelength ultraviolet rays produces such a remarkable and unique effect, but it is inferred that the irradiation causes cleavage of C-F bonds on the fluororesin surface, increasing its surface energy. be done.

なお、紫外線の波長が1800人を超えるような長波長
のものであると、親木化効果が得られないので好ましく
ない。
In addition, it is not preferable that the ultraviolet rays have a long wavelength exceeding 1,800 UV rays, since the parent tree effect cannot be obtained.

波長が1800Å以下の短波長の紫外線は重水素ランプ
、F2レーザー等によって得られる。前者は例えば主に
波長1216人、1254人あるいは1608人の紫外
線を、後者は例えば波長1570人の紫外線を発生する
Short-wavelength ultraviolet light having a wavelength of 1800 Å or less can be obtained using a deuterium lamp, F2 laser, or the like. The former mainly generates ultraviolet rays with a wavelength of 1216, 1254 or 1608, for example, and the latter mainly generates ultraviolet rays with a wavelength of 1570.

かような照射源による短波長紫外線の照射時間は、フッ
素樹脂の種類および形状、照射源の種類等により変わり
得るが、通常は約10秒〜10分間である。
The irradiation time of short wavelength ultraviolet rays from such an irradiation source may vary depending on the type and shape of the fluororesin, the type of irradiation source, etc., but is usually about 10 seconds to 10 minutes.

本発明において、フッ素樹脂に対する紫外線の照射は空
気中で行ってもよいが、酸素濃度が11000pp以下
の雰囲気中で行えば照射時間を短縮できるので好ましい
In the present invention, the fluororesin may be irradiated with ultraviolet rays in the air, but it is preferable to irradiate the fluororesin in an atmosphere with an oxygen concentration of 11,000 pp or less because the irradiation time can be shortened.

(発明の効果) 本発明は上記のように構成され、短波長の紫外線を照射
するようにしたので、フッ素樹脂の表面を簡単且つ充分
に親水化処理できる。
(Effects of the Invention) Since the present invention is configured as described above and irradiates with short wavelength ultraviolet rays, the surface of the fluororesin can be easily and sufficiently hydrophilized.

(実施例) 以下、実施例により本発明を更に詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 厚さ100μmのPTFEフィルムを150Wの重水素
ランプの設置された密閉容器に入れ、容器内を窒素置換
して酸素濃度600ppmに調整する。
Example 1 A PTFE film with a thickness of 100 μm is placed in a closed container equipped with a 150 W deuterium lamp, and the inside of the container is replaced with nitrogen to adjust the oxygen concentration to 600 ppm.

次いで、該ランプを照射源として紫外線を10分間照射
することにより、片面が親水化処理されたPTFEフィ
ルム(試料l)を得た。なお、ランプとフィルムの距離
は5cmに設定した。
Next, by irradiating ultraviolet rays for 10 minutes using the lamp as an irradiation source, a PTFE film (sample 1) whose one side was hydrophilized was obtained. Note that the distance between the lamp and the film was set to 5 cm.

実施例2 フィルムの材質、照射時間、酸素濃度を第1表に示すよ
うにすること以外は実施例1と同様にして9種類の表面
親水化フィルム(試料2〜10)を得た。
Example 2 Nine types of surface-hydrophilized films (Samples 2 to 10) were obtained in the same manner as in Example 1, except that the film material, irradiation time, and oxygen concentration were as shown in Table 1.

実施例3 厚さ100μmのPTFEフィルムに対し、IWのF2
レーザーを用いて空気中で2分間照射し、片面が親水化
処理されたPTFEフィルム(試料11)を得た。
Example 3 For a PTFE film with a thickness of 100 μm, F2 of IW
A PTFE film (sample 11) whose one side was hydrophilized was obtained by irradiating the film with a laser for 2 minutes in the air.

これら実施例により得られたフィルムについて、接触角
および接着力を下記要領で測定し、得られた結果を第1
表に示す。
The contact angle and adhesive strength of the films obtained in these Examples were measured as follows, and the obtained results were
Shown in the table.

A、接触角 フィルムの紫外線照射面の20°Cにおける水の接触角
を接触角測定器により測定する。
A. Contact angle The contact angle of water at 20°C on the ultraviolet irradiated surface of the film is measured using a contact angle measuring device.

B、接着力 各フィルムについて、幅11の試験片を2枚用意し、一
方の試験片の紫外線照射面にエポキシ系接着剤(コニシ
株式会社製、商品名ボンドEセットM)を塗布し、この
塗布面にもう一方の試験片の紫外線照射面を向かい合わ
せて貼り合わせ、100℃で1時間加熱することにより
接着剤を加熱硬化させる。
B. Adhesive strength For each film, prepare two test pieces with a width of 11, apply an epoxy adhesive (manufactured by Konishi Co., Ltd., trade name: Bond E Set M) to the ultraviolet irradiated surface of one test piece, and The ultraviolet irradiated surface of the other test piece was bonded to the coated surface, facing each other, and the adhesive was heated and cured by heating at 100° C. for 1 hour.

次いで、温度25°、速度250■/分の条件で180
”ビーリング法により万能引張試験機を用いて接着力を
測定する。
Next, the temperature was 25° and the speed was 250 cm/min.
``Adhesive strength is measured using a universal tensile tester using the beer ring method.

なお、比較のため各試料を得るのに用いた未照射フィル
ムのデータを併記する。
For comparison, data of the unirradiated film used to obtain each sample is also shown.

更に、比較のため、低圧水銀ランプ(一部1849人の
波長の紫外線を発止する)あるいは高圧水銀ランプ(主
として3650人の波長の紫外線を発生する)を照射源
とすること以外は試料4の場合と同様に作業して得られ
た2種類のPTFEフィルム(試料12および13)の
データも併記する。
Furthermore, for comparison, sample 4 was used except that the irradiation source was a low-pressure mercury lamp (partially emitting ultraviolet rays at the wavelength of 1,849 people) or a high-pressure mercury lamp (mainly generating ultraviolet rays at the wavelength of 3,650 people). Data for two types of PTFE films (Samples 12 and 13) obtained by the same procedure as in the case above are also listed.

(以下、余白)(Hereafter, margin)

Claims (1)

【特許請求の範囲】[Claims] フッ素樹脂に波長が1800Å以下の紫外線を照射する
ことを特徴とする表面変成フッ素樹脂の製造法。
A method for producing a surface-modified fluororesin, which comprises irradiating the fluororesin with ultraviolet light having a wavelength of 1800 Å or less.
JP7069990A 1990-03-19 1990-03-19 Production of surface-modified fluorine resin Pending JPH03269024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7069990A JPH03269024A (en) 1990-03-19 1990-03-19 Production of surface-modified fluorine resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7069990A JPH03269024A (en) 1990-03-19 1990-03-19 Production of surface-modified fluorine resin

Publications (1)

Publication Number Publication Date
JPH03269024A true JPH03269024A (en) 1991-11-29

Family

ID=13439125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7069990A Pending JPH03269024A (en) 1990-03-19 1990-03-19 Production of surface-modified fluorine resin

Country Status (1)

Country Link
JP (1) JPH03269024A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320789A (en) * 1991-11-06 1994-06-14 Japan Atomic Energy Research Institute Surface modification of fluorine resin with laser light
FR2699543A1 (en) * 1992-12-22 1994-06-24 Agency Ind Science Techn A method of surface modification of a fluorocarbon polymer molded article and method of chemically coating the surface using an ultraviolet laser.
EP0673751A2 (en) * 1994-03-11 1995-09-27 Sumitomo Electric Industries, Ltd. Process for modifying surface of fluororesin product
US5730924A (en) * 1994-12-28 1998-03-24 Sumitomo Heavy Industries, Ltd. Micromachining of polytetrafluoroethylene using radiation
JP2006274176A (en) * 2005-03-30 2006-10-12 Univ Of Miyazaki Method for modification of surface of plastics, plating method for surface of plastics, plastics, and plastics surface modification device
CN102532578A (en) * 2011-12-30 2012-07-04 北京工业大学 Process for surface treatment and surface modification of edge sealing strip by using deuterium lamp UV (Ultraviolet) radiation light
WO2023100387A1 (en) * 2021-11-30 2023-06-08 ウシオ電機株式会社 Surface modification method, method for producing resin plating material, and electroless plating apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320789A (en) * 1991-11-06 1994-06-14 Japan Atomic Energy Research Institute Surface modification of fluorine resin with laser light
FR2699543A1 (en) * 1992-12-22 1994-06-24 Agency Ind Science Techn A method of surface modification of a fluorocarbon polymer molded article and method of chemically coating the surface using an ultraviolet laser.
US5580616A (en) * 1992-12-22 1996-12-03 Director-General Of Agency Of Industrial Science And Technology Method for surface modifying a fluorocarbonpolymer
EP0673751A2 (en) * 1994-03-11 1995-09-27 Sumitomo Electric Industries, Ltd. Process for modifying surface of fluororesin product
US5555549A (en) * 1994-03-11 1996-09-10 Sumitomo Electric Industries, Ltd. Process for modifying a surface of a fluororesin product
EP0673751A3 (en) * 1994-03-11 1997-07-23 Sumitomo Electric Industries Process for modifying surface of fluororesin product.
US5730924A (en) * 1994-12-28 1998-03-24 Sumitomo Heavy Industries, Ltd. Micromachining of polytetrafluoroethylene using radiation
JP2006274176A (en) * 2005-03-30 2006-10-12 Univ Of Miyazaki Method for modification of surface of plastics, plating method for surface of plastics, plastics, and plastics surface modification device
CN102532578A (en) * 2011-12-30 2012-07-04 北京工业大学 Process for surface treatment and surface modification of edge sealing strip by using deuterium lamp UV (Ultraviolet) radiation light
WO2023100387A1 (en) * 2021-11-30 2023-06-08 ウシオ電機株式会社 Surface modification method, method for producing resin plating material, and electroless plating apparatus

Similar Documents

Publication Publication Date Title
Béquet et al. From ultrafiltration to nanofiltration hollow fiber membranes: a continuous UV-photografting process
CN102131566A (en) Method of forming an asymmetric membrane
JP3993096B2 (en) Modified polymer having improved properties and method for producing the same
JP2011522090A (en) Method for producing a ligand-functionalized substrate
JPH03269024A (en) Production of surface-modified fluorine resin
JP2011523965A (en) Ligand functionalized substrate
JP4030897B2 (en) Plastic bonding method
Dadsetan et al. In vitro studies of platelet adhesion on laser‐treated polyethylene terephthalate surface
FI900138A0 (en) FOERFARANDE FOER HYDROXYLERING AV HYDROBISKA POLYMERYTOR.
JP3428123B2 (en) Method for producing surface-modified fluororesin
FR2632080A1 (en) POROUS CONTACT LENS AND METHOD OF MANUFACTURING THE SAME
CN107428071A (en) Formed body
Kaplan et al. Plasma processes and adhesive bonding of polytetrafluoroethylene
JPH03281544A (en) Production of surface-modified fluorine resin
WO2019230862A1 (en) Joined body and method for manufacturing same
Dumitrascu et al. Corona discharge treatments of plastified PVC samples used in biological environment
Sperling et al. Immobilization of human thrombomodulin onto PTFE
Brewis et al. Adhesion studies of fluoropolymers
Muraoka et al. Sulfonation of UHMW-PE fibers for adhesion promotion in epoxy polymers
JP2935084B2 (en) Hydrophilic fluorinated resin molded product
JPH03128941A (en) Surface modification of material
JPH07110904B2 (en) Hydrophilic fluorine film
JP3227002B2 (en) Modification method of fluororesin surface
Sevast’yanov et al. Comparative study of the influence of polyethylene film surface modification on interaction with blood components
JPH06228343A (en) Process and apparatus for surface modification of fluororesin