JPH03263303A - Manufacture of magnetic powder for magnetic recording medium - Google Patents

Manufacture of magnetic powder for magnetic recording medium

Info

Publication number
JPH03263303A
JPH03263303A JP2062412A JP6241290A JPH03263303A JP H03263303 A JPH03263303 A JP H03263303A JP 2062412 A JP2062412 A JP 2062412A JP 6241290 A JP6241290 A JP 6241290A JP H03263303 A JPH03263303 A JP H03263303A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic recording
powder
hexagonal ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2062412A
Other languages
Japanese (ja)
Other versions
JP2691790B2 (en
Inventor
Hiroyuki Tanaka
裕之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP2062412A priority Critical patent/JP2691790B2/en
Publication of JPH03263303A publication Critical patent/JPH03263303A/en
Application granted granted Critical
Publication of JP2691790B2 publication Critical patent/JP2691790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain magnetic recording medium having high recording density and large reproducing output, by containing a specified amount of pottasium oxide in noncrystalline solid wherein composition for forming specified hexagonal system ferrite and glass forming constituent are mixed. CONSTITUTION:After composition for forming hexagonal system ferrite powder shown by a formula AO.n{(Fe1-xMx)2O3} and glass forming constituent are mixed, heated, and melted, these are rapidly cooled and noncrystallized. Pottasium oxide of 1-5mol% is contained. In the formula, A is one kind of element selected out of Ba, Sr, Ca and pb, M is one kind of element selected out of Co, Ti, In, Ni, Cu, Zn, Nb, Zr, V, Ta, Al, Cr, Sb, Hf, Mo, W, Ir, Sn and Mg, 5.0<=n<=6.5 and 0.02<=x<=0.24. When the substitution amount (x) of a substituting element is smaller than 0.02, the coercive force becomes too large. When (x) exceeds 0.24, the coercive force becomes too small. When the ratio of pottasium oxide exceeds 5mol%, noncrystalline solid becomes apt to absorb water content and carbon dioxide gas, and stable manufacturing is made difficult.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は主に高密度垂直記録媒体の構成に用いられる磁
性粉末の製造方法に係わり、特に粒度分布が狭くかつ、
分散性にすぐれた磁気記録媒体用磁性粉末を製造する方
法に関する。
Detailed Description of the Invention [Purpose of the Invention (Field of Industrial Application) The present invention relates to a method for producing magnetic powder mainly used in the construction of high-density perpendicular recording media, and in particular has a narrow particle size distribution and
The present invention relates to a method for producing magnetic powder for magnetic recording media with excellent dispersibility.

(従来の技術) 従来から、基体と垂直な方向の磁化を用いる垂直記録方
式に適した高密度垂直記録媒体として、垂直方向に磁化
容易軸を配向し易いBaフェライトのような六方晶系フ
ェライトを用いたものが知られている。すなわち、Ba
フェライトの微粉末を、樹脂バインダ、溶剤および各種
添加剤と共に混合して磁性塗料を調製し、この磁性塗料
を非磁性基体上に塗布したものか知られている。
(Prior art) Hexagonal ferrite, such as Ba ferrite, whose axis of easy magnetization is easily oriented in the perpendicular direction, has been used as a high-density perpendicular recording medium suitable for a perpendicular recording method that uses magnetization perpendicular to the substrate. The one used is known. That is, Ba
It is known that a magnetic paint is prepared by mixing fine ferrite powder with a resin binder, a solvent, and various additives, and this magnetic paint is coated on a non-magnetic substrate.

ところで、一般にBaフェライトにおいては、フェライ
トの構成原子の一部を、特定の金属元素で置換すること
により、その保磁力を磁気記録に適した値まで低減させ
ている。また、Baフェライトでは他の磁性粉末と比べ
て、媒体出力に影響を及ぼす飽和磁化が低いという欠点
があるため、ZnOやNb2 o5を添加することによ
って、前記特性を改善している。
By the way, in general, in Ba ferrite, the coercive force is reduced to a value suitable for magnetic recording by replacing some of the constituent atoms of the ferrite with a specific metal element. Furthermore, compared to other magnetic powders, Ba ferrite has a drawback of low saturation magnetization that affects the medium output, so the above characteristics are improved by adding ZnO or Nb2o5.

そして、このような磁気記録媒体用の六方晶系フェライ
ト磁性粉末を製造する方法としては、たとえば、六方晶
系フェライトの基本成分と、保磁力低減用の置換成分と
、飽和磁化向上など特性改善用の添加成分およびガラス
形成成分を混合して加熱溶融させ、この溶融物を急速に
冷却して非晶質化(ガラス化)し、得られた非晶質体に
熱処理を施して六方晶系フェライトの結晶粒子を析出さ
せた後、これを粉砕し、得られた微粉末をリン酸や酢酸
などの希酸で洗浄処理し、ガラス形成成分を溶解除去す
ることによって、所望の六方晶系フェライト磁性粉末を
分離抽出するという、ガラス結晶化法が採られている。
As a method for manufacturing hexagonal ferrite magnetic powder for use in magnetic recording media, for example, a basic component of hexagonal ferrite, a substitute component for reducing coercive force, and a component for improving characteristics such as improving saturation magnetization are used. The additive components and glass-forming components are mixed and heated to melt, the melt is rapidly cooled to become amorphous (vitrified), and the resulting amorphous body is heat treated to form hexagonal ferrite. After precipitating crystal particles, they are crushed, and the resulting fine powder is washed with dilute acid such as phosphoric acid or acetic acid to dissolve and remove the glass-forming components, thereby producing the desired hexagonal ferrite magnetism. The glass crystallization method is used to separate and extract the powder.

(発明か解決しようとする課題) しかしながら、このような従来の製造方法では、得られ
る磁性粉末の粒外径が粗大し、しかも粒度分布が広がっ
てしまう。このため磁性粉末を塗料化する工程で、樹脂
バインダに分散させにくく、また構成した磁気記録媒体
のS/N比(出力信号とノイズレベルとの比)が低くな
るという問題があった。つまり、高密度磁気記録媒体用
として期待されながら、十分に所要の機能を果し得ない
という不都合があった。
(Problems to be Solved by the Invention) However, in such a conventional manufacturing method, the obtained magnetic powder has a coarse outer particle diameter and a wide particle size distribution. For this reason, in the process of turning the magnetic powder into a paint, it is difficult to disperse it in a resin binder, and the S/N ratio (ratio of output signal to noise level) of the constructed magnetic recording medium is low. In other words, although it is expected to be used for high-density magnetic recording media, it has the disadvantage that it cannot fully perform the required functions.

本発明はこのような問題を解決するためになされたもの
で、高い記録密度と大きな再生出力を有する磁気記録媒
体を得ることができるような、粒度分布が狭くて分散性
が良好な六方晶系フェライト磁性粉末の製造方法の提供
を目的とする。
The present invention was made in order to solve these problems, and it uses a hexagonal crystal system with a narrow particle size distribution and good dispersibility, which makes it possible to obtain a magnetic recording medium with high recording density and large reproduction output. The purpose of the present invention is to provide a method for producing ferrite magnetic powder.

[発明の構成] (課題を解決するための手段) 本発明の磁気記録媒体用磁性粉末は、 一般式、 AO−n  f(Fe   M  )20B+x  x (但し、AはBa、Sr、CaおよびPbの中から選ば
れた少なくとも1種の元素、Mは、Co。
[Structure of the Invention] (Means for Solving the Problems) The magnetic powder for magnetic recording media of the present invention has the general formula: AO-n f (Fe M )20B+x x (where A is Ba, Sr, Ca, and Pb). At least one element selected from among these, M is Co.

Tis In、Ni、C11% ZnSNb、Zrs 
V%Ta5At、Cr5Sb、Hf、MO,W% I 
rsSnおよびMgの中から選ばれた少なくとも1種の
元素、5,0≦n≦6.5.0.02≦x≦0.24)
で示される六方晶系フェライト粉末が形成されるような
組成分と、その他のガラス形成成分とを混合して加熱溶
融させた後、急速冷却を施して非晶質化する工程と、 前記形成した非晶質体に所要温度の熱処理を施して六方
晶系フェライトを析出させる工程と、前記析出した結晶
を粉砕した後、ガラス形成成分の溶解除去処理を施して
六方晶系フェライト粉末を抽出する工程とを備えた磁気
記録媒体用磁性粉末の製造方法において、 前記非晶質体中に、酸化カリウムを1〜5mo1%の割
合で含有させることを特徴としている。
Tis In, Ni, C11% ZnSNb, Zrs
V%Ta5At, Cr5Sb, Hf, MO, W% I
At least one element selected from rsSn and Mg, 5,0≦n≦6.5.0.02≦x≦0.24)
A step of mixing a composition that forms a hexagonal ferrite powder represented by and other glass-forming components and heating and melting the mixture, followed by rapid cooling to make it amorphous; A step of precipitating hexagonal ferrite by subjecting the amorphous body to a heat treatment at a required temperature, and a step of pulverizing the precipitated crystals and then performing a treatment to dissolve and remove glass-forming components to extract hexagonal ferrite powder. A method for producing a magnetic powder for a magnetic recording medium, comprising: potassium oxide being contained in the amorphous body at a ratio of 1 to 5 mo1%.

ここで元素Mは、形成される六方晶系フェライトの保磁
力を制御するための置換成分である。しかして、この置
換元素の置換mxが0.02より小さいと保磁力が大き
くなりすぎ、反対にXが0.24を超えると保磁力が小
さくなりすぎて好ましくない。
Here, element M is a substitution component for controlling the coercive force of the hexagonal ferrite to be formed. However, if the substitution mx of this substitution element is less than 0.02, the coercive force will become too large, whereas if X exceeds 0.24, the coercive force will become too small, which is not preferable.

また、上記六方晶系フェライト形成成分とともに非晶質
体中に含有される酸化カリウムに20成分は、得られる
磁性粉末の粒度分布を狭小化する役割をなすもので、そ
の比率が他の成分全体の5111o1%を超えると、非
晶質体が水分や炭酸ガスを吸収し易くなり、安定に六方
晶系フェライトを製造することが難しくなる。また非晶
質体が水分や炭酸ガスを吸収しないようにしても、非晶
質体の融点が低下するため、焼結を起こさずに所要の元
素の置換および結晶化を充分に行うことが困難である。
In addition, the 20 components of potassium oxide contained in the amorphous body together with the hexagonal ferrite-forming components play a role in narrowing the particle size distribution of the obtained magnetic powder, and the ratio of these components to the total other components is If it exceeds 5111o1%, the amorphous body will easily absorb moisture and carbon dioxide, making it difficult to stably produce hexagonal ferrite. Furthermore, even if the amorphous body is prevented from absorbing moisture or carbon dioxide gas, the melting point of the amorphous body decreases, making it difficult to sufficiently substitute the required elements and crystallize without causing sintering. It is.

したがって酸化カリウムの含有比率は、5m。Therefore, the content ratio of potassium oxide is 5m.

1%以下であることが必要である。It is necessary that it be 1% or less.

また、酸化カリウムの比率が1 mo1%より小さいと
、粒度性/1iの狭小化が効果的になされず好ましくな
い。
On the other hand, if the ratio of potassium oxide is less than 1 mo1%, the particle size ratio/1i cannot be effectively narrowed, which is not preferable.

(作用) 本発明の磁気記録媒体用磁性粉末の製造方法においては
、六方晶系フェライトが形成されるような成分を主体と
する組成分を、加熱溶融させた後急冷して非晶質化する
にあたり、酸化カリウムに20が非晶質体中に1〜5I
IIO1%の比率で含有されるように、原料成分の種類
および組成比を選択したことにより理由は明確でないが
、粒度分布が狭くすぐれた磁気特性および分散性を有す
る磁性粉末を、容易にかつ再現性良く得ることができる
(Function) In the method for producing magnetic powder for magnetic recording media of the present invention, a composition mainly consisting of a component that forms hexagonal ferrite is melted by heating and then rapidly cooled to become amorphous. 20 in potassium oxide and 1-5I in the amorphous body
Although the reason is not clear, the type and composition ratio of the raw material components were selected so that the IIO content was 1%, but it was possible to easily and reproduce magnetic powder with a narrow particle size distribution and excellent magnetic properties and dispersibility. You can get it easily.

つまり、本発明方法は高い記録密度と大きな再生出力を
有する磁気記録媒体の構成に適する磁性粉末の提供を可
能とする。
In other words, the method of the present invention makes it possible to provide a magnetic powder suitable for constructing a magnetic recording medium having high recording density and large reproduction output.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例1〜3 先ず、フェライトの基本成分Fe2O3と、保磁力低減
のための置換成分CoOと、飽和磁化向上のための添加
成分ZnOおよびNb2O5と、ガラス形成成分Bad
SB203、および酸化カリウムに20とを、表−1に
示す組成比(mo1%)をなすように、弁柄、酸化コバ
ルト、炭酸バリウム、はう酸、酸化カリウムの各原料を
秤取した。
Examples 1 to 3 First, the basic component of ferrite Fe2O3, the substituted component CoO for reducing coercive force, the additive components ZnO and Nb2O5 for improving saturation magnetization, and the glass forming component Bad
The raw materials of Bengara, cobalt oxide, barium carbonate, oxalic acid, and potassium oxide were weighed out so that the composition ratio (mo1%) of SB203 and potassium oxide was as shown in Table 1.

表−1 次いで、前記秤取した各原料を充分混合した後、白金る
つぼ内に収容し、高周波加熱ヒーターを用いて1350
℃の温度で加熱溶融した。しかる後、前記溶融物を回転
数500rpi、加圧力5ton/cIIYの水冷双ロ
ール上に注いで急冷し、厚さ50μmのフレーク状の非
晶質体を得た。
Table 1 Next, after thoroughly mixing the weighed raw materials, they were placed in a platinum crucible and heated to 1350°C using a high-frequency heater.
It was heated and melted at a temperature of ℃. Thereafter, the melt was poured onto water-cooled twin rolls with a rotational speed of 500 rpm and a pressure of 5 ton/cIIY to be rapidly cooled to obtain a flaky amorphous material with a thickness of 50 μm.

上記で得た各非晶質体を、それぞれ800℃の温度で5
時間加熱処理し、Baフェライトの結晶を析出させた後
、得られた結晶化物を粉砕し、次いでこの結晶粉末を酢
酸溶液(10%)中に投入し、12時間超音波による凝
集塊分解を行いながら、ガラス成分の溶解、除去処理を
行った。
Each of the amorphous bodies obtained above was heated at a temperature of 800°C for 5
After heat treatment for a period of time to precipitate Ba ferrite crystals, the obtained crystallized product was pulverized, and then this crystal powder was put into an acetic acid solution (10%), and the agglomerates were decomposed by ultrasonic waves for 12 hours. At the same time, the glass components were melted and removed.

しかる後、80℃以上の温水を用いて洗浄を繰返し、ガ
ラス形成成分などを完全に除去してから、脱水乾燥処理
を行い3種類の六方晶系フェライト粉末を得た。
Thereafter, washing was repeated using hot water of 80° C. or higher to completely remove glass-forming components, and then dehydration and drying were performed to obtain three types of hexagonal ferrite powders.

また比較例として、表−1に示す組成比になるように各
原料成分を秤取し、実施例と同様にして六方晶系フェラ
イト粉末を製造した。
Further, as a comparative example, each raw material component was weighed out so as to have the composition ratio shown in Table 1, and hexagonal ferrite powder was manufactured in the same manner as in the example.

上記によってそれぞれ得た磁性粉末について、平均粒径
D (nm) 、保磁力Hc(Oe)、飽和磁化a g
 (emu/g )および比表面積5s(nf/g)の
緒特性をそれぞれ測定したところ表−2に示すごとくで
あった。         (以下余白)表−2 また実施例1、実施例3、および比較例で得られた磁性
粉末の粒度分布を第1図に示す。第1図において、曲線
aは実施例1の場合を、曲線すは実施例3の場合を、曲
線Cは比較例の場合をそれぞれ示す。
Regarding the magnetic powders obtained as above, average particle diameter D (nm), coercive force Hc (Oe), saturation magnetization a g
(emu/g) and specific surface area 5s (nf/g) were measured, and the results were as shown in Table 2. (The following is a blank space) Table 2 Further, the particle size distribution of the magnetic powders obtained in Example 1, Example 3, and Comparative Example is shown in FIG. In FIG. 1, curve a shows the case of Example 1, curve S shows the case of Example 3, and curve C shows the case of Comparative Example.

なお、保磁力Heおよび飽和磁化σgについては、vS
Mによって測定し、比表面積Ssについては、BET測
定器によって測定した。また、平均粒径りは、透過型電
子顕微鏡写真によって測定0 した。
Note that for the coercive force He and saturation magnetization σg, vS
The specific surface area Ss was measured using a BET measuring device. Further, the average particle size was measured using a transmission electron microscope photograph.

次に、上記実施例および比較例でそれぞれ得た六方晶系
フェライト磁性粉末を、それぞれ100g秤取し、これ
をメチルエチルケトン−トルエン混合溶剤(1: 1)
 200gに懸濁させた後、これに分散剤としてレシチ
ン3gを加え、サンドグラインダー(ボールミル)を用
い4時間かけて分散させた。
Next, 100 g of each of the hexagonal ferrite magnetic powders obtained in the above Examples and Comparative Examples was weighed and mixed in a mixed solvent of methyl ethyl ketone and toluene (1:1).
After suspending the suspension in 200 g, 3 g of lecithin was added as a dispersant, and the mixture was dispersed using a sand grinder (ball mill) for 4 hours.

次いでこれに、バインダーとしてポリウレタン樹脂N−
3022の酢酸メチル35%溶液50gを加え、さらに
2時間分散させた後、ガラスピーズをろ別して磁性塗料
を得た。
Next, polyurethane resin N- is added to this as a binder.
After adding 50 g of a 35% solution of 3022 in methyl acetate and further dispersing for 2 hours, the glass beads were filtered off to obtain a magnetic paint.

しかる後、前記によって得た磁性塗料を、厚さ25μm
のポリエステルフィルム上にロールコータ−を用いてそ
れぞれ塗布し、トンネル型乾燥炉によって100℃で乾
燥処理を行った後、常法によってカレンダー処理、スリ
ット処理を行い、膜厚10μmの磁性層を有するテープ
状の磁気記録媒体を得た。
After that, the magnetic paint obtained above was coated with a thickness of 25 μm.
The tape was coated onto a polyester film using a roll coater, dried at 100°C in a tunnel type drying oven, and then calendered and slit using conventional methods to obtain a tape having a magnetic layer with a film thickness of 10 μm. A magnetic recording medium of the shape was obtained.

次いで得られた磁気記録媒体について、媒体角型比、塗
膜光沢度、媒体のS/N比(dB)をそ1 れぞれ測定した結果を、表 れぞれ示す。
Next, the results of measuring the medium squareness ratio, coating gloss, and S/N ratio (dB) of the obtained magnetic recording medium are shown below.

表−3 3および第2図にそ なお、媒体角型比はVSMによる測定値であり、塗膜光
沢度はJISZ8741 r光沢度測定方法」による測
定値である。また媒体のS/N比(d B)は、酸化カ
リウムに20を添加しないで製造された磁性粉末(比較
例)から得られた磁気記録媒体のS/N比を、基準(O
d B)とした値である。
In Table 3 and FIG. 2, the medium squareness ratio is a value measured by VSM, and the coating film glossiness is a value measured by JIS Z8741 r Glossiness Measuring Method. In addition, the S/N ratio (dB) of the medium is the S/N ratio of a magnetic recording medium obtained from a magnetic powder (comparative example) manufactured without adding 20 to potassium oxide, based on the standard (O
dB).

以上の実施例から明らかなように、酸化カリウムに20
が非晶質体中に適当な割合で含有されるように、調製さ
れガラス結晶化法で製造された実施例の磁性粉末は、平
均粒径が小さく、粒度分布も狭くシャープになっている
As is clear from the above examples, potassium oxide
The magnetic powder of the example prepared by the glass crystallization method so as to be contained in an appropriate proportion in the amorphous body has a small average particle size and a narrow and sharp particle size distribution.

2 したがって、前記本発明に係る磁性粉末を塗料化する場
合には、樹脂バインダに対して良好な分散性を呈し、ま
た構成された磁気記録媒体も媒体角型比、塗膜光沢度、
媒体のS/N比などすぐれた特性を保持発揮する。
2. Therefore, when the magnetic powder according to the present invention is made into a paint, it exhibits good dispersibility in a resin binder, and the constructed magnetic recording medium also has a good media squareness ratio, coating gloss,
It maintains and exhibits excellent characteristics such as the S/N ratio of the medium.

[発明の効果] 以上の説明からも明らかなように、本発明の製造方法に
よれば、粒度分布が狭く塗料化の際の分散性の良い磁性
粉末を、再現性良く得ることができる。そして得られた
磁性粉末を使用することによって、高い記録密度と再生
出力を備えた磁気記録媒体を作製することができる。
[Effects of the Invention] As is clear from the above description, according to the production method of the present invention, magnetic powder with a narrow particle size distribution and good dispersibility when made into a paint can be obtained with good reproducibility. By using the obtained magnetic powder, a magnetic recording medium with high recording density and reproduction output can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法および従来の方法でそれぞれ製造し
た磁性粉末の粒度分布を比較して示す曲線図、第2図は
本発明方法および従来の方法でそれぞれ製造した磁性粉
末を用いて構成した磁気記録媒体のS/N比を比較して
示す特性図である。 3 特開平3−263303 (5)
Figure 1 is a curve diagram comparing the particle size distribution of magnetic powders produced by the method of the present invention and the conventional method, and Figure 2 is a curve diagram showing a comparison of the particle size distribution of magnetic powders produced by the method of the present invention and the conventional method. FIG. 2 is a characteristic diagram showing a comparison of S/N ratios of magnetic recording media. 3 JP-A-3-263303 (5)

Claims (1)

【特許請求の範囲】 一般式、 AO・n{(Fe_1_−_xM_x)_2O_3}(
但し、AはBa、Sr、CaおよびPbの中から選ばれ
た少なくとも1種の元素、MはCo、Ti、In、Ni
、Cu、Zn、Nb、Zr、V、Ta、Al、Cr、S
b、Hf、Mo、W、Ir、SnおよびMgの中から選
ばれた少なくとも1種の元素、5.0≦n≦6.5、0
.02≦x≦0.24)で示される六方晶系フェライト
が形成されるような組成分と、ガラス形成成分とを混合
して加熱溶融させた後、急速冷却を施して非晶質化する
工程と、 前記形成した非晶質体に所定温度の熱処理を施して六方
晶系フェライトを析出させる工程と、前記析出した結晶
を粉砕した後ガラス形成成分の溶解除去処理を施して六
方晶系フェライト粉末を抽出する工程とを備えた磁気記
録媒体用磁性粉末の製造方法において、 前記非晶質体中に酸化カリウムを1〜5mol%の割合
で含有させることを特徴とする磁気記録媒体用磁性粉末
の製造方法。
[Claims] General formula, AO・n{(Fe_1_−_xM_x)_2O_3}(
However, A is at least one element selected from Ba, Sr, Ca, and Pb, and M is Co, Ti, In, and Ni.
, Cu, Zn, Nb, Zr, V, Ta, Al, Cr, S
b, at least one element selected from Hf, Mo, W, Ir, Sn and Mg, 5.0≦n≦6.5, 0
.. 02≦x≦0.24) A step in which a composition that forms hexagonal ferrite expressed by the formula 0.2≦x≦0.24 is mixed with a glass-forming component, heated and melted, and then rapidly cooled to become amorphous. a step of precipitating hexagonal ferrite by subjecting the formed amorphous body to a heat treatment at a predetermined temperature; and a step of pulverizing the precipitated crystals and then dissolving and removing glass-forming components to obtain hexagonal ferrite powder. A method for producing a magnetic powder for a magnetic recording medium, comprising a step of extracting potassium oxide in the amorphous body in a proportion of 1 to 5 mol%. Production method.
JP2062412A 1990-03-13 1990-03-13 Method for producing magnetic powder for magnetic recording medium Expired - Lifetime JP2691790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2062412A JP2691790B2 (en) 1990-03-13 1990-03-13 Method for producing magnetic powder for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2062412A JP2691790B2 (en) 1990-03-13 1990-03-13 Method for producing magnetic powder for magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH03263303A true JPH03263303A (en) 1991-11-22
JP2691790B2 JP2691790B2 (en) 1997-12-17

Family

ID=13199411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2062412A Expired - Lifetime JP2691790B2 (en) 1990-03-13 1990-03-13 Method for producing magnetic powder for magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2691790B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041493A (en) * 2004-06-21 2006-02-09 Fuji Photo Film Co Ltd Hexagonal ferrite magnetic powder, method for producing the same and magnetic recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291905A (en) * 1986-06-12 1987-12-18 Sony Corp Manufacture of hexagonal ferrite particle power

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291905A (en) * 1986-06-12 1987-12-18 Sony Corp Manufacture of hexagonal ferrite particle power

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041493A (en) * 2004-06-21 2006-02-09 Fuji Photo Film Co Ltd Hexagonal ferrite magnetic powder, method for producing the same and magnetic recording medium
JP4644535B2 (en) * 2004-06-21 2011-03-02 富士フイルム株式会社 Method for producing hexagonal ferrite magnetic powder and method for producing magnetic recording medium

Also Published As

Publication number Publication date
JP2691790B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JPS6136685B2 (en)
JPH0690969B2 (en) Magnetic powder for magnetic recording medium and magnetic recording medium using the same
JPS6015577B2 (en) Method for producing magnetic powder for magnetic recording
JPH0512842B2 (en)
JPH0986906A (en) Production of functional oxide powder for functional thin film
JP3251753B2 (en) Method for producing Ba ferrite magnetic powder
JP2691790B2 (en) Method for producing magnetic powder for magnetic recording medium
JPH0312442B2 (en)
JP3083891B2 (en) Magnetic powder for magnetic recording medium and method for producing the same
JPH01200605A (en) Magnetic powder
JP3576332B2 (en) Magnetic powder for magnetic recording
JP2717735B2 (en) Method for producing magnetic powder for magnetic recording medium
JPS6324935B2 (en)
JP2802653B2 (en) Magnetic powder for high-density magnetic recording and method for producing the same
JP2717720B2 (en) Method for producing magnetic powder for magnetic recording medium
JPH05326233A (en) Production of magnetic powder
JPH04284604A (en) Manufacture of hexagonal-system ferrite for magnetic recording
JPH0825745B2 (en) Method for producing magnetic powder
JPS6340302A (en) Magnetic powder for high-density magnetic recording
KR960000501B1 (en) Method of preparing high density magnetic hexagonal ferrite powder
JP2735281B2 (en) Method for producing magnetic powder for magnetic recording medium
JPH04337521A (en) Magnetic powder for magnetic recording medium and magnetic recording medium formed by using the powder
JP2006306725A (en) Production method of hexagonal ferrite fine powder for functional thin film
JPH0472601A (en) Manufacture of magnetic powder for magnetic recording medium
KR960000502B1 (en) Method of preparing magnetic hexagonal ferrite powder

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 13